


Topics in Stochastic Programming

Alexander Shapiro

School of Industrial & Systems Engineering,
Georgia Institute of Technology,

765 Ferst Drive, Atlanta, GA 30332.



Contents

1 Introduction 1

2 Two Stage Problems 2
2.1 General Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 Interchangeability of Minimization and Expectation Operators 4
2.2 Decision Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Affine Decision Rules . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Robust Formulation . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 The SAA Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Minimax Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Coherent Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Comonotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.2 Risk Averse Optimization . . . . . . . . . . . . . . . . . . . . 27

2.6 Two-Stage Problems with Expectations Constraints . . . . . . . . . . 31
2.7 The Problem of Moments . . . . . . . . . . . . . . . . . . . . . . . . 35
2.8 Ambiguous Chance Constraints . . . . . . . . . . . . . . . . . . . . . 40
2.9 Stochastic Programming with Equilibrium Constraints . . . . . . . . 44

3 Multistage Problems 48
3.1 Risk Neutral Formulation . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1.1 Multistage Linear Programs . . . . . . . . . . . . . . . . . . . 51
3.2 Lagrange Multipliers of Nonanticipativity Constraints . . . . . . . . . 53

3.2.1 The Two Stage Case . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Conditional Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4 Minimax and Risk Averse Multistage Programming . . . . . . . . . . 58

3.4.1 Stagewise Independence . . . . . . . . . . . . . . . . . . . . . 64
3.5 Robust Multistage Programming . . . . . . . . . . . . . . . . . . . . 67
3.6 Dynamic Problem of Moments . . . . . . . . . . . . . . . . . . . . . . 71
3.7 Dynamics of Average Value-at-Risk Measures . . . . . . . . . . . . . 73

4 Inventory Model 76
4.1 The Newsvendor Problem . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Multistage Inventory Problem . . . . . . . . . . . . . . . . . . . . . . 81

4.2.1 Robust Multistage Inventory Problem . . . . . . . . . . . . . . 82
4.2.2 Inventory Problem with Moment Constraints . . . . . . . . . . 84



5 Computational Approaches to Multistage Stochastic Programming 85
5.1 Sample Average Approximations of Multistage Problems . . . . . . . 85
5.2 Stochastic Dual Dynamic Programming Method . . . . . . . . . . . . 86

5.2.1 The SDDP Method without Stagewise Independence . . . . . 92
5.2.2 Convergence Properties of the SDDP Algorithm . . . . . . . . 94
5.2.3 Risk Averse Implementations of the SDDP Method . . . . . . 97

5.3 Reduction to Static Problems . . . . . . . . . . . . . . . . . . . . . . 100
5.3.1 Affine Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



This monograph is a follow up to the recently published book [30], where
additional technical details and proofs can be found. Hospitality of the
Center for Operations Research and Econometrics (CORE) of Université
Catholique de Louvain is greatly appreciated and acknowledged.

1 Introduction

In the last decade a considerable progress was made in the area of stochastic pro-
gramming. At the same time an alternative and competing approach to optimization
under uncertainty was developed in terms of Robust Optimization. One of the crit-
icisms of stochastic programming is that in many applications the basic assumption
of knowing, or even accurately estimating, the probability distribution of the uncer-
tain data is unrealistic. Moreover, quite often the classical concept of probability
distribution, based on the frequency approach, is not applicable – uncertainty does
not necessarily mean randomness. On the other hand, the worst case approach of
Robust Optimization could be too conservative. This motivated a renewed interest
in a minimax approach to stochastic programming where one can identify a relevant
family of probability distributions and consequently tries to solve the obtained worst
probability stochastic programming problem. By duality techniques in some cases
the minimax approach can be represented in terms of a risk averse stochastic pro-
gramming. We will discuss this in various parts of this monograph, specifically for
two stage problems in sections 2.4 and 2.5 and for multistage problems in section 3.4.

Another progress is related to development of Monte Carlo based randomization
methods for solving stochastic programs and the associated complexity theory. For
a long time approaches to modeling and solving stochastic programming problems
were dominated by scenario generation methods. That is a finite, computationally
manageable, number of scenarios, i.e., realizations of the data process with assigned
probabilities, was generated and consequently the constructed optimization problem
was solved by decomposition type methods. An argument is that considering many
scenarios is certainly better than solving the problem for just one scenario which
would be a deterministic optimization approach.

If one takes the position that generated scenarios represent reality in a reason-
ably accurate way, then there is no dramatic difference between two and multistage
stochastic programming. Everybody would agree, however, that what will really
happen in the future will be different with probability one from the set of gener-
ated scenarios. This raises the question of what does it mean to solve a stochastic
programming problem? In that respect we may cite [3, p.413]: “... it is absolutely
unclear what the resulting solution [of a scenario based approximation of a multistage
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stochastic program] has to do with the problem we intend to solve. Strictly speaking,
we even cannot treat this solution as a candidate solution, bad or good alike, to the
original problem – the decision rules we end up with simply do not say what our de-
cisions should be when the actual realizations of the uncertain data differ from the
scenario realizations.”

Of course, one can utilize only the computed first stage solution, which is determin-
istic, while recomputing (updating) it at every stage as a new information (realization
of the uncertain data) becomes available. In such a rolling horizon approach one has
to decide on how many stages to look ahead. From a computational point of view
looking one stage ahead, i.e., solving two-stage problems, could be reasonably justi-
fied by employing Monte Carlo sampling randomization techniques. From the point
of view of a number of (randomly generated) scenarios, computational complexity of
two-stage stochastic programming problems is discussed in detail in [30, Chapter 5].
The conclusion is that certain classes of two-stage stochastic programming problems
(in particular, linear two-stage stochastic programs with relatively complete recourse)
can be solved with reasonable accuracy and reasonable computational effort.

From that point of view the number of scenarios, of the “true” problem, is irrele-
vant and can be astronomically large or even infinite. On the other hand, it turns out
that computational complexity of multistage stochastic programming problems, mea-
sured in terms of required number of generated scenarios, is conceptually different.
This gives a motivation for looking for other than scenario generation methods for
solving in some reasonable sense multistage stochastic programming problems. One
possible approach is to approximate dynamic programming equations. In section 5.2
we discuss one such method. Another approach is to construct a parameterized family
of implementable policies. We will shortly discuss this in section 5.3.

2 Two Stage Problems

2.1 General Formulation

We consider the following robust formulation of stochastic problems

Min
x∈X

{
f(x) := sup

P∈M
EP [F (x, ξ)]

}
. (2.1)

Here X ⊂ Rn is a nonempty set, F : Rn×Ξ→ R is an extended1 real valued function
and M is a set of probability measures (distributions) on the set Ξ ⊂ Rd. We assume

1By R = R ∪ {+∞} ∪ {−∞} we denote the extended real line.
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that the set Ξ is closed and is equipped with its Borel sigma algebra. The expectation
EP [F (x, ξ)] is taken with respect to the probability distribution P of random vector
ξ. We assume that for every x ∈ X and P ∈M this expectation is well defined. We
use the same notation ξ for random vector and its particular realization, which of
these two meaning is used will be clear from the context. If M = {P} is a singleton,
i.e., the set M consists of single probability measure P , then (2.1) becomes

Min
x∈X

{
f(x) := EP [F (x, ξ)]

}
, (2.2)

which is a standard formulation of a stochastic programming problem.
The set Ξ can be viewed as a set of possible realizations (called scenarios) of the

random (uncertain) data vector ξ. If the set Ξ = {ξ1, ..., ξK} is finite, we say that the
problem has a finite number of scenarios. Then every probability measure P on Ξ is
defined by probabilities pi ≥ 0, p1 + ...+ pK = 1, and EP [F (x, ξ)] =

∑K
i=1 piF (x, ξi).

The above formulation is static in the sense that the objective function F (x, ξ)
is supposed to be given explicitly in a computable form. In two stage problems it is
given as the optimal value of the corresponding second stage problem

Min
y∈G(x,ξ)

g(x, y, ξ), (2.3)

where g : Rn × Rm × Ξ → R and G : Rn × Ξ ⇒ Rm is a multifunction (point-to-set
mapping). For example, linear two-stage problem can be formulated in the above
form as

Min
x∈Rn

cTx+ E[Q(x, ξ)] subject to Ax = b, x ≥ 0, (2.4)

where Q(x, ξ) is the optimal value of the problem

Min
y≥0

qTy subject to Tx+Wy = h. (2.5)

Here data vector ξ consists of elements of vectors q and h and matrices T and W , the
functions F (x, ξ) := cTx+Q(x, ξ) and g(x, y, ξ) := qTy and the multifunction

G(x, ξ) := {y ∈ Rm : Tx+Wy = h, y ≥ 0}. (2.6)

The class of linear two-stage problems is especially important and we will discuss it
in more details.

In principle it could happen that for some x ∈ X and ξ ∈ Ξ the minimization
problem (2.3) is unbounded from below and hence its optimal value F (x, ξ) = −∞.
This is a somewhat pathological situation meaning that for the first stage decision x
the cost of the second stage problem could be arbitrary small. We assume that one
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makes sure at the modeling stage that this does not happen. For example, the dual
of the linear programming problem (2.5) is

Max
π

πT(h− Tx) subject to WTπ ≤ q, (2.7)

and hence Q(x, ξ) > −∞ if (and in fact only if provided the problem (2.5) is feasible)
the system WTπ ≤ q has a feasible solution.

It also could happen that for some x ∈ X and ξ ∈ Ξ the feasible set of problem
(2.3) is empty, i.e., G(x, ξ) = ∅. In that case, by the definition, the optimal value
of problem (2.3) F (x, ξ) = +∞. If for some P ∈ M this happens with a positive
probability, then of course EP [F (x, ξ)] = +∞. We say that the two stage problem
has relatively complete recourse 2 if G(x, ξ) 6= ∅ for all x ∈ X and ξ ∈ Ξ. It is
straightforward to see that the linear second stage problem (2.5) is feasible, i.e.,
Q(x, ξ) < +∞, if and only if

h− Tx ∈ posW, (2.8)

where
posW := {u : u = Wy, y ≥ 0} (2.9)

is the positive hull of matrix W . If the number of scenarios is finite and not too large,
then for any given x ∈ X it could be possible to verify with a reasonable computational
effort whether the feasible set G(x, ξ) of the second stage problem is nonempty for
every ξ ∈ Ξ. The situation is different if ξ has a continuous distribution. If for a given
x ∈ X and P ∈ M the probability of the event G(x, ξ) = ∅ is very small, say 10−6,
then we may never see that happens by generating a finite number of realizations
(scenarios) of the random vector. On the other hand, if this probability is positive,
does not matter how small, then we set EP [F (x, ξ)] = +∞, i.e., such point x will be
infeasible for the first stage problem. This motivates the discussion of the following
section 2.2.

2.1.1 Interchangeability of Minimization and Expectation Operators

Consider an abstract set Ω and let F be a sigma algebra of subsets of Ω. We refer to
(Ω,F) as a measurable space. If, moreover, a probability measure (distribution) P is
defined on (Ω,F), then (Ω,F , P ) becomes a probability space. Of course, a closed set
Ξ ⊂ Rd equipped with its Borel sigma algebra becomes a measurable space and for
considered applications it could be sufficient to consider such spaces only. However,
this is not essential at this point.

2If M = {P} is a singleton, then the relatively complete recourse is often defined as that for
all x ∈ X the corresponding second stage problem is feasible for P -almost every realization of the
random data.
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Let (Ω,F , P ) be a probability space. It is said that a linear space Y of F -
measurable functions (mappings) ψ : Ω→ Rm is decomposable if for every ψ ∈ Y and
A ∈ F , and every bounded and F -measurable function γ : Ω → Rm, the space Y

also contains the function η(·) := 1Ω\A(·)ψ(·) +1A(·)γ(·). For example, for p ∈ [1,∞)
the space of measurable mappings ψ : Ω→ Rm such that

∫
Ω
‖ψ‖pdP < +∞, denoted

Lp(Ω,F , P ; Rm), is decomposable. Recall that an extended real valued function g :
Rm×Ω→ R is said to be random lower semicontinuous if the associated epigraphical
multifunction ω 7→ epi g(·, ω) is closed valued and measurable. Proof of the following
theorem can be found in [21, Theorem 14.60].

Theorem 2.1 Let Y be a decomposable space and g : Rm × Ω → R be a random
lower semicontinuous function. Then

E
[

inf
y∈Rm

g(y, ω)

]
= inf

y(·)∈Y
E
[
g(y(ω), ω)

]
, (2.10)

provided that the right hand side of (2.10) is less than +∞. Moreover, if the common
value of both sides in (2.10) is not −∞, then ȳ(·) ∈ arg min y(·)∈Y E[g(y(ω), ω)] if and
only if

ȳ(ω) ∈ arg min
y∈Rm

g(y, ω), for a.e. ω ∈ Ω, and ȳ(·) ∈ Y. (2.11)

The notation y(·) in the above theorem emphasizes that y(·) is considered as an
element of the functional space Y, while y ∈ Rm is an m-dimensional vector.

2.2 Decision Rules

In this section we assume that the probability distribution of random vector ξ is
(uniquely) specified, i.e., M = {P} is a singleton, and all probability statements
will be made with respect to the probability measure (distribution) P . By using
interchangeability of minimization and expectation operators (see Theorem 2.1), the
two-stage problem (2.1)–(2.3) can be written as one large problem

Min
x,y(·)

E[g(x, y(ξ), ξ)]

s.t. x ∈ X , y(ξ) ∈ G(x, ξ) a.e. ξ ∈ Ξ.
(2.12)

Here the optimization is performed over x ∈ Rn and functions y(·) : Ξ→ Rm belong-
ing to a specified (decomposable) functional space Y (cf., [30, Theorem 2.20]). If the
number of scenarios Ξ = {ξ1, ..., ξK} is finite, we can identify functions y(·) with the
set of vectors yi = y(ξi), i = 1, ..., K, and hence write problem (2.12) as

Min
x,y1,...,yK

∑K
i=1 pig(x, yi, ξi)

s.t. x ∈ X , yi ∈ G(x, ξi), i = 1, ..., K.
(2.13)
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In case of continuous distribution P , when the number of scenarios is infinite,
problem (2.12) becomes an infinite dimensional problem. A particular function y(·) ∈
Y is called a policy or a decision rule. For a given x ∈ X a decision rule y(·), satisfying
the feasibility constraints y(ξ) ∈ G(x, ξ) for a.e. ξ ∈ Ξ, specifies the corresponding
second stage decision for every possible realization of the random data. We can
restrict the optimization in (2.12) to a chosen parametric family of decisions y(·) =
ȳ(·, θ) parameterized by finite dimensional vector θ ∈ Rk. This leads to the following
restriction of problem (2.12)

Min
x,θ

E[g(x, ȳ(ξ, θ), ξ)] subject to x ∈ X , θ ∈ Θ(x), (2.14)

where
Θ(x) :=

{
θ ∈ Rk : ȳ(ξ, θ) ∈ G(x, ξ), a.e. ξ ∈ Ξ

}
.

Of course the optimal value of problem (2.14) is greater than or equal to the optimal
value of problem (2.12) and equality holds if the considered parameterization contains
an optimal solution of the problem (2.12), i.e., for an optimal solution x̄ of the first
stage problem and some θ∗ ∈ Rk it holds that ȳ = ȳ(ξ, θ∗) is an optimal solution of
the second stage problem (2.3) for x = x̄ and a.e. ξ ∈ Ξ.

Example 1 Consider the linear two-stage stochastic problem (2.4)–(2.5). Assume
that the m × 1 vector q and ` × m matrix W are deterministic (not random), i.e.,
the recourse is fixed, while elements of T and h form random vector ξ, and that
the feasible set {π : WTπ ≤ q} of the dual problem (2.7) is nonempty and hence
Q(x, ξ) > −∞ for all x and ξ. Let us discuss what will be optimal policies for such
linear two-stage problems.

Let us fix a point x ∈ X and consider (random ) vector u := h − Tx. We have
that y and π are optimal solutions of problems (2.5) and (2.7), respectively, iff

Wy = u, y ≥ 0, WTπ − q ≤ 0, yT(WTπ − q) = 0. (2.15)

It follows from (2.15) that the set of optimal solutions of (2.5) is unbounded iff the
feasible sets of problems (2.5) and (2.7) are nonempty, and hence (2.5) has an optimal
solution, and the system Wy = 0, qTy = 0, y ≥ 0, has a nonzero solution. In any case,
since the cone Rm

+ does not contain linear spaces (except the trivial space consisting
of the null vector), it follows that the set of optimal solutions of problem (2.5) does
not contain linear spaces. Consequently if the optimal value of problem (2.5) is finite,
then it attains its optimal value at an extreme point of its feasible set (of course,
if (2.5) has more than one optimal solution, then some of them will be not extreme
points of the feasible set).
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Denote by O(u) the set of optimal solutions of problem

Min
y≥0

qTy subject to Wy = u. (2.16)

Then, of course, O(h − Tx) is the set of optimal solutions of problem (2.5). The
linear programming problem (2.16) has an optimal solution provided its optimal value
is finite. Since we assume here that the dual of (2.16) is feasible, and hence the
optimal value of (2.16) is greater than −∞, it follows that the domain dom O := {u :
O(u) 6= ∅} of the point-to-set mapping (multifunction) O(·) coincides with such u
that problem (2.16) has a feasible solution, that is

dom O = posW,

and hence dom O is a closed polyhedral cone.
By Hoffman’s lemma we have that that the multifunction O(·) is Lipschitz con-

tinuous in the following sense: there is a constant κ > 0, depending only on matrix
W , such that

dist(y,O(u′)) ≤ κ‖u− u′‖, ∀u, u′ ∈ dom O, ∀y ∈ O(u).

In other words O(·) is Lipschitz continuous on its domain with respect to the Hausdorff
metric.

Assume that the `×m matrix W has rank `, i.e., rows of W are linearly indepen-
dent. For an index set I ⊂ {1, ...,m} denote by WI the submatrix of W formed by
columns of W indexed by I and by yI the subvector of y formed by components yi,
i ∈ I. By the well known result of linear programming we have that a feasible point y
is an extreme point (basic solution) of the feasible set of problem (2.16) iff there exists
an index set I ⊂ {1, ...,m} of cardinality ` such that the matrix WI is nonsingular
and yi = 0 for i ∈ {1, ...,m} \ I. We also have that extreme points of the optimal
set O(u) are extreme points of the feasible set. Therefore if the optimal set O(u) is
nonempty, then it has an extreme point ȳ = ȳ(u) and an index set I = I(u) such
that WI ȳI = u and ȳi = 0 for i ∈ {1, ...,m} \ I. This can be written as ȳ(u) = RIu,
where RI is m × ` matrix with the rows [RI ]i = [W−1

I ]i for i ∈ I and [RI ]i = 0 for
i ∈ {1, ...,m} \ I.

If for some ū the optimal set O(ū) = {ȳ} is a singleton, then ȳ(u) is continuous at
ū for any choice of ȳ(u) ∈ O(u). In any case it is possible to choose an extreme point
ȳ(u) ∈ O(u) such that ȳ(u) is continuous on dom O. Indeed, it is possible to choose a
vector a ∈ Rm such that aTy has unique minimizer over y ∈ O(u) for all u ∈ dom O.
This minimizer is an extreme point of O(u) and is continuous in u ∈ dom O. So we
can choose a continuous policy ȳ(u), u ∈ dom O, and a finite collection I of index
sets I ⊂ {1, ...,m}, of cardinality `, such that ȳ(u) = RIu for some I = I(u) ∈ I. In
summary we can write (cf., [10]):
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• It follows that under the specified assumptions and if the first stage problem
has an optimal solution x̄, then the linear two-stage stochastic problem (2.4)–
(2.5) has an optimal policy given by a continuous piecewise linear function with
pieces of the form ȳ(ξ) = RI(h− T x̄), h− T x̄ ∈ posW .

♦

2.2.1 Affine Decision Rules

Consider the linear two-stage stochastic problem with the second stage problem given
in the form

Min
y∈Rm

qTy s.t. Tx+Wy ≤ h, y ≥ 0. (2.17)

Of course, it can be transformed into form (2.5) by adding slack variables:

Min
y′≥0

qTy s.t. Tx+W ′y′ = h. (2.18)

where3 W ′ = [W,−I] and y′ =

[
y
z

]
.

We assume now that only the right hand side vector h is random, whose distri-
bution is supported4 on set H ⊂ R`. By the discussion of Example 1 the considered
two-stage problem has (under mild regularity conditions) a continuous piecewise affine
optimal policy. It could be too difficult to handle piecewise affine policies (decision
rules), so let us consider the following affine decision rule y = Dh + d, where vector
d and matrix D are viewed as parameters defining a particular policy. Then the
feasibility system of the second stage problem (2.5) takes the form

Tx+ (WD − I)h+Wd ≤ 0, Dh+ d ≥ 0, ∀h ∈ H. (2.19)

Note that constraints (2.19) are linear in (D, d). Therefore we can write constraints
(2.19) in the following equivalent form5 (cf., [3, pp. 11-12])

Tix+ max
h∈H

[WD − I]ih+Wid ≤ 0, i = 1, ..., `,

max
h∈H

[−D]ih− di ≤ 0, i = 1, ..., `.
(2.20)

For some “simple” sets H the maxima in (2.20) can be computed in a closed form.
For example, if H := {h : |hi| ≤ 1 : i = 1, ..., `} is a box, then maxh∈H a

Th = ‖a‖1

3By I we denote the identity matrix of an appropriate dimension.
4Support of probability distribution of random vector h is the smallest closed set H ⊂ R` such

that Pr{h ∈ H} = 1.
5 Ti denotes i-th row of matrix T .
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for any a ∈ R`. If H := {h : hTQh ≤ 1} is ellipsoid (here Q is a symmetric positive
definite matrix), then

max
h∈H

aTh =
√
aTQ−1a. (2.21)

In that case constraints (2.20) become conic quadratic constraints (cf., [3, Example
1.3.3]).

Suppose now that the set H is defined by a finite number of linear constraints

H := {h ∈ Rm : V h+ r ≥ 0}. (2.22)

By duality we have that maxh∈H[WD− I]ih is equal to the optimal value of problem

Min
λ≥0

rTλ subject to V Tλ+ [WD − I]Ti = 0, (2.23)

and maxh∈H[−D]ih to the optimal value of the problem

Min
µ≥0

rTµ subject to V Tµ−DT
i = 0. (2.24)

Therefore system (2.19) is equivalent to

Tix+ rTλ+Wid ≤ 0, V Tλ+ [WD − I]Ti = 0, i = 1, ..., `, λ ≥ 0,
rTµ ≤ 0, V Tµ−DT

i = 0, i = 1, ..., `, µ ≥ 0.
(2.25)

It follows that for the considered affine decision rule the corresponding (restricted)
problem can be written as the following linear programming problem

Min
x,λ,µ,D,d

cTx+ qT(Dη + d)

s.t. Ax = b, x ≥ 0,
Tix+ rTλ+Wid ≤ 0, i = 1, ..., `,
V Tλ+ [WD − I]Ti = 0, i = 1, ..., `,
V Tµ−DT

i = 0, i = 1, ..., `,
rTµ ≤ 0, λ ≥ 0, µ ≥ 0,

(2.26)

where η := E[h].

2.2.2 Robust Formulation

Consider the following robust formulation of the first stage problem

Min
x∈X

{
cTx+ max

h∈H
Q(x, h)

}
, (2.27)
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with the second stage problem in the form (2.17). The above problem (2.27) can be
formulated as

Min
x∈X , v∈R

cTx+ v s.t. Q(x, h) ≤ v, h ∈ H. (2.28)

The dual of problem (2.17) is the problem

Max
π≥0

πT(Tx− h) s.t. q +WTπ ≥ 0. (2.29)

So Q(x, h) is equal to the optimal value of problem (2.29) as well. Therefore we can
write problem (2.28) as

Min
x∈X , v∈R,π≥0

cTx+ v

s.t. πT(Tx− h) ≤ v, h ∈ H,
q +WTπ ≥ 0.

(2.30)

Note that since H is a bounded polyhedral set, it is sufficient to verify constraints
πT(Tx−h) ≤ v, h ∈ H, at vertexes ofH. Therefore problem (2.28) can be formulated
as a linear programming problem as follows. Let hk, k = 1, ..., K, be vertexes of H.
Then (2.28) is equivalent to

Min
x∈X , v∈R

cTx+ v s.t. Q(x, hk) ≤ v, k = 1, ..., K. (2.31)

The constraint Q(x, hk) ≤ v means that there exists yk ≥ 0 such that Tx+Wyk ≤ hk
and qTyk ≤ v. Therefore problem (2.31) can be formulated as the following large
linear program

Min
x,v,y1,...,yK

cTx+ v

s.t. Ax = b, x ≥ 0,
qTyk ≤ v, yk ≥ 0, k = 1, ..., K,
Tx+Wyk ≤ hk, k = 1, ..., K.

(2.32)

Problem (2.27), although convex, could be difficult to solve. In formulation (2.30)
the constraint πT(Tx−h) ≤ v is not convex, and in formulation (2.32) the number of
vertexes can increase exponentially with increase of the dimension of h. Using affine
decision rule y = Dh+ d we can write the following approximation of problem (2.28)

Min
x,v,D,d

cTx+ v

s.t. Ax = b, x ≥ 0,
qT(Dh+ d) ≤ v, h ∈ H,
Dh+ d ≥ 0, h ∈ H,
Tx+W (Dh+ d) ≤ h, h ∈ H.

(2.33)

Since the set H is polyhedral, the constraints of the above problem involving vector
h can be treated in the same way as in section 2.2.1 (compare with (2.19)–(2.26)).
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2.3 The SAA Method

Consider the linear two-stage stochastic problem (2.4)–(2.5). As in section 2.2.1 as-
sume that only the right hand side vector h is random, with distribution P supported
on set H ⊂ R`. We have that for a given first stage decision x the second stage
problem (2.5) has a feasible solution iff h− Tx ∈ C, where C := posW . Denote

H(x) := {h ∈ H : h− Tx 6∈ C} and p(x) := Pr{H(x)}, (2.34)

i.e., p(x) is the probability of the event that the feasible set of the second stage
problem is empty. Recall that it is said that the recourse is relatively complete, if
p(x) = 0 for every x ∈ X .

Note that C is a closed convex polyhedral cone. Therefore if h−Tx 6∈ C for some
h ∈ H and x ∈ X , then h′ − Tx 6∈ C for all h′ in a neighborhood of h, and hence
p(x) > 0. Thus we can write problem (2.4) in the form

Min
x∈X

cTx+Q(x) s.t. h− Tx ∈ C, h ∈ H, (2.35)

whereQ(x) := E[Q(x, h)] and Q(x, h) is the optimal value of the second stage problem
(2.5). Note that since it was assumed that the feasible set of the dual problem (2.7)
is nonempty, and hence Q(x, h) > −∞, we have that for every feasible x of the above
problem (2.35) the optimal value Q(x, h) is finite for all h ∈ H. We assume that the
expectation Q(x) = E[Q(x, h)] is finite valued for all these feasible x.

We can apply the Sample Average Approximation (SAA) method to the problem
(2.35). That is an iid sample h1, ..., hN of random vector h is generated and problem
(2.35) is approximated by

Min
x∈X

cTx+ Q̂N(x), (2.36)

where Q̂N(x) := 1
N

∑N
j=1Q(x, hj). We can write the above SAA problem (2.36) as

the following linear programming problem

Min
x,y1,...,yN

cTx+ 1
N

∑N
j=1 q

Tyj

s.t. Ax = b, x ≥ 0,
Tx+Wyj = hj, yj ≥ 0, j = 1, ..., N.

(2.37)

Let us make the following observations. Problem (2.36) is equivalent to the fol-
lowing problem

Min
x∈X

cTx+ Q̂N(x) s.t. hj − Tx ∈ C, j = 1, ..., N. (2.38)
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Unless relatively complete recourse is ensured, it still may happen that there exists
h ∈ H such that T x̂N − h 6∈ C, i.e., the probability p(x̂N), that the corresponding
second stage problem is infeasible, is positive. In that case Q(x̂N) = +∞ and x̂N
is not a feasible point of the true problem (2.35), does not matter how small the
probability p(x̂N) is. If the probability p(x̂N) is small, then one may still be satisfied
with the computed solution. This motivates to introduce chance constraint p(x) ≤ α,
at a chosen significance level α ∈ (0, 1), and to restrict the optimization to such x that
the second stage problem is feasible. This leads to the following “chance constraint”
variant of the two stage problem (2.35):

Min
x∈X

cTx+ Q(x) subject to p(x) ≤ α, (2.39)

where Q(x) is the expectation of the second stage optimal value conditional on the
event h− Tx ∈ C, i.e.,

Q(x) := E
[
Q(x, h)

∣∣h− Tx ∈ C] =
1

1− p(x)

∫
h∈H∩(Tx+C)

Q(x, h)dP (h).

2.4 Minimax Analysis

In this section we discuss a general theory of minimax problems of the form (2.1).
We assume in this section that the expectation

φ(x, P ) := EP [F (x, ξ)]

is finite for all x ∈ S and P ∈ M, where S is an open set containing the set X . In
particular, this implies that F (x, ξ) is finite valued for a.e. ξ ∈ Ξ with respect to
every P ∈M. The problem (2.1), to which we refer as the primal problem, is

Min
x∈X

{
f(x) := sup

P∈M
φ(x, P )

}
. (2.40)

Its dual problem is obtained by interchanging the min and max operators:

Max
P∈M

{
g(P ) := inf

x∈X
φ(x, P )

}
. (2.41)

Clearly for any (x, P ) ∈ X ×M we have that f(x) ≥ g(P ), and hence it follows
that the optimal value of the primal problem (2.40) is greater than or equal to the
optimal value of the dual problem (2.41). The difference between the optimal values
of problems (2.40) and (2.41) is called the duality gap between these two problems.
It is said that there is no duality gap if the optimal values of problems (2.40) and
(2.41) are equal to each other.
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Definition 2.1 It is said that (x̄, P̄ ) ∈ X ×M is a saddle point of problem (2.40) if

φ(x̄, P ) ≤ φ(x̄, P̄ ) ≤ φ(x, P̄ ), (2.42)

for all (x, P ) ∈ X ×M.

Equivalently (x̄, P̄ ) ∈ X ×M is a saddle point iff

x̄ ∈ arg min
x∈X

φ(x, P̄ ) and P̄ ∈ arg max
P∈M

φ(x̄, P ). (2.43)

Proof of the following classical result is rather straightforward.

Theorem 2.2 The minimax problem (2.40) has a saddle point iff there is no duality
gap between problems (2.40) and (2.41) and both problems have optimal solutions. In
the last case the set of saddle points coincides with the direct (Cartesian) product of
the sets of optimal solutions of problems (2.40) and (2.41).

Let us assume now that the set X is convex and closed and F (x, ξ) is convex in
x for every ξ ∈ Ξ. Then the expectation function φ(x, P ) is convex in x, and hence
the max-function f(x) is convex, and thus problem (2.40) is a convex problem. Note
also that the maximum supP∈M φ(x, P ) is not changed if the set M is replaced by its
convex hull. Therefore we can assume without loss of generality that the set M is
convex, i.e., if P, P ′ ∈M, then tP + (1− t)P ′ ∈M for any t ∈ [0, 1]. Since φ(x, P ) is
linear in P , it follows that the set

M∗(x) := arg max
P∈M

φ(x, P ) (2.44)

is also convex.
Let x̄ be an optimal solution of the primal problem (2.40). Assume that the

function f(x) is finite valued for all x in a neighborhood of x̄. Then we can write the
following first order optimality conditions

0 ∈ ∂f(x̄) +NX (x̄), (2.45)

where NX (x̄) denotes the normal cone to the set X at the point x̄ ∈ X and ∂f(x̄)
is the subdifferential of f(x) at x = x̄. Recall that we assumed that the function
f(x) is finite valued for all x near x̄, and thus by convexity arguments the optimality
conditions (2.44) are necessary and sufficient. Of course, if the function f(x) is finite
valued for all x in a neighborhood of x̄, then the functions φ(x, P ), P ∈ M, are
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also finite valued for all x in that neighborhood. Suppose, further, that the following
formula for the subdifferential of the max-function f(·) holds

∂f(x̄) = conv
{⋃

P∈M∗(x̄) ∂xφ(x̄, P )
}
, (2.46)

where conv{A} denotes the convex hull of set A. In particular, (2.46) requires the
set M∗(x̄), of maximizers of φ(x̄, P ) over P ∈ M, to be nonempty. We will discuss
conditions ensuring validity of formula (2.46) later.

Formula (2.46) implies that the optimality conditions (2.45) can be formulated as
follows: there exist P1, ..., Pk ∈ M∗(x̄) and nonnegative weights w1, ..., wk summing
up to one such that

0 ∈
k∑
i=1

wi∂xφ(x̄, Pi) +NX (x̄).

Moreover, by the Moreau-Rockafellar Theorem we have that∑k
i=1wi∂xφ(x̄, Pi) = ∂x

(∑k
i=1 wiφ(x̄, Pi)

)
.

Also
∑k

i=1wiφ(x, Pi) = φ(x, P̄ ), where P̄ :=
∑k

i=1 wiPi. Since the set M∗(x̄) is
convex, and hence P̄ ∈ M∗(x̄), it follows that optimality conditions (2.45) can be
written as follows: there exists P̄ ∈M∗(x̄) such that

0 ∈ ∂xφ(x̄, P̄ ) +NX (x̄). (2.47)

By convexity arguments condition (2.47) is necessary and sufficient for the first of the
conditions (2.43). The second of the conditions (2.43) also holds by the definition of
the set M∗(x̄). Therefore it follows, under the specified assumptions, that (x̄, P̄ ) is a
saddle point of the problem (2.40).

In order to verify validity of formula (2.46) we need several nontrivial results. In
particular, we need to verify compactness of the set M in an appropriate topology.
We use here the weak topology of probability measures defined on the set Ξ ⊂ Rd

equipped with its Borel sigma algebra, so all topological properties, such as compact-
ness, convergence, continuity, of probability measures on Ξ will be considered with
respect to the weak topology.

The weak topology can be defined by a metric and hence can be described in terms
of convergent sequences. A sequence {Pn} of probability measures on Ξ converges, in
the weak topology, to a probability measure P if

lim
n→∞

∫
Ξ

h(z)dPn(z) =

∫
Ξ

h(z)dP (z) (2.48)
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for any bounded continuous function h : Ξ → R. We refer to Billingsley [4] for a
discussion of the involved concepts and results. By Prohorov’s theorem the set M is
compact iff M is tight and closed, [4, Section 5]. It is said that M is tight if for any
ε > 0 there exists a compact set Ξ′ ⊂ Ξ such that P (Ξ′) > 1 − ε for every P ∈ M.
Recall that a subset of a finite dimensional vector space is compact iff it is bounded
and closed. Therefore, in particular, if the set Ξ is bounded and closed, then M is
compact iff it is closed in the weak topology. Closedness of M means that if Pn ∈M

is a sequence of probability measures convergent weakly to a probability measure P ,
then P ∈M.

Now by the Levin-Valadier Theorem we have that, under the specified assumptions
of convexity, formula (2.46) holds if the set M is compact and for every x in a
neighborhood of x̄ the function φ(x, P ) is continuous in P ∈ M. Note that by the
definition of weak convergence we have that if, for a given x ∈ X , the function F (x, ·)
is bounded and continuous on Ξ, then φ(x, P ) is continuous in P . By summarizing
the above discussion we have the following result (cf., [27]).

Theorem 2.3 Let x̄ be an optimal solution of the primal problem (2.40). Suppose
that: (i) the set X is convex and closed, the set M is convex and F (x, ξ) is convex in
x for every ξ ∈ Ξ, (ii) the set M is tight and closed (in the weak topology), (iii) for
every x in a neighborhood of x̄ the function F (x, ·) is bounded and continuous on Ξ.
Then there is no duality gap between problems (2.40) and (2.41), both problems have
optimal solutions and the set of saddle points coincides with the direct product of the
sets of optimal solutions of problems (2.40) and (2.41).

Remark 1 Suppose that the set Ξ is compact, i.e., is bounded and closed in Rd.
Then the set M is tight and hence condition (ii) holds, provided M is closed. Suppose,
further, that F (x, ξ) is continuous in ξ ∈ Ξ for every x ∈ X . Then F (x, ·) is bounded
on Ξ, and hence condition (iii) holds. ♦

Also by using conjugate duality it is possible to proof the following sufficient
conditions for the no duality gap property (e.g., [7, Theorem 7.10]).

Theorem 2.4 Suppose that the set X is convex and closed, the set M is convex,
F (x, ξ) is convex in x for every ξ ∈ Ξ, and the problem (2.40) has a nonempty and
bounded set of optimal solutions. Then there is no duality gap between problems (2.40)
and (2.41)

2.5 Coherent Risk Measures

There is another way to look at robust formulations of stochastic problems. Consider
a probability space (Ω,F , P ). Recall that a measurable function Z : Ω → R can be

15



viewed as a random variable. With every random variable Z = Z(ω) we associate
a number, denoted ρ(Z), indicating our preference between possible realizations of
random variables. That is, ρ(·) is a real valued function defined on a space of mea-
surable functions Z : Ω → R. We refer to ρ(·) as a risk measure. For example, for
a chosen probability measure P we can employ the expected value ρ(Z) := EP [Z]
as a risk measure. We assume that “smaller is better”, so eventually we would like
to perform a minimization with respect to a chosen risk measure. The term “risk
measure” is somewhat unfortunate since it could be confused with the concept of
probability measures. However, it became quite standard, so we will use it here.

In the subsequent analysis we equip (Ω,F) with a probability measure P , to
which we refer as the reference probability measure or reference distribution, and
unless stated otherwise all probabilistic statements will be made with respect to the
reference measure P . Moreover, we have to specify a space of random variables
Z : Ω → R on which a considered risk measure will be defined. In that respect
it is natural to consider spaces Lp(Ω,F , P ) of random variables Z(ω) having finite
p-th order moment, p ∈ [1,∞). Note that two random variables Z(ω) and Z ′(ω) are
undistinguishable if Z(ω) = Z ′(ω) for a.e. ω ∈ Ω (i.e., for all ω ∈ Ω except on a
set of P -measure zero). Therefore Lp(Ω,F , P ) consists of classes of random variables
Z(ω) such that Z(ω) and Z ′(ω) belong to the same class if Z(ω) = Z ′(ω) for a.e.
ω ∈ Ω, and E|Z|p =

∫
Ω
|Z(ω)|pdP (ω) is finite. The space Lp(Ω,F , P ) equipped with

the norm ‖Z‖p :=
(∫

Ω
|Z(ω)|pdP (ω)

)1/p
becomes a Banach space.

We also consider space L∞(Ω,F , P ) of essentially bounded functions. That is,
L∞(Ω,F , P ) consists of random variables with finite sup-norm ‖Z‖∞ := ess sup |Z|,
where the essential supremum of a random variable Z(ω) is defined as

ess sup(Z) := inf {supω∈Ω Z
′(ω) : Z ′(ω) = Z(ω) a.e. ω ∈ Ω} . (2.49)

A set A ⊂ Lp(Ω,F , P ) is said to be bounded if there exists constant c > 0 such
that ‖Z‖p ≤ c for all Z ∈ A. Unless stated otherwise we work with the space Z :=
Lp(Ω,F , P ) of random variables for some p ∈ [1,∞], and all topological statements
related to the space Lp(Ω,F , P ) will be made with respect to its strong (norm)
topology.

With each space Z := Lp(Ω,F , P ), p ∈ [1,+∞), is associated its dual space
Z∗ := Lq(Ω,F , P ), where q ∈ (1,∞] is such that 1/p + 1/q = 1. For Z ∈ Z and
ζ ∈ Z∗ their scalar product is defined as

〈Z, ζ〉 :=

∫
Ω

Z(ω)ζ(ω)dP (ω) = EP [Zζ]. (2.50)

Note that for p ∈ (1,∞) the dual ofZ∗ = Lq(Ω,F , P ) coincides with Z := Lp(Ω,F , P ),
i.e., the space Lp(Ω,F , P ) is reflexive. On the other hand the dual of the space
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L∞(Ω,F , P ) is significantly bigger than the space L1(Ω,F , P ), and the spaces L1(Ω,F , P )
and L∞(Ω,F , P ) are not reflexive. For the space L∞(Ω,F , P ) it also makes sense to
consider its weak∗ topology (for reflexive Banach spaces the weak and weak∗ topolo-
gies coincide). Recall that by Banach-Alaoglu Theorem any bounded and closed in
the weak∗ topology subset of Z∗ is weakly∗ compact.

Formally, risk measure is a real valued function ρ : Z → R, where Z := Lp(Ω,F , P )
for some p ∈ [1,∞]. It is also possible to consider risk measures taking values
ρ(Z) = +∞ for some Z ∈ Z. However, with virtually every interesting risk measure
is associated in a natural way an Lp(Ω,F , P ) space on which it is finite valued. It was
suggested in Artzner et al [1] that a “good” risk measure should satisfy the following
axioms, and such risk measures were called coherent.

(A1) Monotonicity: If Z,Z ′ ∈ Z and Z � Z ′, then ρ(Z) ≥ ρ(Z ′).

(A2) Convexity:
ρ(tZ + (1− t)Z ′) ≤ tρ(Z) + (1− t)ρ(Z ′)

for all Z,Z ′ ∈ Z and all t ∈ [0, 1].

(A3) Translation Equivariance: If a ∈ R and Z ∈ Z, then ρ(Z + a) = ρ(Z) + a.

(A4) Positive Homogeneity: If t ≥ 0 and Z ∈ Z, then ρ(tZ) = tρ(Z).

Here the notation Z � Z ′ means that Z(ω) ≥ Z ′(ω) for a.e. ω ∈ Ω. Monotonicity
property (axiom (A1)) is a natural condition that a risk measure should satisfy (re-
call that we deal here with minimization rather than maximization formulations of
optimization problems). Convexity property is also a natural one. Because of (A4)
the convexity axiom (A2) holds iff the following subadditivity property holds

ρ(Z + Z ′) ≤ ρ(Z) + ρ(Z ′), ∀Z,Z ′ ∈ Z. (2.51)

That is, risk of the sum of two random variables is not bigger than the sum of risks.
Axioms (A3) and (A4) postulate position and scale properties, respectively, of risk
measures.

We have the following basic duality result associated with coherent risk measures.
Denote by

P :=

{
ζ ∈ Z∗ :

∫
Ω

ζ(ω)dP (ω) = 1, ζ � 0

}
(2.52)

the set of probability density functions in the dual space Z∗.
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Theorem 2.5 Let Z := Lp(Ω,F , P ), p ∈ [1,∞), and ρ : Z → R be a coherent risk
measure. Then ρ is continuous and there exists a bounded set A ⊂ P such that

ρ(Z) = sup
ζ∈A
〈Z, ζ〉, ∀Z ∈ Z. (2.53)

Conversely if the representation (2.53) holds for some nonempty bounded set A ⊂ P,
then ρ is a (real valued) coherent risk measure.

Remark 2 The dual representation (2.53) follows from the classical Fenchel-Moreau
theorem. Note that monotonicity (axiom (A1)) and convexity (axiom (A2)) imply
continuity (in the strong topology) of the risk measure ρ : Z → R for any Z =
Lp(Ω,F , P ), p ∈ [1,∞] (cf., [23]). If the representation (2.53) holds for some bounded
set A, then it also holds if the set A is replaced by the weak∗ topological closure of its
convex hull. We refer to the (weak∗ closed convex) set A in the dual representation
(2.53) as the dual set of the coherent risk measure ρ. The dual set A can be written
in the form

A =
{
ζ ∈ Z∗ : 〈Z, ζ〉 ≤ ρ(Z), ∀Z ∈ Z

}
. (2.54)

Recall that a convex subset of a Banach space is closed in the strong topology iff
it is closed in the weak topology. Therefore for reflexive spaces Z = Lp(Ω,F , P ),
p ∈ (1,∞), it suffices to assume that the dual set A is closed in the strong topology.
Note also that by the Banach-Alaoglu Theorem the dual set A is weakly∗ compact,
and hence the maximum in the right hand side of (2.53) is attained.

Remark 3 From the point of view of convex analysis the representation (2.53) means
that ρ(·) is the so-called support function of the set A ⊂ Z∗, and the following
properties hold (e.g., [7, Proposition 2.116]).

(i) If ρ1 : Z → R and ρ2 : Z → R are coherent risk measures and A1 ⊂ Z∗
and A2 ⊂ Z∗ are the respective dual sets, then ρ1(·) ≤ ρ2(·) iff A1 ⊂ A2, and
ρ1(·) = ρ2(·) iff A1 = A2.

(ii) Let ρi : Z → R, i = 1, ...,m, be coherent risk measures, Ai ⊂ Z∗ be the
respective dual sets and λi, i = 1, ...,m, be nonnegative numbers such that∑m

i=1 λi = 1. Then ρ(·) :=
∑m

i=1 λiρi(·) is also a coherent risk measure and its
dual set A ⊂ Z∗ is given6 by A :=

∑m
i=1 λiAi.

6For sets A1 ⊂ Z∗ and A2 ⊂ Z∗ and numbers λ1 and λ2 the sum λ1A1 + λ2A2 is defined as the
set {λ1ζ1 + λ2ζ2 : ζ1 ∈ A1, ζ2 ∈ A2}.
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(iii) Let ρi : Z → R, i ∈ I, be coherent risk measures and Ai ⊂ Z∗ be the respective
dual sets, and let ρ(·) := supi∈I ρi(·) be real valued, i.e., ρ(Z) < ∞ for all
Z ∈ Z. Then ρ(·) is also a coherent risk measure and its dual set A is given by
the topological closure of the convex hull of the set ∪i∈IAi.

For ζ ∈ P the scalar product 〈Z, ζ〉 can be understood as the expectation EQ[Z]
taken with respect to the probability measure dQ = ζdP . Therefore the representa-
tion (2.53) can be written as

ρ(Z) = sup
Q∈Q

EQ[Z], ∀Z ∈ Z, (2.55)

where
Q := {Q : dQ = ζdP, ζ ∈ A}. (2.56)

Recall that if P and Q are two measures on (Ω,F), then it is said that Q is absolutely
continuous with respect to P if A ∈ F and P (A) = 0 implies that Q(A) = 0. The
Radon-Nikodym Theorem says that Q is absolutely continuous with respect to P iff
there exists a function η : Ω → R+ (density function) such that Q(A) =

∫
A
ηdP

for every A ∈ F . We also sometimes write Eζ [Z] for the expectation EQ[Z] with
dQ = ζdP .

By the above, the result of Theorem 2.5 can be interpreted as follows.

• Let Z := Lp(Ω,F , P ), p ∈ [1,∞). Then a risk measure ρ : Z → R is coherent
iff there exists a set Q of absolutely continuous with respect to P probability
measures such that the set of densities

{
dQ
dP

: Q ∈ Q
}

forms a bounded set in
the dual space Z∗ and the representation (2.55) holds.

Therefore robust stochastic programs of the form (2.1) can be formulated in terms
of coherent risk measures (see section 2.5.2). It could be noted that the set Q is formed
by probability measures absolutely continuous with respect to a specified reference
measure, while we didn’t make such an assumption for the set M in (2.1). We will
discuss this later.

Let us consider some examples. The following risk measure is called the mean-
upper-semideviation risk measure of order p ∈ [1,∞):

ρ(Z) := E[Z] + λ
(
E
[[
Z − E[Z]

]p
+

])1/p

. (2.57)

In the second term of the right hand side of (2.57), the excess of Z over its expectation
is penalized. In order for this risk measure to be real valued it is natural to take

19



Z := Lp(Ω,F , P ). For any λ ∈ [0, 1] this risk measure is coherent and has the dual
representation (2.53) with the set

A =
{
ζ ′ ∈ Z∗ : ζ ′ = 1 + ζ − E[ζ], ‖ζ‖q ≤ λ, ζ � 0

}
. (2.58)

Note that the above set A is a bounded convex closed subset of the dual space
Z∗ = Lq(Ω,F , P ).

An important example of risk measure is Value-at-Risk measure

V@Rα(Z) := inf
{
t : Pr(Z ≤ t) ≥ 1− α

}
, α ∈ (0, 1). (2.59)

That is, V@Rα(Z) = H−1(1 − α) is the left side (1 − α)-quantile of the distribution
of Z. Here H(t) := Pr(Z ≤ t) if the cumulative distribution function (cdf) of Z and

H−1(γ) := inf
{
t : H(t) ≥ γ

}
for γ ∈ (0, 1). For γ = 0 the corresponding left side quantile H−1(0) = −∞, and
by the definition H−1(1) = +∞ if Z(ω) is unbounded from above. The V@Rα risk
measure is not coherent, it satisfies axioms (A1),(A3) and (A4) but is not convex,
i.e., it does not possess the subadditivity property (2.51).

An important example of coherent risk measure is the Average Value-at-Risk mea-
sure

AV@Rα(Z) := inf
t∈R

{
t+ α−1E[Z − t]+

}
, α ∈ (0, 1]. (2.60)

It is natural to take here Z := L1(Ω,F , P ). This risk measure is also known under the
names Expected Shortfall, Expected Tail Loss and Conditional Value-at-Risk; these
names are motivated by formulas (2.62) and (2.63) below. It is possible to show that
the set of minimizers of the right hand side of (2.60) is formed by (1 − α)-quantiles
of the distribution of Z. In particular t∗ = V@Rα(Z) is such a minimizer. It follows
that AV@Rα(Z) ≥ V@Rα(Z). Also it follows from (2.60) that

AV@Rα1(Z) ≥ AV@Rα2(Z), for 0 < α1 ≤ α2 ≤ 1. (2.61)

The Average Value-at-Risk can be also written as

AV@Rα(Z) =
1

α

∫ α

0

V@Rτ (Z) dτ, (2.62)

and, moreover, if the cumulative distribution function H(t) of Z is continuous at
t∗ = V@Rα(Z), then

AV@Rα(Z) =
1

α

∫ +∞

V@Rα(Z)

t dH(t) = E
[
Z
∣∣Z ≥ V@Rα(Z)

]
. (2.63)
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The dual representation (2.53) for ρ(Z) := AV@Rα(Z) holds with the set

A =
{
ζ ∈ L∞(Ω,F , P ) : ζ(ω) ∈ [0, α−1] a.e. ω ∈ Ω, E[ζ] = 1

}
. (2.64)

Note that the above set A is a bounded weakly∗ closed subset of the dual space
Z∗ = L∞(Ω,F , P ). If α = 1, then the set A consists of unique point ζ(ω) ≡ 1. That
is, AV@R1(Z) = E[Z], this can be verified directly from the definition (2.60). We
have the following limit

lim
α↓0

AV@Rα(Z) = ess sup(Z). (2.65)

In order for the risk measure ρ(Z) := ess sup(Z) to be finite valued it should be
considered on the space Z := L∞(Ω,F , P ); defined on that space this risk measure
is coherent.

In both examples considered above the risk measures are functions of the distri-
bution of the random variable Z. Such risk measures are called law invariant. Recall
that two random variables Z and Z ′ have the same distribution if their cumulative
distribution functions coincide, i.e., Pr(Z ≤ t) = Pr(Z ′ ≤ t) for all t ∈ R. We write

this relation as Z
D∼Z ′.

Definition 2.2 It is said that a risk measure ρ : Z → R is law invariant, with respect

to the reference distribution P , if for any Z,Z ′ ∈ Z such that Z
D∼Z ′ it follows that

ρ(Z) = ρ(Z ′).

Suppose for the moment that the set Ω = {ω1, ..., ωK} is finite with respective
probabilities p1, ..., pK such that any partial sums of pk are different, i.e.,

∑
k∈I pk =∑

k∈J pk for I,J ⊂ {1, ..., K} only if I = J . Then Z,Z ′ : Ω → R have the same
distribution only if Z(ω) = Z ′(ω) for all ω ∈ Ω. In that case any risk measure, defined
on the space of random variables Z : Ω→ R, is law invariant. Therefore, for a mean-
ingful discussion of law invariant risk measures it is natural to consider nonatomic
probability spaces. It is said that measure P , and hence the space (Ω,F , P ), is
nonatomic if any set A ∈ F of positive measure P (A) contains a subset B ∈ F such
that P (A) > P (B) > 0.

A natural question is how law invariance can be described in terms of the set A

in the dual representation (2.53). Let T : Ω → Ω be one-to-one onto mapping, i.e.,
T (ω) = T (ω′) iff ω = ω′ and T (Ω) = Ω. It is said that T is a measure-preserving
transformation if image T (A) = {T (ω) : ω ∈ A} of any measurable set A ∈ F is also
measurable and P (A) = P (T (A)) (see, e.g., [5, p. 311]). Let us denote by

G := {the set of one-to-one onto measure-preserving transformations T : Ω→ Ω}.
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We have that if T ∈ G, then T−1 ∈ G; and if T1, T2 ∈ G, then their composition7

T1 ◦ T2 ∈ G. That is, G forms a group of transformations.

Theorem 2.6 Suppose that the probability space (Ω,F , P ) is nonatomic. Then a
coherent risk measure ρ : Z → R is law invariant iff its dual set A is invariant with
respect to measure-preserving transformations, i.e., iff for any ζ ∈ A and any T ∈ G

and ζ ′ := ζ ◦ T it follows that ζ ′ ∈ A.

Proof. Let T ∈ G and ζ ∈ A. Consider ζ ′ := ζ ◦ T . For Z ∈ Z we have

〈Z, ζ ′〉 =

∫
Ω

Z(ω)ζ(T (ω))dP (ω) =

∫
Ω

Z(T−1(ω))ζ(ω)dQ(ω) = 〈Z ′, ζ〉 (2.66)

where Q = PT−1 = P and Z ′ := Z ◦ T−1. Since T is measure-preserving we have

that Z
D∼Z ′ and since ρ is law invariant, it follows that ρ(Z) = ρ(Z ′). Therefore by

(2.54) we obtain that ζ ′ ∈ A.
Conversely suppose that ζ ◦T ∈ A for any ζ ∈ A and any T ∈ G. Let Z,Z ′ be two

random variables having the same distribution. Since the probability space (Ω,F , P )
is nonatomic, there is T ∈ G such that Z ′ = Z ◦ T . For ε > 0 let ζ ∈ A be such that
ρ(Z ′) ≤ 〈Z ′, ζ〉+ ε. By (2.66) and since ζ ′ ∈ A it follows that

ρ(Z ′) ≤ 〈Z ′, ζ〉+ ε = 〈Z, ζ ′〉+ ε ≤ ρ(Z) + ε.

Since ε > 0 is arbitrary, we obtain that ρ(Z ′) ≤ ρ(Z). The other inequality ρ(Z ′) ≥
ρ(Z) can be obtained in the same way and hence ρ(Z ′) = ρ(Z). This competes the
proof.

A particular example of law invariant coherent risk measure is the Average Value-
at-Risk measure AV@Rα. A convex combination

∑m
i=1 µiAV@Rαi , with αi ∈ (0, 1],

µi ≥ 0,
∑m

i=1 µi = 1, of Average Value-at-Risk measures is also a law invariant
coherent risk measure, and maximum of several law invariant coherent risk measures
is again a law invariant coherent risk measure (see Remark 3 on page 18). By a result
due8 to Kusuoka [13], it turns out that any law invariant coherent risk measure can
be constructed by the operations of taking convex combinations and maximum from
the class of Average Value-at-Risk measures.

7Composition T = T1 ◦ T2 of two mappings is the mapping T (ω) = T1(T2(ω)).
8Original proof by Kusuoka [13] is for Z = L∞(Ω,F , P ) space. For a general discussion see, e.g.,

[18, Section 2.2.4].
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Theorem 2.7 (Kusuoka) Suppose that the probability space (Ω,F , P ) is nonatomic
and let Z := Lp(Ω,F , P ), p ∈ [1,∞]. Then a risk measure ρ : Z → R is law invariant
and coherent iff there exists a set C of probability measures on the interval (0, 1] such
that

ρ(Z) = sup
µ∈C

∫ 1

0

AV@Rα(Z)dµ(α), ∀Z ∈ Z. (2.67)

The representation (2.67) is not unique (e.g., [18, p.63]). We will discuss this
further in the next section.

2.5.1 Comonotonicity

Let us discuss now the concept of comonotonicity (see, e.g., [9] for a thorough discus-
sion of this concept). A set A ⊂ R2 is said to be comonotonic if for any x, y ∈ A it
holds that either x ≥ y or y ≤ x, where the inequality x ≥ y is understood compo-
nentwise. Note that it follows from this definition that comonotonic set cannot have
an open subset. Now let X and Y be two random variables. Denote by HX and HY

their respective cumulative distribution functions and H(x, y) := Pr(X ≤ x, Y ≤ y)
their joint cdf. The following properties are equivalent to each other and any one of
them can be used as a definition of X and Y to be comonotonic.

(i) Distribution of (X, Y ) ∈ R2 has a comonotonic support.

(ii) For all (x, y) ∈ R2 it holds that H(x, y) = min {HX(x), HY (y)} .

(iii) (X, Y )
D∼
(
H−1
X (U), H−1

Y (U)
)
, where U is a random variable uniformly distributed

on the interval [0, 1].

Definition 2.3 It is said that a risk measure ρ : Z → R is comonotonic if for any
two comonotonic random variables X, Y ∈ Z it follows that ρ(X+Y ) = ρ(X)+ρ(Y ).

Let us observe that V@Rα, α ∈ (0, 1), risk measure is comonotonic. Indeed, let X
and Y be comonotonic random variables. By the above property (iii) we can assume
that X = H−1

X (U) and Y = H−1
Y (U), with U being a random variable uniformly

distributed on the interval [0, 1]. Consider function g(·) := H−1
X (·) + H−1

Y (·). Note
that g : R→ R is a monotonically nondecreasing left-continuous function. Then

V@Rα(X + Y ) = inf
{
t : Pr(g(U) ≤ t) ≥ 1− α

}
= inf

{
t : Pr(U ≤ g−1(t)) ≥ 1− α

}
= inf

{
t : g−1(t) ≥ 1− α

}
= g(1− α) = H−1

X (1− α) +H−1
Y (1− α)

= V@Rα(X) + V@Rα(Y ).
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By (2.62) it follows that if X and Y are comonotonic, then

AV@Rα(X + Y ) = 1
α

∫ α
0

V@Rτ (X + Y ) dτ = 1
α

∫ α
0

[V@Rτ (X) + V@Rτ (Y )] dτ
= AV@Rα(X) + AV@Rα(Y ).

That is, AV@Rα is comonotonic for all α ∈ (0, 1]. If we define AV@R0(·) := ess sup(·),
then it follows by (2.65) that AV@R0(·) is also comonotonic. Consequently if µ is a
probability measure on the interval [0, 1], then risk measure

ρ(Z) =

∫ 1

0

AV@Rα(Z)dµ(α), (2.68)

defined on an appropriate space Z, is coherent law invariant and comonotonic. The
second part of Kusuoka theorem says that the converse is also true (see, e.g., [18,
Proposition 2.49] for a proof).

Theorem 2.8 (Kusuoka) Suppose that the probability space (Ω,F , P ) is nonatomic
and let Z := Lp(Ω,F , P ), p ∈ [1,∞]. Then a risk measure ρ : Z → R is law invariant,
coherent and comonotonic iff there exists a probability measure µ on the interval [0, 1]
such that the representation (2.68) holds.

Remark 4 Note that if the space Z = Lp(Ω,F , P ) in representation (2.68) is taken
with p <∞, then the measure µ cannot have positive mass at α = 0. Otherwise ρ(Z)
will be equal to +∞ for any Z ∈ Z such that ess sup(Z) = +∞. ♦

Let the space (Ω,F , P ) be nonatomic, ρ : Z → R be a coherent law invariant risk
measure and A be its dual set. By Theorem 2.6 we have that for any η ∈ A the set

A∗(η) := {η ◦ T : T ∈ G} (2.69)

is a subset of A.

Definition 2.4 We say that the dual set A, of a coherent risk measure ρ : Z → R,
is generated by an element η ∈ A if it holds that

sup
ζ∈A∗(η)

〈Z, ζ〉 = ρ(Z), ∀Z ∈ Z. (2.70)

If the dual set A is generated by an element η ∈ A, then A coincides with the weak∗

topological closure of the convex hull of the set A∗(η) (see Remark 2 and property (i)
of Remark 3, page 18).
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Example 2 Let the space (Ω,F , P ) be nonatomic and consider the AV@Rα measure.
Let us show that the corresponding dual set A (described in (2.64)) is generated by
its element9 η := α−11A, where A ∈ F is a measurable set such that P (A) = α. The
set A∗(η) generated by η can be written as

A∗(η) = {α−11B : B ∈ F , P (B) = α}.

Let Z ∈ Z and

t∗ := inf
{
t : P{ω : Z(ω) ≥ t} ≤ α

}
= V@Rα(Z).

Suppose for the moment that Pr(Z = t∗) = 0, i.e., cumulative distribution function
H(t) of Z is continuous at t = t∗. Then for B∗ := {ω : Z(ω) ≥ t∗} we have that
P (B∗) = α. It follows that

sup
ζ∈A∗(η)

〈Z, ζ〉 = sup
B∈F

{
α−1

∫
B

ZdP : P (B) = α

}
= α−1

∫
B∗
ZdP.

Moreover,
∫
B∗
ZdP =

∫ +∞
t∗

tdH(t), and hence

sup
ζ∈A∗(η)

〈Z, ζ〉 = AV@Rα(Z). (2.71)

Since the set of random variables Z ∈ Z having continuous cdf forms a dense subset
of Z, it follows that formula (2.71) holds for all Z ∈ Z. We obtain that the set A is
generated by η. ♦

Theorem 2.9 Suppose that the probability space (Ω,F , P ) is nonatomic. Let Z :=
Lp(Ω,F , P ), p ∈ [1,∞), and ρ : Z → R be a law invariant coherent risk measure.
Then ρ is comonotonic iff its dual set A is generated by some element η ∈ A.

Proof. Since (Ω,F , P ) is nonatomic, we can assume without loss of generality that
Ω is the interval [0, 1] equipped with its Borel sigma algebra and uniform reference
distribution.

Suppose that A is generated by some element η ∈ A. Let X, Y ∈ Z be comono-
tonic variables. By the property (iii) of comonotonic variables we can assume that
both functions X, Y : [0, 1]→ R are monotonically nondecreasing, and hence X + Y
is also monotonically nondecreasing. Let T ∈ G be such that ζ := η ◦ T is monoton-
ically nondecreasing on the interval [0,1]. Then the maximum in (2.70) is attained

9By 1A(·) we denote indicator function of set A, i.e., 1A(ω) = 1 if ω ∈ A, and 1A(ω) = 0 if
ω 6∈ A.
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at ζ for both X and Y and for X + Y , i.e., ρ(X) = 〈X, ζ〉, ρ(Y ) = 〈Y, ζ〉 and
ρ(X + Y ) = 〈X + Y, ζ〉. It follows that ρ(X + Y ) = ρ(X) + ρ(Y ), and hence ρ is
comonotonic.

Conversely suppose that ρ is comonotonic. By Theorem 2.8 we have that ρ can
be represented in the form (2.68) for some probability measure µ. Note that since
we use here the space Z = Lp(Ω,F , P ) with p < ∞, the measure µ cannot have a
positive mass at α = 0 (see Remark 4). Suppose for the moment that measure µ has
finite support10, i.e., µ = λ1∆(α1) + ...+ λm∆(αm), with αi ∈ (0, 1], i = 1, ...,m. Let
Ai be the dual set of risk measure AV@Rαi , i = 1, ...,m. Then A =

∑m
i=1 λiAi and

ρ(Z) = sup

{
m∑
i=1

λi〈Z, ζi〉 : ζi ∈ Ai, i = 1, ...,m

}
, Z ∈ Z.

By making the transformation Z 7→ Z ◦ T for some T ∈ G, we can assume that
Z is monotonically nondecreasing on the interval [0,1]. As it was shown in Exam-
ple 2 the maximum of 〈Z, ζi〉 over ζi ∈ Ai is attained at ζ̄i(·) = α−1

i 1Ai(·), where
Ai := [1 − αi, 1]. It follows that the maximum of 〈Z, ζ〉 over ζ ∈ A is attained at
ζ̄(·) =

∑m
i=1 λiα

−1
i 1Ai(·). For general measure µ in the representation (2.68) and

monotonically nondecreasing Z ∈ Z, the maximum 〈Z, ζ〉 over ζ ∈ A is attained at

ζ̄(t) =

∫ 1

0

φt(α)dµ(α), t ∈ [0, 1], (2.72)

where φt(α) := α−11[1−α,1](t). It follows that the dual set A is generated by ζ̄.

Let us observe that equation (2.72) defines measure µ uniquely. Indeed, we can
view µ(·) as a right hand side continuous monotonically nondecreasing on [0,1] func-
tion, i.e., view the integral in (2.72) as the Lebesgue-Stieltjes integral. Then for
t ∈ [0, 1) using integration by parts we have∫ 1

0
φt(α)dµ(α) = 1−

∫ 1

0
µ(α)dφt(α) = 1− µ(1−t)

1−t −
∫ 1

1−t µ(α)dα−1

= 1− µ(τ)
τ
−
∫ 1

τ
µ(α)
α2 dα,

where τ = 1− t. Suppose that there are two measures µ1 and µ2 which give the same
integral in (2.72). Then for the function ψ(α) := −[µ1(α) − µ2(α)]/α we have the
following equation

ψ(τ) +

∫ 1

τ

ψ(α)

α
dα = 0, τ ∈ (0, 1]. (2.73)

10By ∆(α) we denote measure of mass one at the point α. Measure ∆(α) is often called Dirac
measure.
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It follows that ψ(·) is differentiable on (0, 1] and satisfies the equation

dψ(τ)

dτ
− ψ(τ)

τ
= 0. (2.74)

The last equation has solutions of the form ψ(τ) = cτ for some constant c. Substitut-
ing ψ(τ) = cτ into (2.73) we obtain that c = 0. Consequently we have the following
result.

• Suppose that the space (Ω,F , P ) is nonatomic and Z = Lp(Ω,F , P ), p ∈ [1,∞).
Then for a law invariant comonotonic coherent risk measure ρ : Z → R the
corresponding measure µ in the representation (2.68) is defined uniquely.

On the other hand the representation (2.67) clearly is not unique since there are
various ways how the dual set A can be represented as the topological closure of the
convex hull of sets of the form A∗(η), η ∈ A.

2.5.2 Risk Averse Optimization

In this section we discuss optimization problems of the form

Min
x∈X

{
f(x) := ρ(F (x, ξ))

}
. (2.75)

Here X ⊂ Rn is a nonempty set, F : Rn × Ξ → R is a real valued function and
ρ : Z → R is a risk measure defined on space Z := Lp(Ξ,B, P ), p ∈ [1,∞), where
Ξ ⊂ Rd is a closed nonempty set equipped with its Borel sigma algebra B and a
reference probability measure P . We assume that for every x ∈ X the function
Fx(·) = F (x, ·) belongs to the space Z and write ρ(F (x, ξ)) for risk measure ρ(Fx) of
the random variable Fx(ξ). Of course, for ρ(·) := E(·) problem (2.75) coincides with
the stochastic programming problem (2.2).

By using the dual representation (2.55) of risk measure ρ we can write problem
(2.75) in the following minimax form

Min
x∈X

sup
Q∈Q

EQ[F (x, ξ)], (2.76)

where Q is the respective set of (absolutely continuous with respect to P ) probability
measures on (Ξ,B). In that form the above problem can be viewed as a robust
stochastic problem of the form (2.1). By interchanging the min and max operators
in (2.76) we obtain the following dual of problem (2.76)

Max
Q∈Q

inf
x∈X

EQ[F (x, ξ)]. (2.77)
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Relations between problems (2.76) and (2.77) are discussed in Theorems 2.3 and 2.4.
Suppose that function F (x, ξ) is given as the optimal value of the second stage

problem (2.3). In that case problem (2.75) can be viewed as a risk averse formulation
of a two-stage problem. By using equivalent formulation (2.12) of the two-stage
minimization part of problem (2.77) we can write the max-min problem (2.77) in the
form

Max
Q∈Q

inf
x,y(·)

EQ[g(x, y(ξ), ξ)]

s.t. x ∈ X , y(ξ) ∈ G(x, ξ) a.e. ξ ∈ Ξ.
(2.78)

Recall that the minimization in (2.78) is performed over x ∈ Rn and functions y(·) :
Ξ→ Rm in an appropriate functional space.

Let us observe that if the risk measure ρ is coherent, then convexity of the F (·, ξ) is
preserved in the composite function f(x) = ρ(F (x, ξ)). Indeed, suppose that F (x, ξ)
is convex in x for all ξ ∈ Ξ and ρ is coherent. Then for any x, y ∈ Rn, t ∈ [0, 1] and
ξ ∈ Ξ we have that F (tx+ (1− t)y, ξ) ≤ tF (x, ξ) + (1− t)F (y, ξ), and hence by using
monotonicity and convexity properties of ρ (axioms (A1) and (A2)) we obtain

f(tx+ (1− t)y) = ρ(F (tx+ (1− t)y, ξ)) ≤ ρ(tF (x, ξ) + (1− t)F (y, ξ))
≤ tρ(F (x, ξ)) + (1− t)ρ(F (y, ξ)) = tf(x) + (1− t)f(y).

Note that in this derivation the monotonicity property of ρ is essential, and convexity
of ρ and F (·, ξ) alone does not guarantee convexity of the composite function f(·).

Another important property of coherent risk measures is that for such measures the
interchangeability principle holds (cf., [30, section 6.4]). Suppose that function F (x, ξ)
is given as the optimal value of the second stage problem (2.3). As it was pointed
out in section 2.2, in the risk neutral case (i.e., when ρ(·) := E[·]) the corresponding
two-stage problem can be written as one large problem (2.12). Similar result holds
for coherent risk measures. Under mild regularity conditions the risk averse two stage
problem (2.75), with the second stage (2.12), can be written as

Min
x,y(·)

ρ[g(x, y(ξ), ξ)]

s.t. x ∈ X , y(ξ) ∈ G(x, ξ) a.e. ξ ∈ Ξ.
(2.79)

Note that the monotonicity property of ρ is essential for the equivalence of formula-
tions (2.75) and (2.79) of risk averse two-stage problems. Without the monotonicity
condition this equivalence is not guaranteed (cf., [32]). By the dual representation
(2.55) of risk measure ρ we can rewrite problem (2.79) in the form

Min
x,y(·)

sup
Q∈Q

EQ[g(x, y(ξ), ξ)]

s.t. x ∈ X , y(ξ) ∈ G(x, ξ) a.e. ξ ∈ Ξ.
(2.80)

Problems (2.78) and (2.80) can be viewed as dual to each other.
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Theorem 2.10 Let F (x, ξ) be the optimal value of the second stage problem (2.3),
Z := Lp(Ξ,B, P ), with p ∈ [1,∞), A be a bounded convex set of probability density
functions in the dual space Z∗ and Q := {Q : dQ = ζdP, ζ ∈ A}. Suppose, further,
that problem (2.76) has an optimal solution x̄ ∈ X , the set X is convex and closed,
the set Ξ is compact and F (x, ξ) is convex in x for every ξ ∈ Ξ and continuous in ξ
for every x ∈ X . Then optimal values of problems (2.78) and (2.80) are equal to each
other. Moreover, if the set Q is closed in the weak topology, then problem (2.78) has
an optimal solution Q̄ ∈ Q.

Proof. Since problem (2.76) has an optimal solution, its optimal value is finite
of course. By Theorem 2.3 we have that, under the specified assumptions, optimal
values of problems (2.76) and (2.77) are equal to each other. Moreover, problem
(2.77) has an optimal solution provided the set Q is closed. Now the minimization
part of problem (2.77) is equivalent to the minimization part of problem (2.78), and
hence optimal values of problems (2.77) and (2.78) are equal to each other.

Consider the risk measure ρ associated with the set A by equation (2.55). Then
problem (2.76) can be written in the form (2.75). By an interchangeability principle
(cf., [30, Theorem 2.20]) problem (2.75) is equivalent to the problem (2.79), and hence
to the problem (2.80). It follows that optimal values of problems (2.78) and (2.80)
are equal to each other.

In particular, suppose that the number of scenarios is finite, i.e., the set Ξ =
{ξ1, ..., ξK} is finite and is equipped with sigma algebra of all its subsets. In that case
any mapping Z : Ξ → R is measurable and can be identified with K-dimensional
vector (Z(ξ1), ..., Z(ξK)), and the space Z of all such mappings can be identified with
RK . Hence for a risk measure ρ : Z → R we write ρ(Z(ξ1), ..., Z(ξK)) for ρ(Z). Then
problem (2.79) becomes (compare with problem (2.13) in the risk neutral case)

Min
x,y1,...,yK

ρ
(
g(x, y1, ξ1), ..., g(x, yK , ξK)

)
s.t. x ∈ X , yi ∈ G(x, ξi), i = 1, ..., K.

(2.81)

Suppose, further, that the problem is linear, i.e., X = {x : Ax = b, x ≥ 0},
g(x, y, ξ) = qTy, G(x, ξ) is given in the form (2.6) and there is additional linear
term cTx at the first stage. Then problem (2.81) becomes

Min
x,y1,...,yK

cTx+ ρ(qTy1, ..., q
TyK)

s.t. Ax = b, x ≥ 0,
Tix+Wiyi = hi, yi ≥ 0, i = 1, ..., K.

(2.82)

For a general (coherent) risk measure it could be difficult to solve the correspond-
ing two-stage risk averse problem even if the number of scenarios is finite, and not
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too large, and the problem is linear. For the following class of risk measures the
problem can be reduced to a standard stochastic programming problem. Consider
risk measure

ρα,λ(Z) := (1− λ)E[Z] + λAV@Rα[Z], (2.83)

with α ∈ (0, 1) and λ ∈ [0, 1] being tuning parameters. As a convex combination of
two coherent risk measures, risk measure ρα,λ is coherent.

By using definition (2.60) of AV@Rα we can write the corresponding risk averse
problem (2.75) as

Min
x∈X , z∈R

λz + E
{

(1− λ)F (x, ξ) + λα−1[F (x, ξ)− z]+
}
, (2.84)

and hence as the following two-stage problem

Min
x∈X , z∈R

λz + E[V (x, z, ξ)], (2.85)

where V (x, z, ξ) is the optimal value of the second stage problem

Min
y∈G(x,ξ)

(1− λ)g(x, y, ξ) + λα−1[g(x, y, ξ)− z]+. (2.86)

In particular, if the problem is linear, then the second stage problem (2.86) be-
comes

Min
y≥0

(1− λ)qTy + λα−1[qTy − z]+ s.t. Tx+Wy = h. (2.87)

Problem (2.87) can be written as the linear program

Min
y∈Rm, u∈R

(1− λ)qTy + λα−1u

s.t. qTy − z ≤ u, u ≥ 0,
Tx+Wy = h, y ≥ 0,

(2.88)

and hence this linear risk averse problem can be formulated as a linear two-stage
stochastic program with (first stage) decision variables x ∈ Rn and z ∈ R, and second
stage problem (2.88) with (second stage) decision variables y ∈ Rm and u ∈ R.

Remark 5 We can give the following motivation for considering risk measure ρα,λ.
Suppose that we want to control the value Q(x, ξ) of the second stage problem (2.3) in
the risk neutral formulation. Since we deal with minimization formulations, we want
Q(x, ξ) to be “not too large”, say less than a chosen level η with a high probability
1−α. We can write this requirement as the following chance (probabilistic) constraint

Pr{Q(x, ξ) ≤ η} ≥ 1− α. (2.89)
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Equivalently the above constraint (2.89) can be written as

V@Rα[Q(x, ξ)] ≤ η. (2.90)

The difficulty with this chance constraint is that the function V@Rα[Q(x, ξ)] typi-
cally is not convex in x, even if Q(·, ξ) is convex, and is difficult to handle numerically.
Therefore it makes sense to replace chance constraint (2.90) by the following conser-
vative approximation

AV@Rα[Q(x, ξ)] ≤ η. (2.91)

Recall that AV@Rα(·) ≥ V@Rα(·), and hence if a point x satisfies (2.91), then it is also
feasible for (2.90). Therefore, indeed, constraint (2.91) is a conservative approxima-
tion of (2.90). Introducing additional constraint (2.91) may result in infeasibility of
the corresponding two-stage problem even if the original (risk neutral) problem was
feasible. Moving the constraint (2.91) into the expected value objective as a penalty
term leads to the risk measure ρα,λ. ♦

2.6 Two-Stage Problems with Expectations Constraints

Consider the following two-stage stochastic programming problem

Min
x,y(·)

E[G0(x, y(ξ), ξ)]

s.t. E[Gi(x, y(ξ), ξ)] ≤ 0, i = 1, ..., k,
x ∈ X , y(ξ) ∈ G(x, ξ) a.e. ξ ∈ Ξ.

(2.92)

This formulation is more general than formulation (2.12) since it also involves con-
straints in the form of expectations. The setting here is similar to the one of section
2. That is, X ⊂ Rn and Ξ ⊂ Rd are nonempty closed sets, Gi : Rn × Rm × Ξ → R,
i = 0, ..., k, are random functions and G : Rn × Ξ ⇒ Rm is a (measurable) multi-
function. The expectations in (2.92) are taken with respect to a (uniquely) specified
probability measure P on (Ξ,B), thus (2.92) is a risk neutral type problem. The op-
timization in (2.92) is performed over x ∈ Rn and functions y(·) : Ξ→ Rm belonging
to a functional space Y. To be specific we use Y := Lp(Ξ,B, P ), with p ∈ [1,∞]. We
assume that for all x ∈ X and y(·) ∈ Y the expectations E[Gi(x, y(ξ), ξ)], i = 0, ..., k,
are well defined and finite valued.

By performing minimization in (2.92) first with respect to y(·) ∈ Y and then with
respect to x ∈ X , we can write (2.92) as the following two stage problem

Min
x∈X
Q(x), (2.93)

31



where Q(x) is the optimal value of problem

Min
y(·)∈Y

E[G0(x, y(ξ), ξ)]

s.t. E[Gi(x, y(ξ), ξ)] ≤ 0, i = 1, ..., k,
y(ξ) ∈ G(x, ξ) a.e. ξ ∈ Ξ.

(2.94)

In particular, if distribution of ξ has a finite support Ξ = {ξ1, ..., ξN} with respective
probabilities p1, ..., pN , then the second stage problem (2.94) becomes

Min
y1,...,yN

∑N
j=1 pjG0(x, yj, ξj)

s.t.
∑N

j=1 pjGi(x, yj, ξj) ≤ 0, i = 1, ..., k,

yj ∈ G(x, ξj), j = 1, ..., N.

(2.95)

Note that because of the expectation constraints, here the second stage problem
is not separable (decomposable) into a sum of individual optimization problems. The
Sample Average Approximation (SAA) method can be applied to problem (2.92) in
a straightforward way. That is, a sample ξ1, ..., ξN of random vector ξ is generated
and the “true” problem (2.92) is approximated by the SAA problem with the second
stage problem of the form (2.95) with ξj = ξj and pj = 1/N , j = 1, ..., N .

In some cases the expectation constraints can be moved into the objective. That
is, we can write the following (Lagrangian) dual of problem (2.92)

Max
λ∈Rk+

inf
x,y(·)

E[L(x, y(ξ), λ, ξ)]

s.t. x ∈ X , y(ξ) ∈ G(x, ξ) a.e. ξ ∈ Ξ,
(2.96)

where

L(x, y, λ, ξ) := G0(x, y, ξ) +
k∑
i=1

λiGi(x, y, ξ).

The optimal value of problem (2.96) is always less than or equal to the optimal value
of problem (2.92), and it is said that there is no duality gap between these problems
if their optimal values are equal to each other.

In order to ensure that there is no duality gap between problems (2.92) and (2.96)
typically one needs to assume convexity. We say that problem (2.92) is convex if the
set

S :=
{

(x, y(·)) : x ∈ X , y(ξ) ∈ G(x, ξ) a.e. ξ ∈ Ξ
}

(2.97)

is a convex subset of Rn × Y, and functions Gi(x, y, ξ), i = 0, ..., k, are convex in
(x, y) ∈ Rn × Rm. Note that the above convexity of functions Gi(x, y, ξ) implies
convexity of

φi(x, y(·)) := E[Gi(x, y(ξ), ξ)], i = 0, ..., k, (2.98)
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considered as functions on the space X ×Y.
It is said that Slater condition, for the problem (2.92), holds if there exists

(x̄, ȳ(·)) ∈ S such that φi(x̄, ȳ(·)) < 0, i = 1, ..., k. Assuming convexity and Slater
condition we have the following result (e.g., [7, Theorem 2.165]).

Proposition 2.1 Suppose that problem (2.92) is convex and has a finite optimal
value, Slater condition holds and the functions φi(x, y(·)), i = 0, ..., k, are real valued
continuous on the set S. Then there is no duality gap between problems (2.92) and
(2.96) and problem (2.96) has a nonempty and bounded in Rk set of optimal solutions.

In order to apply the above result, continuity of the functions φi : S → R,
i = 0, ..., k, should be verified with respect to the strong (norm) topology of the space
Y = Lp(Ξ,B, P ). If the set Ξ is finite, then the problems becomes finite dimensional
and this continuity follows from convexity of Gi(x, y, ξ) in (x, y) ∈ Rn × Rm. In
general, in order to avoid technical complications one can work in the space Y =
L∞(Ξ,B, P ), where strong (norm) convergence means uniform convergence and hence
this continuity property is relatively easy to verify.

Now the dual problem (2.96) can be written as

Max
λ∈Rk+

inf
x∈X

E[F (x, λ, ξ)], (2.99)

where F (x, λ, ξ) is the optimal value of the second stage problem:

Min
y∈Rm

L(x, y, λ, ξ) s.t. y ∈ G(x, ξ). (2.100)

The problem (2.99) can be viewed as a minimax stochastic programming problem.
The Sample Average Approximation (SAA) method can be applied to problem (2.99).
That is, a sample ξ1, ..., ξN of random vector ξ is generated and the “true” problem
(2.99) is approximated by the SAA problem:

Max
λ∈Rk+

inf
x∈X

f̂N(x, λ), (2.101)

where f̂N(x, λ) := N−1
∑N

j=1 F (x, λ, ξj). Statistical properties of the SAA method in
the minimax setting are discussed in [30, section 5.1.4].

In order to solve the SAA problem (2.101) efficiently we should be able to compute
derivatives of the corresponding optimal value functions with respect to the first
stage decision variables. Analysis of differentiability properties of such optimal value
functions is discussed in details, e.g., in [7, section 4.3]. Let us consider the second
stage problem (2.100). To be more specific suppose that the multifunction G(x, ξ)
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is given by linear constraints in the form (2.6). That is, F (x, λ, ξ) is given by the
optimal value of the following second stage problem

Min
y≥0

L(x, y, λ, ξ) s.t. Tx+Wy = h. (2.102)

Note that L(x, λ, y, ξ) is linear in λ and hence F (x, λ, ξ) is concave in λ. Suppose
that problem (2.102) has unique optimal solution ȳ = ȳ(x, λ, ξ). Then F (x, λ, ξ) is
differentiable in λ and

∇λF (x, λ, ξ) = ∇λL(x, ȳ, λ, ξ) = (G1(x, ȳ, ξ), ..., Gk(x, ȳ, ξ)).

Suppose, further, that L(x, y, λ, ξ) is convex in (x, y). Then F (x, λ, ξ) is convex in x
and if, moreover, L(x, y, λ, ξ) is differentiable in x, then

∇xF (x, λ, ξ) = ∇xL(x, ȳ, λ, ξ)− TTµ,

where µ is an optimal solution of the corresponding dual of problem (2.102).

Example 3 Consider the following two-stage problem

Min
x∈X ,y(·)

cTx

s.t. AV@Rα[Gi(x, y(ξ), ξ)] ≤ 0, i = 1, ..., k,
T (ξ)x+W (ξ)y(ξ) ≤ h(ξ) a.e. ξ ∈ Ξ,

(2.103)

where X ⊂ Rn is a (nonempty) polyhedral set (defined by linear constraints), α ∈
(0, 1) and

Gi(x, y, ξ) := ai(ξ)
Tx+ bi(ξ)

Ty − di(ξ), i = 1, ..., k.

Compared with the linear two-stage stochastic programming formulation (2.4)–(2.5),
the additional constraints involving AV@Rα risk measures are added in (2.103).

The constraints AV@Rα[Gi(x, y(ξ), ξ)] ≤ 0 can be viewed as conservative approx-
imations of the respective constraints V@Rα[Gi(x, y(ξ), ξ)] ≤ 0, which in turn are
equivalent to the corresponding chance constraints Pr{Gi(x, y(ξ), ξ) ≤ 0} ≥ 1 − α.
Therefore problem (2.103) can be considered as a conservative approximation of the
problem

Min
x∈X , y(·)

cTx

s.t. Pr
{
ai(ξ)

Tx+ bi(ξ)
Ty(ξ) ≤ di(ξ)

}
≥ 1− α, i = 1, ..., k,

T (ξ)x+W (ξ)y(ξ) ≤ h(ξ) a.e. ξ ∈ Ξ.

(2.104)
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The above problem (2.104) has two types of linear constraints - some should be
satisfied with a high probability and some for almost all realizations of the random
data.

By using definition (2.60) of AV@Rα we can write problem (2.103) as

Min
x∈X ,z∈R,y(·)

cTx

s.t. E {z + α−1[Gi(x, y(ξ), ξ)− z]+} ≤ 0, i = 1, ..., k,
T (ξ)x+W (ξ)y(ξ) ≤ h(ξ) a.e. ξ ∈ Ξ.

(2.105)

The above problem (2.105) is convex. Suppose further that Y = L∞(Ξ,B, P ), the
set Ξ is compact and ai(ξ), bi(ξ) and di(ξ), i = 1, ..., k, are continuous on Ξ. Then
the Slater condition, for the problem (2.105), holds and the functions

(x, z, y(·)) 7→ E
{
z + α−1[Gi(x, y(ξ), ξ)− z]+

}
, i = 1, ..., k,

are continuous on Rn×R×Y. Thus by Proposition 2.1 there is no duality gap between
problem (2.105) and its dual which can be written as the minimax stochastic problem
(2.99), with (x, z) and λ being the first stage decision variables, and with the second
stage problem:

Min
y∈Rm

cTx+
∑k

i=1 λi (z + α−1[Gi(x, y, ξ)− z]+)

s.t. T (ξ)x+W (ξ)y ≤ h(ξ).
(2.106)

♦

2.7 The Problem of Moments

In some situations, it is reasonable to assume that we have a knowledge about certain
moments of the corresponding probability distribution. Denote by S the space of
finite signed measures on the set Ξ ⊂ Rd equipped with its Borel sigma algebra B.
Note that P ∈ S is a probability measure11 iff P � 0 and

∫
Ξ
dP = 1. Consider the

following set of probability measures on (Ξ,B)

M :=

{
P :

∫
Ξ

Ψ(ξ)dP (ξ) ∈ S,
∫

Ξ

dP = 1, P � 0

}
, (2.107)

where S ⊂ Rq is a nonempty closed convex set and Ψ = (ψ1, ..., ψq) : Ξ → Rq is a
measurable mapping.

11Recall that the notation “P � 0” means that P is a nonnegative (not necessarily probability)
measure on (Ξ,B). That is, P (A) ≥ 0 for every A ∈ B.
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The set M consists of all probability measures P ∈ S such that the expectation
(integral) EP [ψi(ξ)], i = 1, ..., q, of every component of the mapping Ψ(ξ), is well
defined and finite valued (i.e., functions ψi(ξ) are P -integrable) and(

EP [ψ1(ξ)], ...,EP [ψq(ξ)]
)
∈ S. (2.108)

In particular, if S := {µ} is a singleton, then the set M is defined by the constraints

EP [ψi(ξ)] = µi, i = 1, ..., q, (2.109)

over the set of probability measures P on (Ξ,B). We consider a more general situation
when the moments EP [ψi(ξ)] could be known with a certain accuracy summarized
in the set S. For example, if each moment EP [ψi(ξ)] is assumed to belong to a
corresponding confidence interval, then the set S could be defined by a finite number
of linear constraints.

Consider now the following so-called problem of moments (e.g., [14])

Max
P∈M

EP [ψ0(ξ)], (2.110)

where ψ0 : Ξ → R is a P -integrable for every P ∈ M function. We are going to
show that it suffices to solve problem (2.110) for discrete probability measures having
a finite support of at most q + 1 points. In order to proceed we need the following
classical result.

Theorem 2.11 (Richter-Rogosinski) Let (Ω,F) be a measurable space, f1, ..., fm
be measurable on (Ω,F) real valued functions, and P be a (nonnegative) measure on
(Ω,F) such that f1, ..., fm are P -integrable. Suppose that every finite subset of Ω is
F-measurable. Then there exists a (nonnegative) measure Q on (Ω,F) with a finite
support of at most m points such that

∫
Ω
fidP =

∫
Ω
fidQ for all i = 1, ...,m.

We use this result for the space (Ξ,B). Of course, any finite subset of Ξ is B-
measurable. Denote by M∗

` the subset of M of probability measures having a finite
support of at most ` points. That is, a measure P ∈ M belongs to M∗

` if it can be

represented12 in the form P =
∑`

i=1 αi∆(ξi), where ξi ∈ Ξ and αi, i = 1, ..., `, are

nonnegative numbers such that
∑`

i=1 αi = 1.

Theorem 2.12 Problem (2.110) is equivalent to the problem

Max
P∈M∗`

EP [ψ0(ξ)], (2.111)

12Recall that ∆(ξ) denotes measure of mass one at the point ξ.
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with ` = q + 1. The equivalence is in the sense that both problems have the same
optimal value and if problem (2.110) has an optimal solution, then it also has an
optimal solution P ∗ ∈ M∗

q+1. In particular if q = 0, i.e., the set M consists of all
probability measures on (Ξ,B), then problem (2.110) is equivalent to the problem of
maximization of ψ0(ξ) over ξ ∈ Ξ.

Proof. If the set M is empty, then its subset M∗
q+1 is also empty, and hence

the optimal value of both problems (2.110) and (2.111) is +∞. So suppose that M

is nonempty and let P ∈ M. By Theorem 2.11 there exists Q ∈ M∗
q+2 such that

EP [ψ0(ξ)] = EQ[ψ0(ξ)]. It follows that for ` = q + 2 the optimal value of (2.110) is
greater than or equal to the optimal value of problem (2.111). Since M` is a subset
of M, it follows that for ` = q+ 2 the optimal values of problems (2.110) and (2.111)
are equal to each other and if problem (2.110) has an optimal solution, then it has
an optimal solution in the set M∗

q+2.

Now for P =
∑`

i=1 αi∆(ξi) problem (2.111) can be written as

Max
ξ1,...,ξ`∈Ξ
b∈S, α≥0

∑̀
i=1

αiψ0(ξi)

s.t.
∑̀
i=1

αiΨ(ξi) = b,
∑̀
i=1

αi = 1.

(2.112)

For fixed ξ1, . . . , ξ` ∈ Ξ and b ∈ S, the above is a linear programming problem. Its
feasible set is bounded and its optimum is attained at an extreme point of its feasible
set which has at most q + 1 nonzero components of α. Therefore it suffices to take
the maximum over P ∈M∗

q+1.

Suppose now that the set Ξ is convex compact. Then by Minkowski Theorem, Ξ
is equal to the convex hull of its extreme points. Recall that a point e ∈ Ξ is said
to be extreme if there do not exist points e1, e2 ∈ Ξ, different from e, such that e
belongs to the interval [e1, e2]. In other words, e is an extreme point of Ξ if whenever
e = te1 + (1− t)e2 for some e1, e2 ∈ Ξ and t ∈ (0, 1), then e1 = e2 = e. We denote by
Ext(Ξ) the set of extreme points of Ξ.

Theorem 2.13 Suppose that the set Ξ is nonempty convex compact, the mapping
Ψ : Ξ→ Rq is affine, the function ψ0 : Ξ→ R is convex continuous and the set S is
nonempty compact. Then the maximum in (2.110) is attained at a probability measure
of the form P ∗ =

∑q+1
i=1 αi∆(ei), where ei ∈ Ext(Ξ) and αi ∈ [0, 1], i = 1, ..., q + 1,

with
∑q+1

i=1 αi = 1.

37



Proof. By Theorem 2.12 it suffices to perform the maximization over discrete mea-
sures with finite support. Since the sets Ξ and S are compact and ψ0(·) is continuous
it follows by compactness arguments that problem (2.110) has an optimal solution of
the form P ∗ =

∑k
i=1 αi∆(ξi) for some ξi ∈ Ξ and αi ∈ [0, 1] such that

∑k
i=1 αi = 1.

We need to show that the points ξi can be chosen to be extreme points of the set Ξ.
Suppose that one of the points ξi, say ξ1, is not an extreme point of Ξ. Since

Ξ is equal to the convex hull of Ext(Ξ), there exist points e1, ..., em ∈ Ext(Ξ) and
tj ∈ (0, 1), with

∑m
j=1 tj = 1, such that ξ1 =

∑m
j=1 tjej. Consider the probability

measure
P ′ := α1

∑m
j=1 tj∆(ej) +

∑k
i=2 αi∆(ξi).

Since Ψ(·) is an affine mapping we have that

EP ′ [Ψ(ξ)] = α1

∑m
j=1 tjΨ(ej) +

∑k
i=2 αiΨ(ξi)

= α1Ψ
(∑m

j=1 tjej
)

+ +
∑k

i=2 αiΨ(ξi)

= α1Ψ(ξ1) +
∑k

i=2 αiΨ(ξi) = EP ∗ [Ψ(ξ)].

Therefore P ′ satisfies the feasibility constraints EP [Ψ(ξ)] ∈ S as well as P ∗. Now by
convexity of ψ0 we can write

EP ′ [ψ0(ξ)] = α1

∑m
j=1 tjψ0(ej) +

∑k
i=2 αiψ0(ξi)

≥ α1ψ0

(∑m
j=1 tjej

)
+
∑k

i=2 αiψ0(ξi)

= α1ψ0(ξ1) +
∑k

i=2 αiψ0(ξi) = EP ∗ [ψ0(ξ)].

It follows that there exists an optimal solution with a finite support of a set of extreme
points. It remains to note that by Theorem 2.11 this support can be chosen to have
no mote than q + 1 points.

We can view problem (2.110) as an optimization problem over the linear space S

of finite signed measures, subject to the respective constraints, and hence to compute
its (Lagrangian) dual. Assume now that the set S := µ−C, where µ ∈ Rq and C ⊂ Rq

is a closed convex cone. By C∗ we denote polar (negative dual) of C,

C∗ :=
{
y ∈ Rq : yTz ≤ 0, ∀z ∈ C

}
.

Consider the Lagrangian of problem (2.110):

L(P, λ0, λ) :=
∫

Ξ
ψ0(ξ)dP (ξ) + λ0

(
1−

∫
Ξ
dP (ξ)

)
+ λT

(∫
Ξ

Ψ(ξ)dP (ξ)− µ
)

=
∫

Ξ

(
ψ0(ξ)− λ0 + λTΨ(ξ)

)
dP (ξ) + λ0 − λTµ.
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We have that

inf
λ0∈R, λ∈C∗

L(P, λ0, λ) =

{ ∫
Ξ
ψ0(ξ)dP (ξ), if

∫
Ξ
dP = 1,

∫
Ξ

Ψ(ξ)dP (ξ) ∈ µ− C,
−∞, otherwise.

Therefore problem (2.110) can be written as

Max
P�0

inf
λ0∈R, λ∈C∗

L(P, λ0, λ). (2.113)

The corresponding Lagrangian dual is obtained by interchanging max and min
operators in (2.113). Now

sup
P�0

L(P, λ0, λ) =

{
λ0 − λTµ, if ψ0(ξ)− λ0 + λTΨ(ξ) ≤ 0, ξ ∈ Ξ,
+∞, otherwise.

This can be verified by considering atomic measures P = α∆(ξ), α ≥ 0, ξ ∈ Ξ.
Therefore the (Lagrangian) dual of (2.110) is the problem

Min
λ0∈R, λ∈C∗

λ0 − λTµ

s.t. ψ0(ξ)− λ0 + λTΨ(ξ) ≤ 0, ξ ∈ Ξ.
(2.114)

In particular, if C = {0}, i.e., S = {µ} is a singleton, then C∗ = Rq. Problem (2.114)
involves infinite number of constraints (unless the set Ξ is finite) and such problems
are called semi-infinite programming problems.

We have that the optimal value of the dual problem (2.114) is always greater
than or equal to the optimal value of the primal problem (2.110). There are various
regularity conditions ensuring that these optimal values are the same, i.e., there is
no duality gap between problems (2.110) and (2.114). We can consider the minimax
problem (2.113) in the framework of the dual problems (2.40) and (2.41). Note that
L(P, λ0, λ) is linear and hence convex in (λ0, λ). Therefore by Theorem 2.3 we have
the following result.

Theorem 2.14 Suppose that the set Ξ is compact, the set M is nonempty, and the
functions ψi : Ξ → R, i = 0, 1, ..., q, are continuous. Then the optimal values of
problems (2.110) and (2.114) are equal to each other and problem (2.110) has an
optimal solution.

Also we have that there is no duality gap between problems (2.110) and (2.114) if
the semi-infinite programming problem (2.114) has a nonempty and bounded set of
optimal solutions (compare with Theorem 2.4).
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Consider now the minimax problem (2.1) with the set M defined in (2.107). Sup-
pose, as above, that S := µ − C. Then for a given x ∈ X the corresponding max-
problem is a problem of moments with dual of the form (2.114). That is, we can write
the following dual of problem (2.1)

Min
x∈X , λ0∈R, λ∈C∗

λ0 − λTµ

s.t. F (x, ξ)− λ0 + λTΨ(ξ) ≤ 0, ξ ∈ Ξ.
(2.115)

By Theorem 2.14 we have that if the set Ξ is compact, the set M is nonempty, the
functions ψi : Ξ → R, i = 1, ..., q, and F (x, ·), x ∈ X , are continuous, then there is
no duality gap between problems (2.1) and (2.115).

Suppose, further, that we are in the setting of two-stage linear programming,
i.e., F (x, ξ) := cTx + Q(x, ξ), where Q(x, ξ) is the optimal value of the second
stage problem (2.4). The inequality constraints of problem (2.115) can be written
as v(x, λ) ≤ λ0, where

v(x, λ) := sup
ξ∈Ξ

{
F (x, ξ) + λTΨ(ξ)

}
.

Recall that Q(x, ξ) is equal to the optimal value of the dual problem (2.7), provided
WTπ ≤ q has a feasible solution, and hence

v(x, λ) := sup
ξ∈Ξ, π:WTπ≤q

{
cTx+ πT(h− Tx) + λTΨ(ξ)

}
.

Consequently, the dual problem (2.115) can be written as

Min
x, π, λ0, λ

λ0 − λTµ

s.t. Ax = b, x ≥ 0, λ ∈ C∗,
cTx+ πT(h− Tx) + λTΨ(ξ) ≤ λ0, ξ ∈ Ξ,
WTπ ≤ q, ξ ∈ Ξ,

(2.116)

with ξ = (q, T,W, h).

2.8 Ambiguous Chance Constraints

Consider a chance constraint of the form

P{C(x, ω) ≤ 0} ≥ 1− α. (2.117)

Here P is a probability measure on a measurable space (Ω,F), C : Rn × Ω → R
is a random function and α ∈ (0, 1) is a small number representing the specified
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level for probability of violating the constraint C(x, ω) ≤ 0. It is assumed in this
formulation of chance constraint that the probability measure (distribution), with
respect to which the corresponding probabilities are calculated, is known. Suppose
now that the underlying probability distribution is not known exactly, but rather
is assumed to belong to a specified family of probability distributions. Optimization
problems involving such constrains are called ambiguous chance constrained problems.

For a specified uncertainty set M of probability measures on (Ω,F), the corre-
sponding ambiguous chance constraint defines a feasible set X ⊂ Rn which can be
written as

X :=
{
x ∈ Rn : P{C(x, ω) ≤ 0} ≥ 1− α, ∀P ∈M

}
. (2.118)

We have that

P{C(x, ω) ≤ 0} = 1− P{C(x, ω) > 0} = 1− EP [1Ax ],

where 1Ax is the indicator function of the set

Ax := {ω ∈ Ω : C(x, ω) > 0}.

Therefore we can write X as follows

X = {x ∈ Rn : supP∈M EP [1Ax ] ≤ α} . (2.119)

Consider a coherent risk measure ρ : Z → R with Z := Lp(Ω,F , P ), where
P is a reference probability measure. Let Q be the corresponding set of probability
measures in the dual representation (2.55) of ρ. Recall that Q is formed by probability
measures which are absolutely continuous with respect to the reference measure P .
For the uncertainty set M = Q of probability measures we can write the feasible set
X as

X = {x ∈ Rn : ρ (1Ax) ≤ α} . (2.120)

Suppose, further, that the risk measure ρ is law invariant. Then for A ∈ F the
quantity ρ(1A) depends only on P (A). Indeed, if Z := 1A for some A ∈ F , then its
cdf H(z) := P (Z ≤ z) is

H(z) =


0, if z < 0,
1− P (A), if 0 ≤ z < 1,
1, if 1 ≤ z,

which clearly depends only on P (A).

Definition 2.5 Let T := {P (A) : A ∈ F} and ρ : Z → R be a law invariant coherent
risk measure. We associate with ρ function ϕρ : T → R defined as ϕρ(t) := ρ (1A),
where A ∈ F is any event such that P (A) = t.

41



The function ϕρ is well defined because for law invariant risk measure ρ the quan-
tity ρ (1A) depends only on the probability P (A) and hence ρ (1A) is the same for
any A ∈ F such that P (A) = t for a given t ∈ T . Clearly T is a subset of the
interval [0, 1], and 0 ∈ T (since ∅ ∈ F) and 1 ∈ T (since Ω ∈ F). If P is a nonatomic
measure, then for any A ∈ F the set {P (B) : B ⊂ A, B ∈ F} coincides with the
interval [0, P (A)]. In particular, if P is nonatomic, then T = [0, 1]. Unless stated
otherwise we assume in the remainder of this section that the reference measure P is
nonatomic.

Consider the Average Value-at-Risk measure ρ(·) := AV@Rγ(·), γ ∈ (0, 1]. By
direct calculations it is straightforward to verify that for any A ∈ F ,

AV@Rγ(1A) =

{
γ−1P (A), if P (A) ≤ γ,

1, if P (A) > γ.

Consequently the corresponding function ϕρ can be written as

ϕρ =

{
γ−1t if t ∈ [0, γ],
1 if t ∈ (γ, 1].

(2.121)

For ρ(·) := AV@R0(·), i.e., for ρ := ess sup(·), we have that ϕρ(t) = 1 for t ∈ (0, 1],
and ϕρ(0) = 0. That is, in that case the function ϕρ(·) is discontinuous at 0.

Now let ρ :=
∑m

i=1 λiρi be a convex combination of law invariant coherent risk
measures ρi, i = 1, ...,m. For A ∈ F we have that ρ(1A) =

∑m
i=1 λiρi(1A) and

hence ϕρ =
∑m

i=1 λiϕρi . By taking ρi := AV@Rγi , with γi ∈ (0, 1], i = 1, ...,m, and
using (2.121), we obtain that ϕρ : [0, 1] → [0, 1] is a piecewise linear nondecreasing
concave function with ϕρ(0) = 0 and ϕρ(1) = 1. More generally, let µ be a probability

measure on [0, 1] and ρ :=
∫ 1

0
AV@Rγdµ(γ). In that case the corresponding function

ϕρ : [0, 1] → R becomes a nondecreasing concave function with ϕρ(0) = 0 and
ϕρ(1) = 1 (it could be discontinuous at t = 0 if Z = L∞(Ω,F , P )). By employing
Kusuoka Theorem this allows to give the following characterization of functions ϕρ.

Proposition 2.2 Let Z := Lp(Ω,F , P ), p ∈ [1,∞), and ρ : Z → R be a law
invariant coherent risk measure. Suppose that the reference probability measure P is
nonatomic. Then ϕρ(·) is a continuous nondecreasing function defined on the interval
[0, 1] such that ϕρ(0) = 0 and ϕρ(1) = 1, and ϕρ(t) ≥ t for all t ∈ [0, 1]. Moreover,
if the risk measure ρ is comonotonic, then the function ϕρ(·) is concave. Conversely,
if φ : [0, 1] → R is a continuous concave function with φ(0) = 0 and φ(1) = 1, then
there exists a law invariant coherent comonotonic risk measure such that φ = ϕρ.

Proof. If the law invariant coherent risk measure ρ is comonotonic, then by Theorem
2.8 it can be represented in the form (2.68) for some probability measure µ on the
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interval [0,1]. Consequently it follows that the corresponding function ϕρ(·) is concave,
nondecreasing on [0,1] with ϕρ(0) = 0 and ϕρ(1) = 1, and hence ϕρ(t) ≥ t for all
t ∈ [0, 1].

For ρ not necessarily comonotonic we have by Theorem 2.7 that ρ(·) can be written

as a maximum of risk measures of the form
∫ 1

0
AV@Rγdµ(γ) for some collection of

probability measures µ. It follows that ρ is concave and nondecreasing on [0,1] with
ϕρ(0) = 0 and ϕρ(1) = 1.

As far as continuity of ϕρ(·) is concerned we can argue as follows. Let tk ∈ [0, 1]
be a monotonically increasing sequence tending to t∗. Since P is a nonatomic, there
exists a sequence A1 ⊂ A2 ⊂ . . . , of F -measurable sets such that P (Ak) = tk for all
k ∈ N. It follows that the set A := ∪∞k=1Ak is F -measurable and P (A) = t∗. Since
1Ak converges (in the norm topology of Z) to 1A, it follows by continuity of ρ that
ρ(1Ak) tends to ρ(1A), and hence ϕρ(tk) tends to ϕρ(t

∗). In a similar way we have
that ϕρ(tk) → ϕρ(t

∗) for a monotonically decreasing sequence tk tending to t∗. This
shows that ϕρ is continuous.

Now let ρ :=
∑m

i=1 λiAV@Rγi be a convex combination of Average Value-at-Risk
measures. By using formula (2.121) for the corresponding functions ϕρi it is not diffi-
cult to see that any continuous concave piecewise linear function φ : [0, 1]→ R, with
φ(0) = 0 and φ(1) = 1, can be represented as φ = ϕρ for an appropriate choice of
weights λi and points γi ∈ (0, 1]. By arguments of passing to the limit we obtain that
for any continuous concave function φ : [0, 1]→ R, with φ(0) = 0 and φ(1) = 1, there

exists a measure µ on the interval (0, 1] such that φ = ϕρ for ρ :=
∫ 1

0
AV@Rγdµ(γ).

This completes the proof.

Consider the set X of the form (2.120) with the reference measure P being
nonatomic, Z = Lp(Ω,F , P ), p ∈ [1,∞), and ρ : Z → R being a law invariant
coherent risk measure. Then by Proposition 2.2, we have that this set X can be
written in the following equivalent form

X =
{
x : P{C(x, ω) ≤ 0} ≥ 1− α∗

}
, (2.122)

where α∗ := ϕ−1
ρ (α). That is, X can be defined by a chance constraint with respect

to the reference distribution P and with the respective probability level 1−α∗. Since
ϕρ(t) ≥ t, for any t ∈ [0, 1], it follows that α∗ ≤ α. We have the following.

• For a certain class of uncertainty sets M, the ambiguous chance constrains of the
form (2.118) can be reformulated in the (usual) form (2.117) for an appropriate
choice of the probability level 1− α∗ ≥ 1− α.

Of course, the class of such uncertainty sets M is somewhat specific, see Theorem 2.6
for a description of such uncertainty sets.
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For instance, let Z := L1(Ω,F , P ) and ρ(Z) := (1− β)E[Z] + βAV@Rγ(Z), where
β, γ ∈ (0, 1) and the expectations are taken with respect to the reference distribution
P . Then

ϕρ(t) =

{
(1− β + γ−1β)t, if t ∈ [0, γ],

β + (1− β)t, if t ∈ (γ, 1].
(2.123)

It follows that for this risk measure and for α ≤ β + (1− β)γ,

α∗ =
α

1 + β(γ−1 − 1)
. (2.124)

In particular, for β = 1, i.e., for ρ = AV@Rγ, we have that α∗ = γα.
As another example consider the mean-upper-semideviation risk measure of order

p. That is, Z := Lp(Ω,F , P ) and

ρ(Z) := E[Z] + c
(
E
[[
Z − E[Z]

]p
+

])1/p

. We have here that ρ(1A) = P (A) + c[P (A)(1− P (A))p]1/p, and hence

ϕρ(t) = t+ c t1/p(1− t), t ∈ [0, 1]. (2.125)

In particular, for p = 1 we have that ϕρ(t) = (1 + c)t− ct2, and hence

α∗ =
1 + c−

√
(1 + c)2 − 4αc

2c
. (2.126)

Note that for c > 1 the above function ϕρ(·) is not monotonically nondecreasing on
the interval [0, 1]. This should be not surprising since for c > 1 and nonatomic P ,
the corresponding mean-upper-semideviation risk measure is not monotone.

2.9 Stochastic Programming with Equilibrium Constraints

In this section we discuss stochastic programming where the second stage problem is
given in a form of equilibrium constraints. Consider the following two stage problem.
Assume that, at the second stage, there are m players who are supposed to reach
a Nash equilibrium. That is, with each player i ∈ {1, ...,m} is associated a set
Yi ⊂ Rmi and a payoff function fi : Y → R, where Y := Y1 × · · · × Ym. If each
player i chooses respective strategy yi ∈ Yi, resulting in the strategy profile y =
(y1, ..., ym) ∈ Y of all players, then a player i obtains payoff fi(y). The payoff of
an individual player i depends on his strategy yi as well as the strategy of the other
players y−i := (y1, ..., yi−1, yi+1, ..., ym). A Nash equilibrium is reached if no player can
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do better by unilaterally changing his strategy. Formally, ȳ ∈ Y is a Nash equilibrium
strategy if

ȳi ∈ arg min
yi∈Yi

fi(yi, ȳ−i), i = 1, ...,m (2.127)

(with some abuse of notation we write here (yi, y−i) for the corresponding vector
y ∈ Y).

Suppose now that there is a first stage player (referred to as the authority) that
can control the payoff functions of the second stage players. That is, each payoff
function depends on a vector x ∈ X ⊂ Rn decided by the authority. The purpose
of the authority is to minimize an overall cost, which is a function of x and of the
Nash equilibrium strategy ȳ. Suppose, further, that the cost and payoff functions
depend on a random data vector ξ, whose probability distribution is supported on a
set Ξ ⊂ Rd, and that a realization of random data is not known to the authority at
the time its decision should be made. That is, given a first stage decision x ∈ X , at
the second stage after a realization of the random data ξ becomes known, the players
reach a Nash equilibrium ȳ = ȳ(x, ξ), i.e.,

ȳi ∈ arg min
yi∈Yi

fi(x, yi, ȳ−i, ξ), i = 1, ...,m. (2.128)

Consequently, for a specified cost function c : X × Y × Ξ→ R, the first stage cost is
a function of x and ξ and is given by c(x, ȳ(x, ξ), ξ) . The goal of the authority can
be formulated as minimizing the resulting cost c(x, ȳ(x, ξ), ξ) on average. This leads
to the following stochastic programming problem

Min
x∈X

E[c(x, ȳ(x, ξ), ξ)], (2.129)

where the expectation is taken with respect to the probability distribution of the
random vector ξ.

Implicit in the above formulation (2.129) is the assumption that for every x ∈ X
and almost every (a.e.) ξ, the corresponding Nash equilibrium ȳ = ȳ(x, ξ) is attained
and is unique. In general, let us denote by E(x, ξ) the set of Nash equilibrium points
ȳ(x, ξ) ∈ Y . This set can be empty if no Nash equilibrium strategy exists, or may
contain more than one point. Then we can consider the following two stage stochastic
programming problem

Min
x∈X

E[Q(x, ξ)], (2.130)

where Q(x, ξ) is the optimal value of the problem

Min
y∈E(x,ξ)

c(x, y, ξ). (2.131)
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By the definition Q(x, ξ) := +∞ if the set E(x, ξ) is empty, i.e., the respective Nash
equilibrium is not attained.

If E(x, ξ) may have more than one point, then from the point of view of the
authority the above formulation (2.130)-(2.131) is optimistic since it assumes that
the corresponding Nash equilibrium will be attained at a favorable to the authority
point giving the minimal cost value. The corresponding pessimistic approach will
be to consider the worst case for the authority, that is, to replace the second stage
problem (2.131) by the maximization problem

Max
y∈E(x,ξ)

c(x, y, ξ). (2.132)

Of course, if E(x, ξ) = {ȳ(x, ξ)} is a singleton (i.e., the Nash equilibrium is attained
and is unique) for all x ∈ X and a.e. ξ, then the optimistic formulation (2.130) and
(2.131) is the same as the pessimistic formulation (2.130) and (2.132), and both for-
mulations coincide with problem (2.129). Formally, the maximization problem (2.132)
has value −∞ if the set E(x, ξ) is empty. Therefore, if for some x̄ ∈ X , the respective
Nash equilibrium is not attained with positive probability, then E[Q(x̄, ξ)] = −∞,
and hence x̄ becomes an optimal solution of the corresponding first stage problem.
This is problematic, to say the least, and thus models with no equilibria should be
avoided.

Suppose that the set Ξ = {ξ1, ..., ξK} is finite, i.e., there is a finite number of
scenarios ξ1, ..., ξK with respective probabilities p1, ..., pK . Then the two stage problem
(2.130)–(2.131) can be written in the following equivalent form as one large problem

Min
x,y1,...,yK

K∑
k=1

pkc(x, y
k, ξk)

subject to x ∈ X , yk ∈ E(x, ξk), k = 1, ..., K,
(2.133)

by making one copy yk of the second stage vector for every scenario ξk. For general,
not necessarily finitely supported, distribution of ξ we can consider y(ξ) as a (mea-
surable) function of ξ and hence to write the following equivalent of the two stage
problem (2.130)–(2.131):

Min
x,y(·)

E[c(x, y(ξ), ξ)]

subject to x ∈ X , y(ξ) ∈ E(x, ξ), a.e ξ ∈ Ξ.
(2.134)

In this formulation, the optimization is performed over a finite dimensional vector x ∈
Rn and over functions y(ξ) in an appropriate functional space. If Ξ = {ξ1, ..., ξK} is
finite, then every such function y(ξ) can be associated with a vector (y(ξ1), ..., y(ξK)),
and hence the formulation (2.133) follows (compare with (2.12) and (2.13)).
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Suppose now that the sets Yi are convex and closed and the functions fi(x, y, ξ)
are differentiable with respect to yi, i = 1, ...,m. Then the necessary optimality
conditions for (2.128), i.e., for ȳi to be a minimizer of fi(x, yi, ȳ−i, ξ) over yi ∈ Yi, can
be written as

−∇yifi(x, ȳ, ξ) ∈ NYi(ȳi), i = 1, ...,m, (2.135)

where NYi(ȳi) denotes the normal cone to the set Yi at ȳi. Moreover, the above
conditions (2.135) are also sufficient if each function fi(y) is convex in yi.

Conditions (2.135) can be written as the following variational inequality:

−F (x, ȳ, ξ) ∈ NY (ȳ), (2.136)

where
F (x, y, ξ) := (∇y1f1(x, y, ξ), ...,∇ymfm(x, y, ξ)) .

Note that NY (y) = NY1(y1)× · · · × NYm(ym) for y = (y1, ..., ym) ∈ Y and NY(y) = ∅
for y 6∈ Y , and hence conditions (2.135) and (2.136) are equivalent. This motivates to
consider two stage stochastic problem with the first stage of the form (2.130) and with
the second stage value Q(x, ξ) defined as the optimal value of the following problem:

Min
y∈Y

c(x, y, ξ) subject to − F (x, y, ξ) ∈ NY(y). (2.137)

The two stage stochastic problem (2.130) and (2.137) can be also written in the
following equivalent form:

Min
x,y(·)

E[c(x, y(ξ), ξ)]

subject to x ∈ X , −F (x, y(ξ), ξ) ∈ NY(y(ξ)), a.e ξ ∈ Ξ.
(2.138)

In particular, if the set Ξ = {ξ1, ..., ξK} is finite, then problem (2.138) takes on the
form:

Min
x,y1,...,yK

K∑
k=1

pkc(x, y
k, ξk)

subject to x ∈ X , −F (x, yk, ξk) ∈ NY(yk), k = 1, ..., K.
(2.139)

Such two stage stochastic problems are called Stochastic Mathematical Programming
with Equilibrium Constraints (SMPEQ) problems (cf., [16]).

As it was discussed earlier, SMPEQ problems could be conceptually problematic
unless the equilibrium solution set E(x, ξ) is a singleton for all x ∈ X and a.e. ξ.
Conditions ensuring existence and/or uniqueness of a solution of a variational in-
equality, such as (2.136), are well known. A simple sufficient condition for existence
of a solution of a variational inequality

−F (y) ∈ NY(y) (2.140)
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is that the function (mapping) F (y) is continuous and the set Y is convex and com-
pact.

Indeed, let ΠY(y) := arg minz∈Y ‖y−z‖ be the metric projection of y onto
Y . It is not difficult to show that ȳ is a solution of (2.140) iff

ΠY(ȳ − F (ȳ)) = ȳ,

i.e., ȳ is a fixed point of the mapping Φ(y) := ΠY(y − F (y)). The metric
projection ΠY(·) is continuous and since F (·) is continuous, we have that
Φ(·) is continuous. Since Y is convex and compact, it follows by Brouwer’s
Fixed Point Theorem that mapping Φ : Y → Y has at least one fixed
point.

Suppose, further, that F (y) is strictly monotone, i.e.,

(F (y)− F (y′))T(y − y′) > 0, ∀y, y′ ∈ Y , y 6= y′. (2.141)

Then the solution is unique (if it exists).

Indeed, let ȳ and ŷ be two solutions of variational inequality (2.140). Then
F (ȳ)T(ŷ − ȳ) ≥ 0 and F (ŷ)T(ȳ − ŷ) ≥ 0. It follows that

(F (ȳ)− F (ŷ))T(ȳ − ŷ) ≤ 0,

which contradicts (2.141), if ȳ 6= ŷ.

Note that if F (y) = (∇y1f1(y), ...,∇ymfm(y)), i.e., the mapping F (y) corresponds to
the Nash equilibrium condition (2.127), then it is strictly monotone if each function
fi(yi, y−i) is strictly convex in yi.

3 Multistage Problems

3.1 Risk Neutral Formulation

In a generic form a T -stage stochastic programming problem can be written as

Min
x1,x2(·),...,xT (·)

E
[
F1(x1) + F2(x2(ξ[2]), ξ2) + . . .+ FT

(
xT (ξ[T ]), ξT

) ]
s.t. x1 ∈ X1, xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . ., T.

(3.1)

Here ξ1, ξ2, . . ., ξT is a random data process, xt ∈ Rnt , t = 1, . . ., T , are decision
variables, Ft : Rnt × Rdt → R are measurable functions and Xt : Rnt−1 × Rdt ⇒ Rnt ,
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t = 2, . . ., T , are measurable closed valued multifunctions. The first stage data, i.e.,
the vector ξ1, the function F1 : Rn1 → R, and the set X1 ⊂ Rn1 are deterministic.
By ξ[t] := (ξ1, ..., ξt) we denote history of the process up to time t = 1, ..., T . We use
the same notation ξt for random vectors and their particular realizations, which of
these two meanings will be used in a specific situation will be clear from the context.
It is said that the process ξ1, ..., ξT is stagewise independent if random vector ξt+1 is
independent of ξ[t] = (ξ1, ..., ξt), t = 1, ..., T − 1.

Optimization in (3.1) is performed over feasible policies (also called decision rules).
A policy is a sequence of (measurable) functions xt = xt(ξ[t]), t = 1, . . ., T . Each
xt(ξ[t]) is a function of the data process ξ[t] up to time t, this ensures the nonantic-
ipative property of a considered policy. A policy13 xt(·) : Rd1 × · · · × Rdt → Rnt ,
t = 1, . . ., T , is said to be feasible if it satisfies the feasibility constraints for almost
every realization of the random data process, i.e.,

xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . ., T, w.p.1. (3.2)

Since optimization in (3.1) is performed over policies, which are elements of appropri-
ate functional spaces, formulation (3.1) leads to an infinite dimensional optimization
problem, unless the data process ξ1, . . ., ξT has a finite number of realizations. This
is a natural extension of the formulation (2.12) of the two-stage problem.

In formulation (3.1) the expectations are taken with respect to a specified proba-
bility distribution of the random process ξ1, ..., ξT . The optimization is performed on
average and does not take into account risk of a possible deviation from the average
for a particular realization of the data process. Therefore we refer to formulation
(3.1) as risk neutral.

The multistage problem is linear if the objective functions and the constraint
functions are linear, that is

Ft(xt, ξt) := cTt xt, X1 := {x1 : A1x1 = b1, x1 ≥ 0} ,
Xt(xt−1, ξt) := {xt : Btxt−1 + Atxt = bt, xt ≥ 0} , t = 2, . . ., T.

(3.3)

Here ξt := (ct, Bt, At, bt) ∈ Rdt , t = 2, . . ., T , are data vectors, some/all elements of
which can be random, and ξ1 := (c1, A1, b1) is the first stage data which is assumed
to be known (nonrandom).

Recall that if X and Y are two random variables, then14 E[X] = E{E[X|Y ]}, i.e.,
average of averages is the total average. Therefore we can write the expectation in

13In order to distinguish between a function xt(ξ[t]) and a vector xt ∈ Rnt we often write xt(·) to
emphasize that this denotes a function.

14By E[ · |Y ] or E|Y [ · ] we denote the conditional, with respect to Y , expectation operator.
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(3.1) as15

E
[
F1(x1) + F2(x2(ξ[2]), ξ2) + . . .+ FT−1

(
xT−1(ξ[T−1]), ξT−1

)
+ FT

(
xT (ξ[T ]), ξT

)]
= E|ξ1

[
· · · E|ξ[T−2]

[
E|ξ[T−1]

[F1(x1) + F2(x2(ξ[2]), ξ2) + . . .

+FT−1

(
xT−1(ξ[T−1]), ξT−1

)
+ FT

(
xT (ξ[T ]), ξT

)
]
]]

= F1(x1) + E|ξ1
[
F2(x2(ξ[2]), ξ2) + . . .+ E|ξ[T−2]

[
FT−1

(
xT−1(ξ[T−1]), ξT−1

) ]
+E|ξ[T−1]

[
FT
(
xT (ξ[T ]), ξT

) ]]
.

(3.4)
This decomposition property of the expectation operator, together with an inter-

changeability property of the expectation and minimization operators (see Theorem
2.1), leads to the following equivalent (nested) formulation of the multistage problem
(3.1)

Min
x1∈X1

F1(x1) + E
[

inf
x2∈X2(x1,ξ2)

F2(x2, ξ2) + E
[
· · ·+ E

[
inf

xT∈XT (xT−1,ξT )
FT (xT , ξT )

]]]
,

(3.5)
and is a basis for deriving the dynamic programming equations. That is, going back-
ward in time the so-called cost-to-go (or value) functions are defined recursively for
t = T, ..., 2, as follows

Qt

(
xt−1, ξ[t]

)
= inf

xt∈Xt(xt−1,ξt)

{
Ft(xt, ξt) +Qt+1

(
xt, ξ[t]

) }
, (3.6)

where
Qt+1

(
xt, ξ[t]

)
:= E

{
Qt+1

(
xt, ξ[t+1]

) ∣∣ξ[t]

}
, (3.7)

with QT+1(·, ·) ≡ 0 by definition. At the first stage the following problem should be
solved

Min
x1∈X1

F1(x1) + E [Q2 (x1, ξ2)] . (3.8)

The optimal value of the first stage problem (3.8) gives the optimal value of the
corresponding multistage problem formulated in the form (3.5), or equivalently in the
form (3.1).

A policy x̄t(ξ[t]), t = 1, . . ., T , is optimal if x̄1 is an optimal solution of the first
stage problem (3.8) and for t = 2, . . ., T ,

x̄t(ξ[t]) ∈ arg min
xt∈Xt(x̄t−1(ξ[t−1]),ξt)

{
Ft(xt, ξt) +Qt+1

(
xt, ξ[t]

)}
, w.p.1. (3.9)

15Of course, since ξ1 is deterministic, E|ξ1 [ · ] = E[ · ]. We write it here for the uniformity of
notation.
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In the dynamic programming formulation the problem is reduced to solving a sequence
of finite dimensional problems, indexed by t and depending on ξ[t].

At stage t = T we have

QT (xT−1, ξT ) = inf
xT∈XT (xT−1,ξT )

FT (xT , ξT ) (3.10)

and
QT (xT−1, ξ[T−1]) = E

[
QT (xT−1, ξT )

∣∣ξ[T−1]

]
. (3.11)

Suppose now that the data process is stagewise independent. Then ξT is indepen-
dent of ξ[T−1], and hence QT (xT−1) = E [QT (xT−1, ξT )] does not depend on ξ[T−1].
Consequently for t = T − 1,

QT−1 (xT−2, ξT−1) = inf
xT−1∈XT−1(xT−2,ξT−1)

{
FT−1(xT−1, ξT−1) +QT (xT−1)

}
, (3.12)

and hence by the stagewise independence it follows that QT−1(xT−2) is independent
of ξ[T−2]. And so on, by induction in t, we obtain the following result.

Proposition 3.1 Suppose that the data process is stagewise independent. Then the
(expected value) cost-to-go functions Qt(xt), t = 2, ..., T , do not depend on the data
process.

3.1.1 Multistage Linear Programs

Consider the linear case with the corresponding data of the form (3.3). The nested
formulation (3.5) of the linear multistage problem can be written as

Min
A1x1=b1
x1≥0

cT1 x1 + E

 min
B2x1+A2x2=b2

x2≥0

cT2 x2 + E
[
· · ·+ E

[
min

BT xT−1+AT xT=bT
xT≥0

cTTxT
]] . (3.13)

The dynamic programming equations here take the form

Qt

(
xt−1, ξ[t]

)
= inf

xt

{
cTt xt +Qt+1

(
xt, ξ[t]

)
: Btxt−1 + Atxt = bt, xt ≥ 0

}
, (3.14)

where
Qt+1

(
xt, ξ[t]

)
:= E

{
Qt+1

(
xt, ξ[t+1]

) ∣∣ξ[t]

}
. (3.15)

Proposition 3.2 In the linear case the cost-to-go function Qt

(
xt−1, ξ[t]

)
, t = 2, ..., T ,

is convex in xt−1.
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Proof. For t = T we have that QT (xT−1, ξT ) is given by the optimal value of the
following linear programming problem

Min
xT≥0

cTTxT s.t. BTxT−1 + ATxT = bT . (3.16)

It is straightforward to verify that this optimal value is convex in xT−1. By similar
arguments and induction in t = T − 1, ..., the proof can be completed.

The dual of the linear problem (3.16) is the problem

Max
πT

πT
T (bT −BTxT−1) s.t. AT

TπT ≤ cT . (3.17)

Optimal values of problems (3.16) and (3.17) are equal to each other unless both
problems are infeasible. Assuming that QT (xT−1, ξT ) is finite, we can write the
subdifferential of QT (·, ξT ) at the point xT−1 as

∂QT (xT−1, ξT ) = −BT
TST (xT−1, ξT ) , (3.18)

where ST (xT−1, ξT ) denotes the set of optimal solutions of the dual problem (3.17).
Note that since problem (3.17) is linear, its optimal set ST (xT−1, ξT ) is nonempty
provided its optimal value is finite.

By convexity of QT (·, ξT ) we have that the corresponding expected value func-
tion QT (·, ξ[T−1]), defined in (3.11), is also convex. If QT (·, ξ[T−1]) is finite valued in
a neighborhood of the point xT−1, then its subdifferential can be taken inside the
expectation, that is

∂QT
(
xT−1, ξ[T−1]

)
= E|ξ[T−1]

[∂QT (xT−1, ξT )] . (3.19)

It follows that QT (·, ξ[T−1]) is differentiable at xT−1 iff the set ST (xT−1, ξT ) is a sin-
gleton, i.e., the problem (3.17) has unique optimal solution w.p.1 with respect to the
conditional distribution of ξT given ξ[T−1].

For t = T − 1, ..., the (Lagrangian) dual of the optimization problem in the right
hand side of (3.14), which defines the cost-to-go function Qt

(
xt−1, ξ[t]

)
, is

Max
πt

{
πT
t (bt −Btxt−1) + inf

xt≥0

[(
cTt − πT

t At
)
xt +Qt+1

(
xt, ξ[t]

)]}
. (3.20)

In order to ensure that Qt

(
xt−1, ξ[t]

)
is equal to the optimal value of the problem

(3.20), i.e., that there is no duality gap between problem (3.14) and its dual (3.20),
there is a need for constraint qualification. For example, the no duality gap property
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holds if the set of optimal solutions of the dual problem (3.20), denoted St
(
xt−1, ξ[t]

)
,

is nonempty and bounded. In that case Qt

(
·, ξ[t]

)
is continuous at xt−1 and the

subdifferential
∂Qt

(
xt−1, ξ[t]

)
= −BT

t St
(
xt−1, ξ[t]

)
. (3.21)

Suppose now that the data process is stagewise independent. Then the (expected
value) cost-to-go functions Qt+1 (xt) do not depend on the data (see Proposition 3.1).
Suppose, further, that the multistage problem (3.13) has a finite number of scenarios.
Then functions Qt+1 (·) are convex piecewise linear, i.e., can be written as maximum
of a finite family of affine functions αit + βT

itxt, i ∈ I, with I being a finite index set.
That is,

Qt+1 (xt) = max
i∈I

{
αit + βT

itxt
}
. (3.22)

Consequently, the cost-to-go function Qt (xt−1, ξt) is given by the optimal value of the
linear program

Min
xt∈Rnt , z∈R

cTt xt + z

s.t. Btxt−1 + Atxt = bt, xt ≥ 0,
αit + βT

itxt ≤ z, i ∈ I.
(3.23)

In that case there is no duality gap between problem (3.23) and its dual, and formula
(3.21) holds.

3.2 Lagrange Multipliers of Nonanticipativity Constraints

Consider the multistage stochastic problem (3.1). The optimization there is per-
formed over implementable policies satisfying the nonanticipativity condition. That
is, at stage t the decision xt(·) = xt(ξ[t]) is a function of the history of the data
process available at time t and does not depend on future observations16 ξ[t+1,T ] =
(ξt+1, ..., ξT ). We can reformulate this problem by allowing xt(·) = xt(ξ[T ]) to de-
pend on whole data vector ξ[T ] = (ξ1, ..., ξT ) and then writing the requirement of
nonanticipativity in the following form of constraints

xt(ξ[T ]) = E
[
xt(ξ[T ])|ξ[t]

]
, t = 1, ..., T − 1, (3.24)

which should hold w.p.1, i.e., for a.e. ξ[T ]. The above constraints (3.24) ensure that
xt(·) does not depend on ξ[t+1,T ] and is a function ξ[t] alone.

With problem (3.1) and constraints (3.24) is associated the following Lagrangian

L(x(·), λ(·)) := E
{∑T

t=1 Ft(xt(ξ[T ]), ξt) +
∑T−1

t=1 λt(ξ[T ])
T
(
xt(ξ[T ])− E[xt(ξ[T ])|ξ[t]]

)}
,

16We denote by ξ[s,t] := (ξs, ..., ξt) history of the process from time s to time t ≥ s. In particular,
ξ[1,t] = ξ[t] and ξ[t,t] = ξt.
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where x(·) = (x1(·), ..., xT (·)) and λ(·) = (λ1(·), ..., λT−1(·)). Note that the Lagrange
multipliers λ1(·), ..., λT−1(·), as well as the decision variables x1(·), ..., xT (·), are viewed
here as elements of an appropriate functional space. Note also that

E|ξ[t]
{
xt(ξ[T ])− E[xt(ξ[T ])|ξ[t]]

}
= 0,

and hence replacing λt(ξ[T ]) with λt(ξ[T ]) − E|ξ[t] [λt(ξ[T ])] does not change the above
Lagrangian.

Therefore by rewriting the Lagrangian as

L(x(·), λ(·)) := E
{∑T

t=1 Ft(xt(ξ[T ]), ξt) +
∑T−1

t=1 λt(ξ[T ])
Txt(ξ[T ])

}
, (3.25)

we can write problem (3.1) in the following minimax form

Min
x(·)∈X

sup
λ(·)∈Λ

L(x(·), λ(·)), (3.26)

where

Λ := {λ(·) : E[λt(ξ[T ])|ξ[t]] = 0 w.p.1, t = 1, ..., T − 1}, (3.27)

X :=
{
x(·) : xt(ξ[T ]) ∈ Xt(xt−1(ξ[T ]), ξt) w.p.1, t = 1, ..., T

}
. (3.28)

This leads to the following dual of the problem (3.1):

Max
λ(·)∈Λ

inf
x(·)∈X

L(x(·), λ(·)). (3.29)

For the linear multistage problem (3.13) with a finite number of scenarios, both
the primal and dual problems are linear programming problems. Consequently, if
moreover the primal problem has a finite optimal value, then there is no duality gap
between problem (3.13) and its dual (3.29) and both problems have optimal solutions.

3.2.1 The Two Stage Case

Consider the two stage case, i.e., T = 2. Then we can write the dual problem (3.29)
as

Max
λ(·):E[λ]=0

inf
x1(·)∈X1

E
[
F1(x1(ξ)) +Q(x1(ξ), ξ) + λ(ξ)Tx1(ξ)

]
, (3.30)

where Q(x1, ξ) is the optimal value of the second stage problem. We have that
(x̄1(·), λ̄(·)) is a saddle point of the problem (3.30) iff x̄1(·) ≡ x̄1 is an optimal solution
of the (first stage) of the primal problem, λ̄(·) is an optimal solution of the dual
problem and there is no duality gap between these problems. By interchanging the
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minimization and expectation operators (see Theorem 2.1) we have that, for a given
λ(·), an optimal solution x̄(·) of the minimization problem in (3.30) is characterized
by

x̄1(ξ) ∈ arg min
x1∈X1

{
F1(x1) +Q(x1, ξ) + λ(ξ)Tx1

}
. (3.31)

Suppose that the problem is convex, i.e., the set X1 is convex and the functions
F1(x1) and Q(x1, ξ) are convex in x1 ∈ Rn1 . Then x̄1 = x̄1(ξ) is a minimizer of
F1(x1) +Q(x1, ξ) + λ(ξ)x1 over x1 ∈ X1 iff x̄1 ∈ X1 and

0 ∈ ∂F1(x̄1) + ∂Q(x̄1, ξ) + λ(ξ) +NX1(x̄1), (3.32)

provided Q(·, ξ) is finite valued in a neighborhood of x̄1. The solution x̄1(ξ) ≡ x̄1 is
constant (does not depend on ξ) if

−λ(ξ) ∈ ∂F1(x̄1) + ∂Q(x̄1, ξ) +NX1(x̄1). (3.33)

By taking expectation of both sides of (3.33) and interchanging the expectation and
subdifferentiation operators we obtain that (3.33) implies that

−E[λ] ∈ ∂F1(x̄1) + ∂Q(x̄1) +NX1(x̄1), (3.34)

where Q(x1) := E[Q(x1, ξ)]. We also have that the condition

0 ∈ ∂F1(x̄1) + ∂Q(x̄1) +NX1(x̄1) (3.35)

is necessary and sufficient for x̄1 ∈ X1 to be an optimal solution of the first stage
problem. It follows that if x̄1 ∈ X1 is an optimal solution of the first stage problem,
then we can choose a measurable selection λ̄(ξ) satisfying (3.33) such that E[λ̄] = 0.
It follows that (x̄1, λ̄(·)) is a saddle point of the problem (3.30) (see [30, section 2.4.3]
for details).

• Let x̄1 be an optimal solution of the first stage problem. Suppose that the
problem is convex and Q(x1) := E[Q(x1, ξ)] is finite valued in a neighborhood
of x̄1. Then there is no duality gap between the primal and dual problems
and a measurable function λ̄(ξ) is the corresponding Lagrange multiplier if the
following condition holds

−λ̄(ξ) ∈ ∂F1(x̄1) + ∂Q(x̄1, ξ) +NX1(x̄1) and E[λ̄] = 0. (3.36)

Suppose, further, that F1(·) is differentiable at x̄1 and Q(·, ξ) is differentiable at
x̄1 w.p.1. Then condition (3.36) becomes

−λ̄(ξ) ∈ ∇F1(x̄1) +∇Q(x̄1, ξ) +NX1(x̄1) and E[λ̄] = 0. (3.37)
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Even so the Lagrange multiplier may be not defined uniquely if x̄1 is a boundary
point of the set X1 and hence the normal cone NX1(x̄1) is bigger than {0}. By (3.35)
we have that

0 ∈ ∇F1(x̄1) +∇Q(x̄1) +NX1(x̄1). (3.38)

Therefore the Lagrange multiplier can be written in the following form

λ̄(ξ) = ∇Q(x̄1)−∇Q(x̄1, ξ)− µ(ξ), (3.39)

where µ(ξ) can be any measurable function such that

µ(ξ) ∈ ∇F1(x̄1) +∇Q(x̄1) +NX1(x̄1) and E[µ] = 0. (3.40)

In particular, because of (3.38), we can take µ(·) ≡ 0.

3.3 Conditional Risk Measures

With every law invariant risk measure ρ is associated its conditional analogue. That
is, let Z be a random variable and Y be a random vector. Since ρ is law invariant, ρ(Z)
is a function of the distribution of Z ∈ Z. Consider the conditional distribution of Z
given Y = y, and value of ρ(·), denoted ρ(Z|Y = y), at this conditional distribution.
Note that ρ(Z|Y = y) = φ(y) is a function of y, and hence φ(Y ) is a random
variable. We denote this random variable φ(Y ) as ρ(Z|Y ) or ρ|Y (Z) and refer to
ρ|Y (·) as conditional risk measure. Of course, if Z and Y are independent, then the
distribution of Z does not depend on Y and hence in that case ρ|Y (Z) = ρ(Z).

To be more precise let us consider the following construction. Let (X, Y ) ∈ Rd1 ×
Rd2 be a random vector having probability distribution P supported on (closed) set
Ξ ⊂ Rd, where d = d1 + d2, equipped with its Borel sigma algebra B. Consider
the probability space (Ξ,B, P ), the space Z := Lp(Ξ,B, P ) of measurable functions
Z : Ξ→ R having finite p-th order moment, and a law invariant coherent risk measure
ρ : Z → R. We can view Z = Z(X, Y ) as a function of random vector (X, Y ), or as
a random variable defined on the probability space (Ξ,B, P ).

We can write the dual representation of the conditional risk measure ρ|Y as follows.
Given Y = y consider function Zy(·) := Z(·, y). We can view Zy as a random variable
whose (conditional) distribution is supported on the set Ξy := {x : (x, y) ∈ Ξ}. For
the considered law invariant coherent risk measure ρ we have the corresponding dual
representation (2.53) of ρ(Zy) with the associated dual set A = Ay of density functions
ζ : Ξy → R. That is

ρ|Y (Z) = sup
ζ∈AY

E|Y [Z(X, Y )ζ(X)]. (3.41)
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For example the conditional analogue of the mean-upper semideviation risk mea-
sure (2.57) is

ρ|Y (Z) = E|Y [Z] + λ
(
E|Y

[[
Z − E|Y [Z]

]p
+

])1/p

, Z ∈ Lp(Ω,F , P ). (3.42)

The conditional analogue of V@Rα(Z) is the left side (1 − α)-quantile of the condi-
tional distribution of Z given Y , denoted V@Rα(Z|Y ) or V@Rα|Y (Z). Recall that
risk measure V@Rα(·) is not coherent, it does not posses the subadditivity property
(2.51). Nevertheless the conditional analogue V@Rα|Y (·) is well defined.

For α ∈ (0, 1] the conditional analogue of AV@Rα(·) is

AV@Rα|Y (Z) = inf
z∈R

{
z + α−1E|Y [Z − z]+

}
, Z ∈ L1(Ω,F , P ). (3.43)

The set of minimizers of the right hand side of (3.43) is given by (1 − α)-quantiles
of the conditional distribution of Z, given Y , and is a function of Y . In particular,
z∗ = V@Rα|Y (Z) is such a minimizer and hence

AV@Rα|Y (Z) = V@Rα|Y (Z) + α−1E|Y
[
Z − V@Rα|Y (Z)

]
+
. (3.44)

By (3.41) we also have the following dual representation

AV@Rα|Y (Z) = sup
{
E|Y [Z(X, Y )ζ(X)] : 0 � ζ � α−1, E[ζ] = 1

}
. (3.45)

There is an alternative, and in a sense equivalent, approach to defining conditional
risk measures which is based on an axiomatic method (cf., [20],[24]). Both approaches
have advantages and disadvantages. Some properties could be easier seen in one ap-
proach than the other. We use here the above approach of conditional distributions
since it is more intuitive and seems to better suit the dynamic optimization setting.
Note that ρ|Y inherits basic properties of the coherent risk measure ρ - monotonic-
ity, convexity and positive homogeneity. As far as the translation equivariance is
concerned, we have that

ρ|Y (Z + h(Y )) = ρ|Y (Z) + h(Y ) (3.46)

for any measurable function h(y).
Since ρ(Z|Y ) is a random variable, we can condition it on another random vector

W . That is, we can consider the following conditional risk measure ρ[ρ(Z|Y )|W ]. We
refer to this (conditional) risk measure as the composite risk measure and write it as
ρ|W ◦ ρ|Y (Z). In particular, we can consider the composition ρ ◦ ρ|Y . The composite
risk measure ρ ◦ ρ|Y inherits basic properties of ρ. If ρ is a law invariant coherent risk
measure, then so is the composite risk measure ρ ◦ ρ|Y .
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The composite risk measures ρ ◦ ρ|Y can be quite complicated and difficult to
write explicitly (cf., [24, section 5]). In general, the composite risk measure ρ ◦ ρ|Y (·)
depends on Y , and the equality

ρ ◦ ρ|Y = ρ (3.47)

does not necessarily hold. For example, for nonconstant Y equation (3.47) does not
hold for ρ := AV@Rα with α ∈ (0, 1). Of course, if Z and Y are independent, then
ρ(Z|Y ) = ρ(Z) and hence ρ ◦ ρ|Y (Z) = ρ(Z). In particular, (3.47) holds if Y is
constant and hence Z is independent of Y for any Z ∈ Z. Equation (3.47) holds for
any Y in at least in two cases, namely for ρ(·) := E(·) and ρ(·) := ess sup(·).

3.4 Minimax and Risk Averse Multistage Programming

Consider the following minimax extension of the risk neutral formulation (3.1) of
multistage stochastic programs:

Min
x1,x2(·),...,xT (·)

sup
P∈M

{
EP

[
F1(x1) + F2(x2(ξ[2]), ξ2) + . . .+ FT

(
xT (ξ[T ]), ξT

) ]}
s.t. x1 ∈ X1, xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . ., T.

(3.48)
Here M is a set of probability measures associated with vector (ξ2, ..., ξT ) ∈ Rd2 ×
· · · × RdT . We assume that probability measures of the set M are supported on a
closed set Ξ ⊂ Rd2 × · · · × RdT , i.e., for every P ∈ M it holds that P -almost surely
(ξ2, ..., ξT ) ∈ Ξ. Formulation (3.48) can be viewed as an extension of the two-stage
minimax problem (2.1) to the multistage setting. As in the risk neutral case the
minimization in (3.48) is performed over feasible policies.

We can also view the above minimax formulation from the point of view of risk
measures. Let P̄ be a (reference) probability measure17 on the set Ξ equipped with
its Borel sigma algebra B and let Z := Lp(Ξ,B, P̄ ). That is, for p ∈ [1,∞) the
space Z consists of measurable functions Z : Ξ → R viewed as random variables
having finite p-th order moment (with respect to the reference probability measure
P̄ ), and for p = ∞ this is the space of essentially bounded measurable functions
Z(ξ[T ]). Consider a coherent risk measure ρ : Z → R. The corresponding risk averse

17Unless stated otherwise all expectations and probabilistic statements will be made with respect
to the reference measure P̄ .
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multistage problem can be written as

Min
x1,x2(·),...,xT (·)

ρ
[ Z(ξ[T ])︷ ︸︸ ︷
F1(x1) + F2(x2(ξ[2]), ξ2) + . . .+ FT

(
xT (ξ[T ]), ξT

) ]
s.t. x1 ∈ X1, xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . ., T.

(3.49)

The optimization in (3.49) is performed over policies satisfying the feasibility con-
straints for P -almost every realization of the data process and such that the function
(random variable) Z(ξ[T ]) belongs to the considered space Z.

Using dual representation (2.55) we can write this risk measure as

ρ(Z) = sup
Q∈Q

EQ[Z], ∀Z ∈ Z, (3.50)

where Q is a set of absolutely continuous with respect to P̄ probability measures on
(Ξ,B). Consequently problem (3.49) can be represented in the minimax form (3.48)
with M = Q. There is a slight difference between respective formulations (3.48) and
(3.49) of robust multistage programs - the set Q consists of probability measures on
(Ξ,B) which are absolutely continuous with respect to the reference measure P̄ , while
we didn’t make such assumption for the set M. However, at this point this is not
essential, we will discuss this later.

In order to write dynamic programming equations for problems (3.48) and (3.49)
we need a decomposable structure similar to (3.4) for the expectation operator. At
every stage t = 2, ..., T of the process we know the past, i.e., we observe a realization
ξ[t] of the data process. For observed at stage t realization ξ[t] we need to define
what do we optimize in the future stages. From the point of view of the minimax
formulation (3.48) we can specify conditional distribution18 of ξ[t+1,T ] given ξ[t] for
every probability distribution P ∈M of ξ[T ] = (ξ[t], ξ[t+1,T ]).

Consider a linear space Z of measurable functions Z(·) : Ξ→ R, for example take
Z := Lp(Ξ,B, P̄ ), and sequence of spaces Z1 ⊂ Z2 ⊂ · · · ⊂ ZT with Zt being the
space of functions Z ∈ Z such that Z(ξ[T ]) does not depend on ξt+1, ..., ξT ; with some
abuse of notation we write such functions as Zt(ξ[t]). In particular, ZT = Z and Z1 is
the space of constants and can be identified with R. It could be noted that functions
Zt ∈ Zt are defined on the set

Ξt :=
{
ξ[t] ∈ Rd2 × · · · × Rdt : ∃ ξ′[T ] ∈ Ξ such that ξ[t] = ξ′[t]

}
,

which is the projection of Ξ onto Rd2 × · · · × Rdt .

18Recall that ξ[s,t] := (ξs, ..., ξt) denotes history of the process from time s to time t ≥ s.
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Consider sequence of mappings %t,T (·) : Z → Zt, t = 1, ..., T − 1, defined as

[%t,T (Z)](ξ[t]) := sup
P∈M

EP |ξ[t]
[
Z(ξ[T ])

]
, Z ∈ Z, (3.51)

where the notation EP |ξ[t] means that the expectation is conditional on ξ[t] and with
respect to probability distribution P of ξ[T ] = (ξ[t], ξ[t+1,T ]). We assume that the
maximum in the right hand side of (3.51) is finite valued. Restricted to the space
Zt+1 ⊂ Z the mapping %t,T will be denoted %t, i.e., %t : Zt+1 → Zt is given by

[%t(Zt+1)](ξ[t]) = sup
P∈M

EP |ξ[t]
[
Zt+1(ξ[t+1])

]
, Zt+1 ∈ Zt+1. (3.52)

We also use notation %t,T |ξ[t](Z) and %t|ξ[t](Zt+1) for [%t,T (Z)](ξ[t]) and [%t(Zt+1)](ξ[t]),
respectively.

Remark 6 Note that, for the risk averse formulation (3.49), mappings %t|ξ[t] are
not the same as the respective conditional risk measures ρt|ξ[t] (discussed in section
3.3), associated with the risk measure ρ. Suppose, for example, that T = 3 and let
ρ := AV@Rα, α ∈ (0, 1). Here ρ : Z → R with Z being the space of random variables
Z = Z(ξ2, ξ3) having finite first order moment. The dual set of ρ is

A = {ζ(ξ2, ξ3) : 0 � ζ(ξ2, ξ3) � α−1, E[ζ] = 1},

and
%2|ξ2(Z) = sup

ζ∈A
E|ξ2 [Z(ξ2, ξ3)ζ(ξ2, ξ3)]. (3.53)

Suppose, further, that random vectors ξ2 and ξ3 are independent. Consider the set
A′ formed by densities ζ ∈ A which are functions of ξ3 alone, i.e.,

A′ = {ζ(ξ3) : 0 � ζ(ξ3) � α−1, E[ζ] = 1}.

Then
AV@Rα|ξ2(Z) = sup

ζ∈A′
E|ξ2 [Z(ξ2, ξ3)ζ(ξ3)]. (3.54)

Since A′ is a (strict) subset of A, it follows that %2|ξ2(Z) ≥ AV@Rα|ξ2(Z), and the
inequality can be strict.

More specifically, let (X, Y ) ∈ Rn+m be a random vector having uniform proba-
bility distribution P on a closed convex set Ξ ⊂ Rn+m. Let Q be a set of probability
distributions supported on Ξ, absolutely continuous with respect to P with respective
densities bounded by α−1 for some α ∈ (0, 1), i.e., Q is the dual set of measures corre-
sponding to AV@Rα. Denote by A the set of respective densities, i.e., A is formed by
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densities f : Ξ → R+,
∫

Ξ
f(x, y)dxdy = 1, such that f(x, y) ≤ α−1 for all (x, y) ∈ Ξ.

Suppose that Ξ = Ξ1 × Ξ2, where Ξ1 ⊂ Rn and Ξ2 ⊂ Rm are convex closed sets with
nonempty interior. (The following arguments can be pushed through for any convex
set Ξ with nonempty interior, we assume that Ξ is given by a direct product of two
sets for the sake of simplicity.)

For a random variable Z = Z(X, Y ) consider

%|Y (Z) := sup
Q∈Q

EQ|Y [Z].

Given Y = y, with y ∈ Ξ2, and Q ∈ Q with density f ∈ A the conditional distribution
of X is defined by the conditional density

fX|Y (x|y) = c−1f(x, y), x ∈ Ξ1,

where c =
∫

Ξ1
f(x, y)dx.

Let us observe that for ȳ ∈ Ξ2, the conditional density fX|Y (·|ȳ) of Q ∈ Q can be
any bounded density supported on the set Ξ1. Indeed, let g(x) be a bounded density
function supported on the set Ξ1. Choose a constant κ > 0 such that κg(x) ≤ α−1

for all x ∈ Ξ1 (such κ exists since g(·) is bounded). Then there exists f ∈ A such that
f(·, ȳ) = κg(·). Indeed, choose a neighborhood N of ȳ and define f(x, y) := κg(x) for
(x, y) ∈ Ξ1 × N . Choose N small enough such that P (Ξ1 × N) ≤ 1 − α. Then for
y ∈ Ξ2 \N we can choose f(x, y) ≥ 0 such that the total integral

∫
Ξ
f(x, y)dxdy = 1.

It follows that
%|Y (Z) = ess sup|Y (Z),

where ess sup|Y (Z) is the conditional essential sup of Z given Y . Note that for α = 1,
AV@R1(·) = E(·). In that case Q = {P} and %|Y (Z) = E|Y [Z] is given by conditional
expectation.

Suppose now that the set Q is given by a convex combination Q = λ1Q1 + ... +
λrQr, with Qi, i = 1, ..., r, being set of probability measures corresponding to AV@Rαi ,
αi ∈ (0, 1). Then

sup
Q∈Q

EQ|Y [Z] = λ1 sup
Q∈Q1

EQ|Y [Z] + ...+ λr sup
Q∈Qr

EQ|Y [Z],

and again %|Y (Z) = ess sup|Y (Z). This can be extended to risk measures of the form∫ 1

0
AV@Rαdµ(α) for a probability measure µ on (0,1) (with zero mass at α = 0 and

α = 1). Now if µ has positive measure λ at α = 1, then since AV@R1(·) = E(·), it
follows that

%|Y (Z) = λE|Y [Z] + (1− λ)ess sup|Y (Z).

♦
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After observing value ξ[t] of the data process at stage t, it is natural to perform
future optimization at later stages using the conditional distributions of ξ[t+1,T ] given
ξ[t]. However, choice of the corresponding objective function is not unique. We
consider now the optimization (minimization) with respect to the conditional risk
mappings %t,T . This leads to considering the composite function

%̄(Z) := %1,T (%2,T . . . (%T−1,T (Z)) . . . ), Z ∈ Z, (3.55)

denoted
%̄ = %1,T ◦ %2,T ◦ · · · ◦ %T−1,T .

Recall that mappings %t,T (·) and %t(·) do coincide on Zt+1, and hence

%̄ = %1 ◦ %2 ◦ · · · ◦ %T−1

as well. Since Z1 can be identified with R, we can view %̄ : Z → R as a real valued
function, i.e., as a risk measure. Another possibility will be to use the conditional
risk measures ρt|ξ[t] instead of %t|ξ[t] , we will discuss this later (see Remark 8 on page
66).

For the composite risk measure %̄ the corresponding risk averse problem can be
written in the following nested form similar to (3.5):

Min
x1∈X1

F1(x1) +%1|ξ[1]

[
inf

x2∈X2(x1,ξ2)
F2(x2, ξ2) + %2|ξ[2]

[
· · ·

+%T−1|ξ[T−1]
[ inf
xT∈XT (xT−1,ξT )

FT (xT , ξT )]
]]
.

(3.56)

Note that each mapping %t, t = 1, ..., T − 1, in (3.56) can be equivalently replaced by
the respective mapping %t,T .

For the nested formulation (3.56) it is possible to write dynamic programming
equations in a way similar to (3.6)–(3.7). That is, for t = T, ..., 2,

Qt

(
xt−1, ξ[t]

)
= inf

xt∈Xt(xt−1,ξt)

{
Ft(xt, ξt) +Qt+1

(
xt, ξ[t]

) }
, (3.57)

where
Qt+1

(
xt, ξ[t]

)
= %t|ξ[t]

[
Qt+1

(
xt, ξ[t+1]

)]
, (3.58)

with QT+1(·, ·) ≡ 0 by definition.

In order to see a relation between formulation (3.48) (formulation (3.49)) and the
corresponding nested formulation (3.56) let us observe the following. For Z ∈ Z, we
can write

EP [Z(ξ[T ])] = EP |ξ1

[
· · · EP |ξ[T−2]

[
EP |ξ[T−1]

[Z(ξ[T ])]
]
· · ·
]
,
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and hence for ρ(·) = supP∈M EP [ · ] we have

ρ(Z) = sup
P∈M

EP |ξ1

[
· · · EP |ξ[T−2]

[
EP |ξ[T−1]

[Z(ξ[T ])]
]
· · ·
]

≤ sup
P∈M

EP |ξ1

[
· · · sup

P∈M
EP |ξ[T−2]

[
sup
P∈M

EP |ξ[T−1]
[Z(ξ[T ])]

]
· · ·
]

= %1 ◦ %2 ◦ · · · ◦ %T−1(Z).

(3.59)

We obtain the following result.

Proposition 3.3 For risk measure ρ(Z) := supP∈M EP [Z] and the corresponding
composite risk measure %̄ = %1 ◦ %2 ◦ · · · ◦ %T−1 the following inequality holds

ρ(Z) ≤ %̄(Z), ∀Z ∈ Z. (3.60)

It follows from (3.60) that the optimal value of the minimax problem (3.48) (risk
averse problem (3.49)) is less than or equal to the optimal value of the corresponding
nested problem (3.56). The inequality (3.60) can be strict (see, e.g., Example 4
on page 65). That is, risk measure ρ is not necessarily the same as the associated
composite risk measure %̄, and formulations (3.48) and (3.56) are not necessarily
equivalent.

• From the point of view of information at stage t - observed realization ξ[t] of the
data process and the corresponding conditional distributions at future stages
- the nested formulation (3.56) is time consistent. Therefore from this point
of view the minimax formulation (3.48) (the risk averse formulation (3.49)), of
the considered multistage problem, is time consistent if it is equivalent to the
nested formulation (3.56), i.e., the optimal values of problems (3.48) and (3.56)
are equal to each other.

Of course, if ρ(·) = %̄(·), then the minimax and nested formulations are equivalent
for any (allowable) choice of objective functions and feasibility constraints. That is,
ρ(·) = %̄(·) is a sufficient condition for the time consistency in the above sense. Some
risk averse formulations are time consistent and some are not, we will discuss this
further in the next sections.

Remark 7 By interchanging the min and max operators we can consider the follow-
ing dual of the minimax problem (3.48):

Max
P∈M

inf
x1,x2(·),...,xT (·)

EP

[
F1(x1) + F2(x2(ξ[2]), ξ2) + . . .+ FT

(
xT (ξ[T ]), ξT

) ]
s.t. x1 ∈ X1, xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . ., T.

(3.61)
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Assuming that the problem is convex, under certain regularity conditions, it is possible
to show that there is no duality gap between problems (3.48) and (3.61). For two-stage
problems conditions ensuring such “no duality gap” property were given in Theorem
2.10. If the number of scenarios is finite, then the minimization part of problems
(3.48) and (3.61) is finite dimensional and hence it is possible to apply results of
Theorems 2.3 and 2.4.

If there is no duality gap between problems (3.48) and (3.61) and the dual problem
(3.61) has an optimal solution P̄ , then the minimax problem (3.48) is equivalent to the
corresponding risk neutral problem, of the form (3.5), with respect to the probability
measure P̄ of the data process. However, an optimal solution of the dual problem
(3.61) depends on all realizations of the data process and hence this does not resolve
the question of time consistency. ♦

3.4.1 Stagewise Independence

Similar to the risk neutral case, the cost-to-go functions Qt+1

(
xt, ξ[t]

)
do not depend

on ξ[t] if the data process is stagewise independent. Here the stagewise independence
means that ξt+1 is independent of ξ[t] for every distribution P ∈ M of ξ[T ] and t =
1, ..., T − 1. In terms of the set M the stagewise independence means that for t =
2, ..., T , there is a setMt of probability measures on a (closed) set Ξt ⊂ Rdt , equipped
with its Borel sigma algebra Bt, such that

M =
{
P = P2 × · · · × PT : Pt ∈Mt, t = 2, ..., T

}
. (3.62)

Note that here measures P ∈M are defined on the set Ξ = Ξ2 × · · · × ΞT . Note also
that the set M is not necessarily convex even if all sets Mt, t = 2, ..., T , are convex.
We will use the following notation for the set M:

M2 ⊗ · · · ⊗MT :=
{
P = P2 × · · · × PT : Pt ∈Mt, t = 2, ..., T

}
. (3.63)

In the case of stagewise independence equation (3.52) takes the form

%t|ξ[t](Zt+1) = sup
Pt+1∈Mt+1

EPt+1

[
Zt+1(ξ[t], ξt+1)

]
, (3.64)

where the expectation EPt+1

[
Zt+1(ξ[t], ξt+1)

]
is taken with respect to the distribu-

tion Pt+1 of ξt+1 for fixed ξ[t]. Furthermore, the function (risk measure) ρ(·) :=
supP∈M EP [ · ] can be written as

ρ(Z) = sup
P2∈M2,...,PT∈MT

EP2×···×PT [Z(ξ1, ..., ξT )]

= sup
P2∈M2,...,PT∈MT

EP2

[
· · · EPT−1

[
EPT [Z(ξ1, ..., ξT )]

]
· · ·
]
,

(3.65)
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and the corresponding composite risk measure %̄ = %1 ◦ %2 ◦ · · · ◦ %T−1 as

%̄(Z) = sup
P2∈M2

EP2

[
· · · sup

PT−1∈MT−1

EPT−1

[
sup

PT∈MT

EPT [Z(ξ1, ..., ξT )]
]
· · ·
]
. (3.66)

As the following example shows the inequality (3.60) can be strict even in the case
of stagewise independence.

Example 4 Let T = 3 and M :=M2 ⊗M3, with set M2 := {P} being a singleton
andM3 := {∆(ξ) : ξ ∈ Ξ3} being a set of probability measures of mass one. That is,
the set M consists of measures P × P3, P3 ∈M3. Then for Z = Z(ξ2, ξ3),

ρ(Z) = sup
P2∈M2,P3∈M3

EP2×P3 [Z(ξ2, ξ3)] = sup
ξ3∈Ξ3

EP [Z(ξ2, ξ3)], (3.67)

and

%̄(Z) = sup
P2∈M2

EP2

[
sup

P3∈M3

EP3 [Z(ξ2, ξ3)]

]
= EP

{
sup
ξ3∈Ξ3

Z(ξ2, ξ3)

}
. (3.68)

In (3.67) and (3.68) the expectations are taken with respect to the probability distri-
bution P of ξ2. As it is well known in stochastic programming the inequality

sup
ξ3∈Ξ3

EP [Z(ξ2, ξ3)] ≤ EP

{
sup
ξ3∈Ξ3

Z(ξ2, ξ3)

}
(3.69)

can be strict.
Suppose, for example, that both sets Ξ2 and Ξ3 are finite, say Ξ2 = {ξ1

2 , ..., ξ
k
2}

and Ξ3 = {ξ1
3 , ..., ξ

m
3 }, and let Z be the space of functions Z : Ξ2 × Ξ3 → R. Denote

Zij := Z(ξi2, ξ
j
3), i = 1, ..., k, j = 1, ...,m. Let p1, ..., pk be (positive) probabilities,

associated with points of Ξ2, defining measure P . Then the inequality (3.69) can be
written as

max
1≤j≤m

{
k∑
i=1

piZij

}
≤

k∑
i=1

pi max
1≤j≤m

{Zij}. (3.70)

For a given Z ∈ Z the maximum in the left hand side of (3.70) is attained at some
j∗ ∈ {1, ...,m}, independent of i, while the maximum and the right hand side of
(3.70) is attained at some point j?(i) ∈ {1, ...,m} which is a function of i. For k > 1
and m > 1 the inequality (3.70) is strict, i.e., ρ(Z) < %̄(Z) for some Z ∈ Z. ♦
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Proposition 3.4 Let ρ(Z) := supP∈M EP [Z] and suppose that the stagewise indepen-
dence condition holds, i.e., the set M is given in the form (3.62). Then ρ(·) = %̄(·) if
the interchageability property

EP2×···×Pt

{
sup

Pt+1∈Mt+1

EPt+1

[
Zt+1(ξ[t], ξt+1)

]}
=

sup
Pt+1∈Mt+1

EP2×···×Pt+1

[
Zt+1(ξ[t], ξt+1)

] (3.71)

holds for all Z ∈ Z and t = 2, ..., T − 1.

Proof. Suppose that condition (3.71) holds. Then

ρ(Z) = sup
P2∈M2

· · · sup
PT∈MT

EP2

[
· · · EPT−1

[
EPT [Z(ξ1, ..., ξT )]

]
· · ·
]

= sup
P2∈M2

· · · sup
PT−1∈MT−1

EP2

[
· · · EPT−1

[
sup

PT∈MT

EPT [Z(ξ1, ..., ξT )]
]
· · ·
]

= sup
P2∈M2

EP2

[
· · · sup

PT−1∈MT−1

EPT−1

[
sup

PT∈MT

EPT [Z(ξ1, ..., ξT )]
]
· · ·
]
,

(3.72)
and hence ρ(Z) = %̄(Z).

The requirement for (3.71) to hold for all Z ∈ Z is rather exceptional. Of course,
this holds if the setsMt, t = 2, ..., T , are singletons. Another case where this holds if
Mt is the set of all probability measures on Ξt, t = 2, ..., T . We will discuss this case
in the next section.

By (3.64) and using induction in t = T, ..., we obtain that in the considered
stagewise independent case the dynamic programming equations (3.57)–(3.58) take
the form

Qt (xt−1, ξt) = inf
xt∈Xt(xt−1,ξt)

{
Ft(xt, ξt) +Qt+1 (xt)

}
, (3.73)

for t = T, ..., 2, where

Qt+1 (xt) = sup
Pt+1∈Mt+1

EPt+1 [Qt+1 (xt, ξt+1)] , (3.74)

with QT+1(·, ·) ≡ 0 by definition.

Remark 8 Let ρt, t = 2, ..., T , be a coherent risk measure defined on a space of
random variables Zt : Ξt → R. Furthermore, letMt := Qt, t = 2, ..., T , with Qt being
the set of probability measures associated with the dual set At of ρt (see (2.56)). Then
%t|ξ[t] , defined in (3.64), coincides with the conditional risk measure ρt|ξ[t] associated
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with the risk measure ρt. Consequently equations (3.73)–(3.74) represent dynamic
programming equations for the nested formulation of the multistage program of the
form (3.56) with %t|ξ[t] replaced by ρt|ξ[t] as well. That is, replacing %t|ξ[t] with ρt|ξ[t] in
(3.56) we obtain an equivalent multistage problem. ♦

3.5 Robust Multistage Programming

Let M be the set of all probability measures on (Ξ,B). Then for computing the
maximum in ρ(·) = supP∈M EP [ · ] it suffices to perform the maximization with respect
to measures of mass one at a point of the set Ξ, and hence the minimax formulation
(3.48) can be written as

Min
x1,x2(·),...,xT (·)

sup
(ξ2,...,ξT )∈Ξ

{
F1(x1) + F2(x2(ξ[2]), ξ2) + . . .+ FT

(
xT (ξ[T ]), ξT

) }
s.t. x1 ∈ X1, xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . ., T.

(3.75)

The above worst-case formulation (3.75) of multistage programs can be considered
in the framework of robust optimization, where it is called adjustable since decisions
xt(ξ[t]), t = 2, ..., T , are adjusted to the observed data (cf., [3]).

We can use the ρ(·) := ess sup(·) risk measure in order to write problem (3.75)
in the form (3.49). However, this will result in replacing the “sup” by the “ess sup”
operator in (3.75), which is not natural from the point of view of robust optimization.
Therefore we are going now to analyze the worst-case formulation (3.75) directly.

Let us consider the following construction. Denote by Zt, t = 2, ..., T , the linear
space of bounded real valued functions Z : Rd2 × · · · × Rdt → R, with Z1 ≡ R (i.e.,
Z1 is the space of constants). For 1 ≤ s < t ≤ T consider the mapping %s,t : Zt → Zs
defined as follows

[%s,t(Z)](ξ[s]) = sup
(ξ′2,...,ξ

′
T )∈Ξ

{
Z(ξ′[t]) : ξ′[s] = ξ[s]

}
, Z ∈ Zt. (3.76)

In particular, %1,t : Zt → R is

%1,t(Z) = sup
(ξ2,...,ξT )∈Ξ

Z(ξ[t]). (3.77)

Note that the objective function in the right hand side of (3.76) does not depend on
ξ′t+1, ..., ξ

′
T and the maximization can be performed over the set Ξt (instead of Ξ),

where Ξt is the projection of Ξ onto Rd2 × · · · × Rdt , i.e.,

Ξt =
{
ξ[t] : ∃ ξ′[T ] ∈ Ξ such that ξ[t] = ξ′[t]

}
. (3.78)

67



For t = T, ..., 2, consider the following dynamic programming equations

Qt(xt−1, ξ[t]) = inf
xt∈Xt(xt−1,ξt)

{
Ft(xt, ξt) +Qt+1(xt, ξ[t])

}
, (3.79)

where
Qt+1(xt, ξ[t]) = %t,t+1

[
Qt+1(xt, ξ[t+1])

]
, (3.80)

with QT+1(·, ·) ≡ 0 by definition. At the first stage we need to solve the problem

Min
x1∈X1

F1(x1) +Q2(x1). (3.81)

We are going to establish a connection between these dynamic equations and mul-
tistage robust problem (3.75). The mapping %t,t+1 in the right hand side of (3.80)
is applied to the function Qt+1(xt, ·) for given (fixed) xt. That is, the cost-to-go
functions, defined in (3.80), can be written as

Qt+1(xt, ξ[t]) = sup
(ξ′2,...,ξ

′
T )∈Ξ

{
Qt+1

(
xt, ξ

′
[t+1]

)
: ξ′[t] = ξ[t]

}
. (3.82)

Of course, in order for the function Qt+1(xt, ξ[t]) to be real valued we need to impose
some boundedness conditions ensuring that the maximum in the right hand side of
(3.82) is finite.

It immediately follows from the definition (3.76) that for 1 ≤ r < s < t ≤ T , the
composite mapping %r,s ◦ %s,t : Zt → Zr coincides with mapping %r,t : Zt → Zr, i.e.,

%r,s ◦ %s,t = %r,t. (3.83)

We also will need the following interchangeability property. Let A and B two (ab-
stract) nonempty sets, A 3 x 7→ B(x) ⊂ B be a multifunction (point-to-set mapping)
and h : A×B → R be a real valued function. Consider the min-max problem

Max
x∈A

inf
y∈B(x)

h(x, y). (3.84)

Let Y be the space of mappings y(·) : A → B such that y(x) ∈ B(x) for all x ∈ A,
and consider problem

Min
y(·)∈Y

sup
x∈A

h(x, y(x)). (3.85)

Proposition 3.5 Suppose that infy∈B(x) h(x, y) is finite for every x ∈ A. Then the
optimal values of problems (3.84) and (3.85) are equal to each other. Moreover, ȳ(·) ∈
Y is an optimal solution of problem (3.85) if

ȳ(x) ∈ arg min
y∈B(x)

h(x, y), ∀x ∈ A. (3.86)
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Proof. For any y(·) ∈ Y we have that h(x, y(x)) ≥ infy∈B(x) h(x, y) for any x ∈ A,
and hence

sup
x∈A

h(x, y(x)) ≥ sup
x∈A

inf
y∈B(x)

h(x, y).

It follows that the optimal value of problem (3.84) is less than or equal to the optimal
value of problem (3.85).

Conversely, for a chosen ε > 0 let ȳ(·) ∈ Y be such that

inf
y∈B(x)

h(x, y) ≥ h(x, ȳ(x))− ε, x ∈ A. (3.87)

Such mapping exists since it is assumed that infy∈B(x) h(x, y) is finite (in particular
the set B(x) is nonempty) for every x ∈ A. It follows that

sup
x∈A

inf
y∈B(x)

h(x, y) ≥ sup
x∈A

h(x, ȳ(x))− ε, (3.88)

and hence
sup
x∈A

inf
y∈B(x)

h(x, y) ≥ inf
y(·)∈Y

sup
x∈A

h(x, y(x))− ε. (3.89)

Since ε > 0 is arbitrary, it follows that the optimal value of problem (3.85) is less
than or equal to the optimal value of problem (3.84).

Moreover, ȳ(·) is an optimal solution of (3.85) iff ε = 0 in (3.88). In turn this
holds if ε = 0 in (3.84), i.e., if (3.86) holds.

Suppose for the moment that B(x) = B for all x ∈ A and that problem (3.85)
attains its maximal value at a constant mapping y(x) ≡ ȳ. Then

sup
x∈A

inf
y∈B

h(x, y) = inf
y∈B

sup
x∈A

h(x, y). (3.90)

Moreover, if x̄ ∈ A is an optimal solution of problem (3.84), then (x̄, ȳ) is a saddle
point of problem (3.84). Conversely, if (x̄, ȳ) is a saddle point of problem (3.84), then
x̄ is an optimal solution of problem (3.84) and y(·) ≡ ȳ is an optimal solution of
problem (3.85).

Consider now the multistage problem (3.75). Recall that the minimization is per-
formed over policies satisfying the feasibility constraints. For fixed (feasible) decisions
x1, x2(·), ..., xT−1(·), let us consider minimization with respect to xT (·). Assuming that
the cost-to-go functions are finite valued, by Proposition 3.5 we can interchange the
corresponding minimization and maximization in (3.75). This results in the problem
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Min
x1,x2(·),...,xT−1(·)

sup
ξ[T ]∈Ξ

[
F1(x1) + · · ·+ FT−1(xT−1, ξT−1) + inf

xT∈XT (xT−1,ξT )
FT (xT , ξT )︸ ︷︷ ︸

QT (xT−1,ξT )

]
s.t. x1 ∈ X1, xt ∈ Xt(xt−1, ξt), t = 2, . . . , T − 1.

(3.91)
Performing maximization in (3.91) with respect to ξT we can write (3.91) as

Min
x1,x2(·),...,xT−1(·)

sup
ξ[T ]∈Ξ

[
F1(x1) + · · ·+ FT−1(xT−1, ξT−1) + sup

ξ[T ]∈Ξ
QT (xT−1, ξT )︸ ︷︷ ︸

QT (xT−1,ξ[T−1])

]

s.t. x1 ∈ X1, xt ∈ Xt(xt−1, ξt), t = 2, . . . , T − 1.
(3.92)

Note that the objective function in (3.92) does not depend on ξT and the maximization
can be performed over ξ[T−1] ∈ ΞT−1 instead of ξ[T ] ∈ Ξ.

Next we can proceed to minimization in (3.92) with respect to xT−1(·). Again
using the interchangeability property we obtain

Min
x1,x2(·),...,xT−2(·)

sup
ξ[T−1]∈ΞT−1

[
F1(x1) + . . .

+ inf
xT−1∈XT−1(xT−2,ξT−1)

{
FT−1(xT−1, ξT−1) +QT (xT−1, ξ[T−1])

}
︸ ︷︷ ︸

QT−1(xT−2,ξ[T−1])

]
s.t. x1 ∈ X1, xt ∈ Xt(xt−1, ξt), t = 2, . . . , T − 2.

Furthermore, by taking maximum in the above problem with respect to ξT−1 we
obtain

Min
x1,x2(·),...,xT−2(·)

sup
ξ[T−2]∈ΞT−2

[
F1(x1) + · · ·+ FT−2(xT−2, ξT−2) +QT−1(xT−2, ξ[T−2])

]
s.t. x1 ∈ X1, xt ∈ Xt(xt−1, ξt), t = 2, . . . , T − 2.

(3.93)
Continuing this process backwards in time we derive dynamic equations (3.79)–(3.80).
This gives the following result.

Proposition 3.6 Suppose that the cost-to-go functions in dynamic equations (3.79)–
(3.81) are finite valued. Then the optimal value of problem (3.75) is equal to the
optimal value of problem (3.81). Moreover, a policy x̄t(ξ[t]), t = 1, ..., T , is optimal
for the problem (3.75) if

x̄t(ξ[t]) ∈ arg min
xt∈Xt(x̄t−1(ξ[t−1],ξt)

{
Ft(xt, ξt) +Qt+1(xt, ξ[t])

}
, t = 2, ..., T, (3.94)
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and x̄1 is an optimal solution of the first stage problem (3.81).

• This shows that for the worst-case formulation (3.75) of multistage programs
the minimax and nested formulations are equivalent and formulation (3.75) is
time consistent.

Consider now the case of stagewise independence. That is, suppose that the
uncertainty set is the direct product of nonempty sets Ξt ⊂ Rdt , t = 2, ..., T , i.e.,
Ξ = Ξ2 × · · · × ΞT . In that case the max-mapping %s,t takes the form

[%s,t(Z)](ξ[s]) = sup
ξ′s+1∈Ξs+1,...,ξ′t∈Ξt

{
Z(ξ2, ..., ξs, ξ

′
s+1, ..., ξ

′
t)
}
. (3.95)

Consequently, in that case dynamic equations (3.79)–(3.80) become

Qt(xt−1, ξt) = inf
xt∈Xt(xt−1,ξt)

{
Ft(xt, ξt) +Qt+1(xt)

}
, t = 2, ..., T, (3.96)

with cost-to-go functions

Qt+1(xt) = sup
ξt+1∈Ξt+1

Qt+1(xt, ξt+1) (3.97)

independent of the data process.

3.6 Dynamic Problem of Moments

Let us consider the problem of moments in the following multistage setting. Let
Ξt ⊂ Rdt , µt ∈ Rqt and Ψt : Ξt → Rqt be a measurable mapping, t = 2, ..., T .
DefineMt to be the set of probability measures Pt on (Ξt,Bt) satisfying the following
moment conditions

EPt [Ψt(ξt)] = µt, t = 2, ..., T, (3.98)

and let M :=M2 ⊗ · · · ⊗MT . Of course, this construction maintains the stagewise
independence condition.

In this setting the minimax and nested formulations are not necessarily equivalent.
In order to see this consider the following example.

Example 5 Let T = 3 and the set Ξ2 be finite. Then for t = 2 the moment con-
straints (3.98) take a form of linear equations for the respective probabilities associ-
ated with points of the set Ξ2 (compare with (2.112)). By an appropriate choice, the
moment constraints define a unique probability measure on Ξ2. If, furthermore, the

71



set M3 consists of all probability measures on Ξ3 ⊂ Rd3 , then this becomes a case
considered in Example 4. This shows that the corresponding inequality (3.60) can be
strict in this example. If, on the other hand, we assume that the set Ξ3 is also finite
and the respective moment constraints define a unique probability measure on Ξ3,
i.e., both sets M2 = {P2} and M3 = {P3} are singletons, then of course ρ(·) = %̄(·).
This shows how fragile can be the time consistency property. ♦

For the respective nested formulation we can write the dynamic programming
equations (see (3.73)–(3.74)):

Qt (xt−1, ξt) = inf
xt∈Xt(xt−1,ξt)

{
Ft(xt, ξt) +Qt+1 (xt)

}
, (3.99)

where
Qt+1 (xt) = sup

Pt+1∈Mt+1

EPt+1 [Qt+1 (xt, ξt+1)] . (3.100)

By the Richter - Rogosinski Theorem the maximum in the right hand side of (3.100)
is attained at a probability measure supported on at most qt+1 + 1 points of Ξt+1 (see
Theorem 2.12).

Example 6 Consider the linear multistage setting with the data in the form (3.3)
and with only right hand side vectors bt being uncertain. Suppose that bt ∈ Ξt,
where Ξt ⊂ Rdt is a bounded convex polyhedral set, t = 2, ..., T . Suppose, further,
that means µt ∈ Ξt of vectors bt are known. That is, letMt be the set of probability
measures Pt on Ξt with given mean EPt [bt] = µt, t = 2, ..., T , and M :=M2⊗· · ·⊗MT .
Since Ξt is bounded polyhedral, the set Ext(Ξt) of its extreme points is finite and Ξt

is equal to the convex hull of Ext(Ξt).
The cost-to-go functions here are given by dynamic equations

Qt (xt−1, bt) = inf
xt

{
cTt xt +Qt+1 (xt) : Atxt = bt −Btxt−1, xt ≥ 0

}
, (3.101)

withQt+1(·) of the form (3.100) andQT+1(·) ≡ 0. It follows that functionsQt+1(·) and
Qt (·, ·) are convex. Consequently by Theorem 2.13 the maximum of EPt [Qt (xt−1, bt)]
over Pt ∈Mt is attained at a probability measure P ∗t with a finite support consisting
of at most dt + 1 points of Ext(Ξt).

Suppose now that

Ξt :=
{
ξ ∈ Rdt :

∑dt
i=1 ξi ≤ 1, ξ ≥ 0

}
, t = 2, ..., T.

Then Ext(Ξt) = {0, e1, ..., edt}, where ei are coordinate vectors of Rdt . Consequently
P ∗t = α0t∆(0) + α1t∆(e1) + ... + αdtt∆(edt) with αit satisfying the system of equa-
tions αit = µit, i = 1, ..., dt, α0t = 1 −

∑dt
i=1 µit. That is, the probability measure
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satisfying the feasibility (moment) constraints and supported on the set Ext(Ξt) is
defined uniquely. In particular, if mean µt is an interior point of the set Ξt, then all
probabilities αit, i = 0, ..., dt, are positive. It follows that in this example the nested
formulation can be reduced to solving the corresponding multistage problem with
respect to unique probability measure P ∗ = P ∗2 × · · · × P ∗T , and hence the minimax
and nested formulations are equivalent.

On the other hand let each Ξt be a box, say Ξt := {ξ ∈ Rdt : |ξi| ≤ 1, i = 1, ..., dt}.
Then the set of extreme points of Ξt has 2dt elements. Since for dt > 1 the set Ξt

has more extreme points than dt + 1, the corresponding probability measure P ∗t may
be not uniquely defined and there is no guarantee of equivalence of the minimax and
nested formulations. ♦

3.7 Dynamics of Average Value-at-Risk Measures

Let us consider the Average Value-at-Risk measure ρ(·) := AV@Rα(·), with Z :=
L1(Ξ,B, P ), α ∈ (0, 1) and P being a reference probability measure on the set Ξ ⊂
Rd2 × · · · × RdT . Consider also the respective conditional risk measures ρt|ξ[t](·) =
AV@Rα|ξ[t](·). We have the following upper bound for the nested Average Value-at-
Risk measure.

Proposition 3.7 For Z ∈ Z and α ∈ [0, 1] it holds that

AV@Rα|ξ1

[
· · · AV@Rα|ξ[T−2]

[
AV@Rα|ξ[T−1]

[Z]
]
· · ·
]
≤ AV@RαT [Z] . (3.102)

Proof. Let α ∈ (0, 1] and consider partition ξ = (X, Y ). Since the maximum in the
dual representation (2.53) is attained, we can write

AV@Rα|Y (Z) = E|Y [Z(X, Y )ζY (X)] (3.103)

for some ζY ∈ AY . Thus

AV@Rα(AV@Rα|Y (Z)) = sup
{

E[ζ1(Y )AV@Rα|Y (Z)] : 0 � ζ1 � α−1, E[ζ1] = 1
}

= sup
{

E
[
ζ1(Y )E|Y [Z(X, Y )ζY (X)]

]
: 0 � ζ1 � α−1, E[ζ1] = 1

}
= sup

{
E
[
E|Y [Z(X, Y )ζ1(Y )ζY (X)]

]
: 0 � ζ1 � α−1, E[ζ1] = 1

}
= sup

{
E
[
Z(X, Y )ζ1(Y )ζY (X)

]
: 0 � ζ1 � α−1, E[ζ1] = 1

}
.

(3.104)
We also have that

E[ζ1(Y )ζY (X)] = E
[
ζ1(Y )E|Y [ζY (X)]

]
= 1
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and 0 � ζ1(Y )ζY (X) � α−2. It follows that the last maximum in (3.104) is less than
or equal to

sup
{

E[Z(X, Y )ζ(X, Y )] : 0 � ζ � α−2, E[ζ] = 1
}

= AV@Rα2(Z).

This proves the inequality (3.102) for T = 2. For α ∈ (0, 1] the proof can be com-
pleted now by induction. For α = 0 the left and right hand sides of (3.102) are equal
to each other.

For the risk measure ρ(·) := AV@Rα(·) the corresponding multistage problem
(3.49) can be written as

Min
x(·), z

E
{
z + α−1

[
F1(x1) + F2(x2(ξ[2]), ξ2) + . . .+ FT

(
xT (ξ[T ]), ξT

)
− z
]

+

}
s.t. x1 ∈ X1, xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . ., T,

(3.105)
where x(·) = (x1, x2(·), . . ., xT (·)). If the multistage problem is linear and the number
of scenarios (realizations of the data process) is finite, then it is possible to write
problem (3.105) as a large linear programming problem.

As far as dynamic equations are concerned let us observe that at the last stage
t = T we would need to solve problem conditional on z and decisions up to stage
t = T − 1. Therefore dynamic equations cannot be written in an obvious way and
formulation (3.105) is not time consistent. The corresponding nested formulation,
of course, is time consistent. It is interesting to observe that in extreme cases of
α = 1 (when ρ(·) = E(·)) and α = 0 (when ρ(·) = ess sup(·)) the minimax and nested
formulations are equivalent.

Consider now risk measure

ρα,λ(Z) := (1− λ)E[Z] + λAV@Rα[Z], (3.106)

with α ∈ (0, 1) and λ ∈ [0, 1]. This risk measure was discussed in section 2.5.2 with
respect to risk averse formulation of two-stage stochastic programming. In the linear
case it was possible to formulate the corresponding risk averse two-stage problem as
a standard linear two-stage stochastic program by introducing one additional deci-
sion variable (see (2.84)–(2.88)). Similar procedure can be extended to the nested
formulation of multistage programs.

Conditional analogues of ρα,λ are

ρt|ξ[t−1]
(·) := (1− λt)E|ξ[t−1]

(·) + λtAV@Rαt|ξ[t−1]
(·), (3.107)
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with λt ∈ [0, 1] and αt ∈ (0, 1) being chosen parameters. Consider the following
nested formulation of linear multistage programs with the data of the form (3.3):

Min
A1x1=b1
x1≥0

cT1 x1 + ρ2|ξ1

 min
B2x1+A2x2=b2

x2≥0

cT2 x2 + · · ·+ ρT |ξ[T−1]

[
min

BT xT−1+AT xT=bT
xT≥0

cTTxT

] .
(3.108)

An intuitive motivation of this formulation is that at t-th stage of the process one
tries to control an upper limit of the corresponding cost-to-go function Qt+1 (xt, ξt+1)
for different realizations of the data process (see Remark 5 on page 30).

The corresponding dynamic programming equations are

Qt

(
xt−1, ξ[t]

)
= inf

xt∈Rnt

{
cTt xt +Qt+1(xt, ξ[t]) : Btxt−1 + Atxt = bt, xt ≥ 0

}
, (3.109)

with
Qt+1

(
xt, ξ[t]

)
:= ρt+1|ξ[t]

[
Qt+1

(
xt, ξ[t+1]

)]
. (3.110)

At the first stage problem

Min
x1∈Rn1

cT1 x1 +Q2(x1) s.t. A1x1 = b1, x1 ≥ 0, (3.111)

should be solved. As it was pointed out before if the stagewise independence condition
holds, then the cost-to-go functions Qt+1 (xt) do not depend on the data process.

By the definition (2.60) of AV@Rα it follows that Qt+1

(
xt, ξ[t]

)
is equal to the

optimal value of the problem

Min
ut

E|ξ[t]
{

(1− λt+1)Qt+1

(
xt, ξ[t+1]

)
+ λt+1

(
ut + α−1

t+1[Qt+1

(
xt, ξ[t+1]

)
− ut]+

)}
.

(3.112)
Thus we can write the dynamic programming equations (3.109)–(3.110) as follows.
At the last stage t = T we have that QT (xT−1, ξT ) is equal to the optimal value of
problem

Min
xT∈RnT

cTTxT s.t. BTxT−1 + ATxT = bT , xT ≥ 0, (3.113)

and QT
(
xT−1ξ[T−1]

)
is equal to the optimal value of problem

Min
uT−1

E|ξ[T−1]

{
(1− λT )QT (xT−1, ξT ) + λTuT−1 + λTα

−1
T [QT (xT−1, ξT )− uT−1]+

}
.

(3.114)
At stage t = T − 1 we have that QT−1(xT−2, ξ[T−1]) is equal to the optimal value

of problem

Min
xT−1∈RnT−1

cTT−1xT−1 +QT (xT−1, ξ[T−1])

s.t. BT−1xT−2 + AT−1xT−1 = bT−1, xT−1 ≥ 0.
(3.115)
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By using (3.114) and (3.115) we can write that QT−1(xT−2, ξ[T−1]) is equal to the
optimal value of problem

Min
xT−1∈RnT−1 ,uT−1∈R

cTT−1xT−1 + λTuT−1 + VT (xT−1, uT−1, ξ[T−1])

s.t. BT−1xT−2 + AT−1xT−1 = bT−1, xT−1 ≥ 0,
(3.116)

where VT (xT−1, uT−1, ξ[T−1]) is equal to the following conditional expectation

E|ξ[T−1]

{
(1− λT )QT (xT−1, ξT ) + λTα

−1
T [QT (xT−1, ξT )− uT−1]+

}
. (3.117)

By continuing this process backward we can write dynamic programming equa-
tions (3.109)–(3.110) for t = T, ..., 2 as

Qt

(
xt−1, ξ[t]

)
= inf

xt∈Rnt ,ut∈R

{
cTt xt + λt+1ut + Vt+1(xt, ut, ξ[t]) :

Btxt−1 + Atxt = bt, xt ≥ 0
}
,

(3.118)

where

Vt+1

(
xt, ut, ξ[t]

)
= E|ξ[t]

{
(1− λt+1)Qt+1

(
xt, ξ[t+1]

)
+λt+1α

−1
t+1

[
Qt+1

(
xt, ξ[t+1]

)
− ut

]
+

}
,

(3.119)

with VT+1(·) ≡ 0 and λT+1 := 0. At the first stage problem

Min
x1∈Rn1 ,u1∈R

cT1 x1 + λ2u1 + V2(x1, u1) s.t. A1x1 = b1, x1 ≥ 0, (3.120)

should be solved. Note that in this formulation decision variables at t-th stage are
xt ∈ Rnt and ut ∈ R. Note also that functions Vt+1

(
xt, ut, ξ[t]

)
are convex in (xt, ut).

4 Inventory Model

4.1 The Newsvendor Problem

The classical newsvendor (also called newsboy) problem is the following. A newsven-
dor has to decide about quantity x of newspapers which he purchases from a distrib-
utor at the beginning of a day at the cost of c per unit. He can sell a newspaper at
the price s per unit and unsold newspapers can be returned to the vendor at the price
of r per unit. It is assumed that 0 ≤ r < c < s. If the demand d, i.e., the quantity of
newspapers which he is able to sell at a particular day, turns out to be greater than
or equal to the order quantity x, then he makes the profit sx− cx = (s− c)x, while if
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d is less than x, his profit is sd+ r(x− d)− cx = (r− c)x+ (s− r)d. Thus the profit
is a function of x and d and is given by

G(x, d) =

{
(s− c)x, if x ≤ d,
(r − c)x+ (s− r)d, if x > d.

, (4.1)

or equivalently
G(x, d) = min

{
(s− c)x, (r − c)x+ (s− r)d

}
. (4.2)

The objective is to maximize the profit as a function of the quantity (decision variable)
x ≥ 0.

Closely related to this is the following inventory problem. Suppose that a company
has to decide about order quantity x of a certain product to satisfy demand d. The
cost of ordering is c > 0 per unit. If the demand d is larger than x, then the company
makes an additional order for the unit price b ≥ 0. The cost of this is equal to b(d−x)
if d > x, and is zero otherwise. On the other hand, if d < x, then holding cost of
h(x− d) ≥ 0 is incurred. The total cost is then equal to

F (x, d) = cx+ b[d− x]+ + h[x− d]+ = max
{

(c− b)x+ bd, (c+ h)x− hd
}
. (4.3)

We assume that b > c, i.e., the back order penalty cost is larger than the ordering
cost. The objective is to minimize the total cost F (x, d), with x being the decision
variable. Unless stated otherwise in the following we deal with the inventory model
(see, e.g., Zipkin [34] for a thorough discussion of the inventory model).

In both problems one has to make a decision before knowing realization of the
demand d, i.e., the decision should be made in conditions of uncertainty. There are
several ways how the uncertainty can be modeled. One approach is to specify an
uncertainty set, say interval [l, u] ⊂ R+, of possible realizations of the demand d and
to be prepared for the worst possible scenario. This leads to the following worst case
formulation of the inventory problem

Min
x≥0

{
ψ(x) := max

d∈[l,u]
F (x, d)

}
. (4.4)

Similar worst case formulation can be written for the newsvendor problem.
Since F (x, d) is convex in d, we have that ψ(x) = max{F (x, l), F (x, u)}. The

function ψ(x) is a piecewise linear convex function. Recalling that b > c, it is
straightforward to verify that the optimal solution of problem (4.4) is attained at
the point

x∗ =
hl + bu

h+ b
. (4.5)
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Of course, if l = u (i.e., the demand is known), then the best (optimal) decision is
to order the known quantity of the demand. On the other hand, if the uncertainty
interval is large, then the “worst case” solution could be quite conservative. For
example, if the back order cost (per unit) b is much bigger than the holding cost h,
then x∗ is practically equal to the largest possible realization u of the demand.

An alternative approach is to view the demand as a random variable and to
perform an optimization on average. For the inventory model the corresponding
optimization problem can be written as follows

Min
x≥0

{
f(x) := E[F (x,D)]

}
. (4.6)

The expectation E[F (x,D)] is taken here with respect to a specified probability dis-
tribution of the random demand D. Suppose that random variable D has a finite first
order moment, i.e., E|D| < ∞, and hence the expectation f(x) is well defined and
finite values. Since F (x, d) is convex in x, it follows that the function f(x) is convex.
We have that for x 6= d,

∂F (x, d)

∂x
=

{
c− b if x < d,
c+ h if x > d

It follows that if D has a continuous distribution, and hence for any x probability
of the event “D = x” is zero, then the expectation function f(x) is differentiable and

f ′(x) = c− bPr(x < D) + hPr(x > D) = c− b+ (b+ h)H(x), (4.7)

where H(x) := Pr(D ≤ x) is the cumulative distribution function (cdf) of the random
variable D. By the optimality condition f ′(x) = 0 (recall that the function f(·)
is convex), we obtain that an optimal solution of problem (4.6) satisfies equation
H(x) = (b− c)/(b + h). Recall that for κ ∈ (0, 1), the left and right side κ-quantiles
of the distribution of D are defined as inf{t : H(t) ≥ κ} and sup{t : H(t) ≤ κ},
respectively. In particular, the left side κ-quantile is denoted H−1(κ). We obtain that
the set of optimal solutions of problem (4.6) is given by the interval of κ-quantiles
with κ := (b − c)/(b + h). In fact this holds for general (not necessarily continuous)
distributions of D.

What could be a possible justification for formulation (4.6) of the inventory prob-
lem? If the same operation is repeated many times, for an independent identically
distributed (iid) sequence D1, ...., of realizations of the random variable D, then by
the Law of Large Numbers (LLN) we have that n−1

∑n
i=1 F (x,Di) converges with

probability (w.p.1) to f(x). Indeed, in such a situation

x̄ = H−1
(
b−c
b+h

)
(4.8)
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gives an optimal decision on average. This formulation, however, has several defi-
ciencies. The optimal solution x̄, given in (4.8), depends on the specified probability
distribution of the demand. This distribution may be not known and could be esti-
mated at best if a historical data is available, it could change with time, etc. Moreover,
for a particular realization of the demand, the value F (x,D) could be quite differ-
ent from the respective expectation f(x), and formulation (4.6) does not take into
account an involved risk of everyday operations.

Suppose now that we have a partial information about probability distribution of
D. That is, we can specify a family M of probability measures on R+ and consider
the following worst case distribution problem

Min
x≥0

{
φ(x) := sup

P∈M
EP [F (x,D)]

}
, (4.9)

where the notation EP [F (x,D)] emphasizes that the expectation is taken with respect
to the probability distribution P of the random variable D. Let us discuss some
examples.

Example 7 Let M be the set of all probability distributions supported on a given
interval [l, u] ⊂ R+. Then (see Theorem 2.12) the maximum in (4.9) is attained at
an atomic measure supported on a single point of the interval [l, u] (Dirac measure),
and hence problem (4.9) becomes the (deterministic) worst case problem (4.4). ♦

Example 8 Suppose now that in addition to the lower and upper bounds of the
demand we know its mean (expected value) µ = E[D], of course µ ∈ [l, u]. That is,
M is the set of probability distributions supported on the interval [l, u] and having
mean µ.

Since the function F (x, d) is convex and continuous in d, we have by Theorem
2.13 that for any x the worst probability measure in (4.9) is the measure supported
on points l and u. The corresponding probabilities are uniquely defined to be (u −
µ)/(u − l) and (µ − l)/(u − l), respectively. Therefore problem (4.9) is reduced to
problem (4.6) with the respective cdf

H(t) =


0 if t < l,
u−µ
u−l if l ≤ t < u,

1 if u ≤ t,

and hence by (4.8) the optimal solution of (4.9) is

x̃ =

{
l if b−c

b+h
< u−µ

u−l ,

u if b−c
b+h

> u−µ
u−l .

(4.10)
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If b−c
b+h

= u−µ
u−l , then the set of optimal solutions of (4.9) coincides with the interval

[l, u].
Suppose now that the mean µ is not known exactly but is estimated to be in a

subinterval [α, β] of the interval [l, u]. That is, the set M is defined as the set of
probability measures on the interval [l, u] having mean µ restricted to a given interval
[α, β]. By Theorem 2.13 it will suffice to solve problem (4.9) for probability measures
supported on points l and u, and with mean equal either α or β. That is, problem
(4.9) can be reduced to solving the following problem

Min
x≥0

{
max

[
(u− α)F (x, l) + (α− l)F (x, u), (u− β)F (x, l) + (β − l)F (x, u)

]}
,

(4.11)
up to the factor (u− l)−1. ♦

Example 9 (unimodal distributions) Let now M be the set unimodal distribu-
tions on the interval [l, u] with given mode µ ∈ [l, u]. Recall that a distribution on the
interval [l, u] is said to be unimodal, with mode µ, if its cumulative distribution func-
tion is convex on the interval [l, µ] and concave on the interval [µ, u]. Equivalently,
the distribution is unimodal if it is a mixture of the distribution concentrated at the
single point µ and a distribution with density function that is nondecreasing on [l, µ)
and nonincreasing on (µ, u] (the density function could be discontinuous, in particular
at µ). By a result due to Khintchine we have that a distribution is unimodal on [u, l]
with mode µ iff it is the distribution of the random variable D = µ + UZ, where U
and Z are independent random variables, U is uniformly distributed on the interval
[0, 1] and the distribution of Z is arbitrary on the interval [l − µ, u− µ]. For P ∈M

we can write then

EP [F (x,D)] = EZ

{
ED|Z [F (x,D)]

}
= EP ′ [G(x, Z)], (4.12)

where P ′ is the probability distribution of Z and

G(x, z) := E[F (x,D)|Z = z] = E[F (x, µ+ Uz)].

Let P be the set of probability distributions on the interval [l − µ, u − µ]. Since
F (x, µ + Uz) is convex in z, it follows that G(x, z) is convex in z. Consequently
the maximum of EP [G(x, Z)] over P ∈ P is attained at a measure concentrated at
a single point either l − µ or u − µ. Translated back into the set M of unimodal
distributions of D this means that the maximum of EP [F (x,D)] over P ∈ M is
attained at either uniform distribution on the interval [l, µ] or uniform distribution
on the interval [µ, u] (if µ = l, then the corresponding distribution is reduced to
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the distribution concentrated at the single point l, and similarly if µ = u). The
corresponding worst case distribution problem becomes

Min
x≥0

{
γ(x) := max

[
G(x, l − µ), G(x, u− µ)

]}
. (4.13)

Since F (x, µ+Uz), and hence G(x, z), is convex in x it follows that the function γ(x)
is convex.

The function G(x, z) can be computed in a closed form. Suppose, for example,
that l = 0 and µ = u, i.e., the considered set M of distributions of D consists
of distributions having nondecreasing density on the interval [0, u] and may be a
positive probability of D = u. We have then that for x ∈ [0, u], G(x, 0) = F (x, u) =
cx+ b(u− x) and

G(x,−u) =

∫ 1

0

F (x, tu)dt = 1
2u
−1(b+ h)x2 − (b− c)x+ 1

2bu.

It follows that the optimal solution of minimax problem (4.13), and hence of (4.9), is

x̂ = u

√
b

b+ h
. (4.14)

♦

4.2 Multistage Inventory Problem

Consider the following minimax multistage formulation of inventory model

Min
xt≥yt

sup
P∈M

EP

[∑T
t=1 ct(xt − yt) + ψt(xt, Dt)

]
s.t. yt+1 = xt −Dt, t = 1, ..., T − 1.

(4.15)

Here y1 is a given initial inventory level, ct, bt, ht are the ordering, backorder penalty,
and holding costs per unit, respectively, at time t, and

ψt(xt, dt) := bt[dt − xt]+ + ht[xt − dt]+.

We assume that bt > ct > 0 and ht ≥ 0, t = 1, ..., T , and that M is a set of proba-
bility measures (distributions) of the demand process vector D = (D1, ..., DT ) ∈ RT

+.
The minimization in (4.15) is performed over (nonanticipative) policies of the form
x1, x2(D[1]), ..., xT (D[T−1]) satisfying the feasibility constraints of (4.15) for almost ev-
ery realization of the demand process (D1, ..., DT ). As before, D[t] := (D1, ..., Dt)
denotes history of the process up to time t.

If M = {P} consists of a single distribution, then (4.15) becomes a standard
(risk neutral) formulation of the multistage inventory model. Let us consider some
examples.
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4.2.1 Robust Multistage Inventory Problem

Suppose that M is the set of all probability distributions supported on a given com-
pact (i.e., bounded and closed) nonempty set D ⊂ RT

+. This is a particular case of the
setting considered in section 3.5. In that case the maximum in (4.15), with respect to
P ∈M, is attained at a distribution concentrated at a single point of D, and hence
(4.15) can be written as the following minimax problem

Min
xt≥yt

sup
d[T ]∈D

{
T∑
t=1

ct(xt − yt) + ψt(xt, dt)

}
s.t. yt+1 = xt − dt, t = 1, ..., T − 1.

(4.16)

Again the minimization in (4.16) is performed over (nonanticipative) policies x1, x2(d[1]), ..., xT (d[T−1])
satisfying the feasibility constraints. The above problem (4.16) can be viewed as a
robust formulation of the inventory model with the uncertainty set D. As it wa shown
in section 3.5 the minimax problem (4.16) is equivalent to the corresponding nested
formulation and is time consistent.

The dynamic programming equations for problem (4.16) can be written as follows.
At the last stage t = T , for given (observed) inventory level yT and given (observed)
demand values (d1, ..., dT−1), we need to solve the problem:

Min
xT≥yT

{
cT (xT − yT ) + sup

(d1,...,dT )∈D

ψT (xT , dT )

}
. (4.17)

The optimal value of problem (4.17) depends on yT and d[T−1] and is denotedQT (yT , d[T−1]).
Continuing in this way, for t = T − 1, . . . , 2, the corresponding cost-to-go functions
Qt(yt, d[t−1]) are given as optimal values of the respective problems:

Min
xt≥yt

{
ct(xt − yt) + sup

d′
[T ]
∈D

[
ψt(xt, d

′
t) +Qt+1

(
xt − d′t, d′[t]

)
: d′[t−1] = d[t−1]

]}
. (4.18)

Finally, at the first stage we need to solve problem

Min
x1≥y1

c1(x1 − y1) + sup
d[T ]∈D

[
ψ1(x1, d1) +Q2 (x1 − d1, d1)

]
. (4.19)

Let us observe that the cost-to-go function QT (yT , d[T−1]) is convex in yT . Indeed,
the function ϕ(xT ) := supd[T ]∈D ψT (xT , dT ) is given by maximum of convex functions,

and hence is convex. It follows that the function cT (xT − yT ) + ϕ(xT ) + δ(yT − xT )
is convex jointly in xT and yT (here δ(t) = 0 if t ≤ 0, and δ(t) = +∞ if t > 0). It
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remains to note that the optimal value of problem (4.17) is equal to the minimum
of this function over xT ∈ R. It is straightforward then to verify by induction in
t = T, ..., that each cost-to-go function Qt(yt, d[t−1]) is convex in yt. It also could be
noted that the set D in (4.18) can be replaced by projection of D onto Rt, that is by
the set

Dt :=
{
d[t] : ∃ d′[T ] ∈ D such that d[t] = d′[t]

}
.

Suppose now that the uncertainty set D is given by the direct product D =
D1 × · · · × DT of (finite) intervals Dt := [lt, ut] ⊂ R+, t = 1, ..., T . This implies, of
course, that the stagewise independence condition holds in that setting. Then the
cost-to-go function at the last stage is

QT (yT ) = inf
xT≥yT

{
cT (xT − yT ) + sup

dT∈DT
ψT (xT , dT )

}
. (4.20)

And so on for t = T − 1, ..., 2, dynamic programming equations (4.18) can be written
as

Qt(yt) = inf
xt≥yt

{
ct(xt − yt) + sup

dt∈Dt

[
ψt(xt, dt) +Qt+1 (xt − dt)

]}
. (4.21)

Note that here the cost-to-go function Qt(yt), t = 2, . . . , T , is independent of d[t−1],
and is convex.

The basestock policy for the above problem is defined as x̄t := max{yt, x∗t}, where
x∗t is an optimal solution of

Min
xt∈R

{
ctxt + sup

dt∈Dt

[
ψt(xt, dt) +Qt+1 (xt − dt)

]}
, (4.22)

and yt = x̄t−1 − dt−1, t = 2, ..., T , with y1 being given (if problem (4.22) has more
than one optimal solution, we can take the smallest one). By convexity of cost-to-
go functions we have that the basestock policy x̄t = x̄t(d[t−1]) satisfies the dynamic
programming equations (4.21) and hence is optimal.

It could be noted that since function ψt(xt, dt) +Qt+1 (xt − dt) is convex in dt, the
corresponding maximum in (4.21) is attained either at dt = lt or dt = ut. Therefore
the uncertainty set D = D1×· · ·×DT in the minimax (robust) formulation (4.16) can
be replaced by the set {l1, u1} × · · · × {lT , uT} having 2T elements. That is, problem
(4.16) can be formulated as a minimax problem with a finite number N = 2T of
scenarios.

Suppose now that the additional (linear) constraint aTd ≤ b is added to the
definition of the uncertainty set D, i.e.,

D := (D1 × · · · × DT ) ∩ {d ∈ RT : aTd ≤ b},
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for some a ∈ RT and b ∈ R. Suppose that the set D is nonempty. Then dynamic
equations (4.18) take the form, for t = T, ..., 2,

Qt(yt, d[t−1]) = inf
xt≥yt

{
ct(xt − yt)+

sup
dt∈Dt,...,dT∈DT

a1D1+...+at−1dt−1+atdt+...+aT dT≤b

[
ψt(xt, dt) +Qt+1

(
xt − dt, d[t]

) ]}
,

(4.23)
with QT+1(·, ·) ≡ 0 by definition.

In that case the cost-to-go function Qt(yt, d[t−1]) depends only on yt and Wt−1 :=
a1d1 + ...+ at−1dt−1, and in these variables equations (4.23) can be written as

Qt(yt,Wt−1) = inf
xt≥yt

{
ct(xt − yt)+

sup
dt∈Dt,...,dT∈DT

atdt+...+aT dT≤b−Wt−1

[
ψt(xt, dt) +Qt+1 (xt − dt,Wt−1 + atdt)

]}
.

(4.24)

Note that the cost-to-go functions Qt(yt,Wt−1) are defined only for such Wt−1 that the
constraints in the maximization problem in the right hand side of (4.24) are feasible.
We see that adding just one linear constraint significantly complicates the problem.

4.2.2 Inventory Problem with Moment Constraints

Suppose that in addition to the uncertainty set D = D1×· · ·×DT , given by the direct
product of (finite) intervals Dt := [lt, ut] ⊂ R+, we know respective means E[Dt]. That
is, letMt be the set of probability distributions supported on the interval [lt, ut] and
having given mean µt ∈ [lt, ut], t = 1, ..., T . Let

M := {P = P1 × · · · × PT : Pt ∈Mt, t = 1, ..., T}

consists of probability distributions with independent components from respective
sets Mt. This implies the stagewise condition.

The corresponding cost-to-go functions are given by the following dynamic equa-
tions, t = T, ..., 2,

Qt(yt) = inf
xt≥yt

{
ct(xt − yt) + sup

P∈Mt

EP

[
ψt(xt, Dt) +Qt+1 (xt −Dt)

]}
, (4.25)

where QT+1(·) ≡ 0.
It is straightforward to verify by induction that the functions Qt(·) are convex, and

hence by Theorem 2.13 we have here that the maximum in (4.25), over probability
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measures P ∈Mt, is attained at the probability measure supported on points lt and
ut with respective probabilities pt = (ut−µt)/(ut− lt) and 1− pt = (µt− lt)/(ut− lt).
Therefore the respective problem (4.15) is reduced here to the corresponding problem
with single probability distribution of the demand process with the random variables
Dt being independent of each other and having discrete distribution Pr(Dt = lt) = pt
and Pr(Dt = ut) = 1 − pt, t = 1, ..., T . It follows that the minimax and nested
formulations here are equivalent and the problem is time consistent.

5 Computational Approaches to Multistage Stochas-

tic Programming

5.1 Sample Average Approximations of Multistage Problems

Consider the (risk neutral) formulation (3.5) of multistage stochastic programming
problems. It is assumed there that the probability distribution of the data process
ξ1, ..., ξT is known, or better to say is specified at the modeling stage of the considered
problem. A particular realization of the random process ξ1, ..., ξT (recall that ξ1 is
deterministic) is called scenario. If the number of scenarios (realizations of the data
process) is finite, then problem (3.5) can be written as one large finite dimensional
deterministic problem. In particular, if the problem is linear, say of the form (3.13),
then this becomes a large linear programming problem.

By generating a sample of the random data process we can construct a Sample
Average Approximation of the “true” problem (3.5). To this end the Monte Carlo
sampling approach can be employed in the following way. First, a random sam-
ple ξ1

2 , ..., ξ
N1
2 of N1 realizations of the random vector ξ2 is generated. For each ξj2,

j = 1, ..., N1, a random sample of size N2 of ξ3, according to the distribution of ξ3

conditional on ξ2 = ξj2, is generated and so forth for later stages. That is, at stage
t = 1, ..., T − 1, given a generated realization ξ[t] of the random process up to time t,
Nt realizations of ξt+1 are generated according the distribution of ξt+1 conditional on
ξ[t]. Here, conditional on ξ[t], the samples of ξt+1 are generated independently of each
other. We refer to this procedure as the conditional sampling. In that way the true
distribution of the random data process is discretized, with every generated path of
the process taken with equal probability. We refer to each generated path as scenario
and to the collection of all scenarios as scenario tree. Note that the total number of
scenarios N =

∏T−1
t=1 Nt, and hence the probability of each generated scenario is 1/N .

It could be noted that this construction of the scenario tree does not inherits a
possible Markovian structure of the data process. In particular, when the data process
is stagewise independent, the constructed scenario tree does not possess the stagewise
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independence property. If the original process is stagewise independent it is possible to
proceed in the following alternative way. Independent of each other random samples
ξ1
t , ..., ξ

Nt−1

t of respective ξt, t = 2, ..., T , are generated and the corresponding scenario
tree is constructed by connecting every ancestor node at stage t−1 with the same set
of children nodes ξ1

t , ..., ξ
Nt−1

t . In that way stagewise independence is preserved in the
scenario tree generated by conditional sampling. We refer to this sampling scheme as
the identical conditional sampling. Denote by ϑ∗ and ϑ̂N the optimal values of the
true problem (3.5) and the constructed SAA problem, respectively. We have that on
average ϑ̂N is less than or equal to ϑ∗, i.e.,

ϑ∗ ≥ E
[
ϑ̂N
]
. (5.1)

The inequality (5.1) holds for the conditional sampling, discussed above, and for the
identical conditional sampling in case of stagewise independence.

If we measure computational complexity, of the true problem, in terms of the
number of scenarios required to approximate true distribution of the random data
process with a reasonable accuracy, the conclusion is rather pessimistic. In order for
the optimal value and solutions of the SAA problem to converge to their true coun-
terparts all sample sizes N1, ..., NT−1 should tend to infinity. Furthermore, available
estimates of the sample sizes required for a first stage solution of the SAA problem
to be ε-optimal for the true problem, with a given confidence (probability), sums up
to a number of scenarios which grows as O(ε−2(T−1)) with decrease of the error level
ε > 0 (cf., [28],[30, section 5.8.2]). This indicates that from the point of view of the
number of scenarios, complexity of multistage programming problems grows expo-
nentially with increase of the number of stages. From an applications point of view
the multistage programming is too important to be dismissed that easily. We dis-
cuss below some possible approaches to solve specific classes of multistage stochastic
programs.

5.2 Stochastic Dual Dynamic Programming Method

In this section we deal with the linear multistage stochastic programming problem
(3.13). The dynamic programming equations for that problem are formulated in
(3.14)–(3.15). There are several difficulties in trying to solve these equations numer-
ically. We assume in the subsequent analysis that the data process is stagewise inde-
pendent (see section 5.2.1 for a discussion of the stagewise independence condition).
From the point of view of dynamic programming this is a significant simplification
since then the cost-to-go functions Qt+1(xt, ξt+1) do not depend on ξ[t], t = 1, ..., T−1,
and their expectations Qt+1(xt) = E[Qt+1(xt, ξt+1)] do not depend on the data pro-
cess. Yet we still face two basic problems, namely how to compute the expectations
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E[Qt+1(xt, ξt+1)] and how to represent functions Qt+1(xt) in a numerically accessible
way. If the dimension nt of xt is small, then one can accurately represent Qt+1(xt) by
making a discretization of the domain of xt in the space Rnt . However, the number
of discretization points required to represent Qt+1(xt) in a reasonably accurate way
grows exponentially with increase of the dimension nt and this approach becomes
impractical, say, for nt ≥ 4. This is the so-called “curse of dimensionality” problem
well known in dynamic programming.

In order to resolve these two problems one needs to compromise on some type
of approximations. As far as computing the expectations is concerned we use Monte
Carlo sampling techniques. That is, an SAA problem is constructed by employing the
identical conditional sampling approach based on independently generated samples

ξjt = (ctj, Atj, Btj, btj), j = 1, ..., Nt−1, (5.2)

of ξt, t = 2, ..., T . Recall that in that way the stagewise independence is preserved in
the constructed SAA problem. If, for example, we use the same sample size Nt = N ,
t = 1, ..., T − 1, at all stages, then N should be of order O(ε−2) for the first stage
solution of the SAA problem to be ε-optimal for the true problem with a given
confidence (probability) close to one. In that case the total number of scenarios
N = NT−1 quickly becomes astronomically large with increase of the number of
stages T even for a moderate values of N , say N = 50. This makes a scenarios
based approach practically inapplicable, say, for T > 4. So we pursue an approach of
approximately solving the dynamic programming equations.

There are various ways how the dynamic programming equations can be ap-
proximated. We discuss below the so-called Stochastic Dual Dynamic Programming
(SDDP) method, originated in Pereira and Pinto [17], applied to the SAA problem.
Of course, it shouldn’t be forgotten that we really want to solve the “true” problem
and a constructed SAA problem is just an approximation. For the SAA problem the
dynamic programming equations take the form19

Qtj

(
xt−1

)
= inf

xt∈Rnt

{
cTtjxt +Qt+1 (xt) : Btjxt−1 + Atjxt = btj, xt ≥ 0

}
, (5.3)

for j = 1, ..., Nt−1, with

Qt+1

(
xt
)

=
1

Nt

Nt∑
j=1

Qt+1,j

(
xt
)
, (5.4)

19Compared with previous notation we denote here by Qtj
(
xt−1

)
value Qt

(
xt−1, ξ

j
t

)
of the cost-

to-go function.
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t = T, ..., 2 and QT+1(·) ≡ 0. The optimal value of the SAA problem is given by the
optimal value of the first stage problem

Min
x1∈Rn1

cT1 x1 +Q2(x1) s.t. A1x1 = b1, x1 ≥ 0. (5.5)

Note again that because the stagewise independence is preserved in the constructed
SAA problem, the cost-to-go functions Qt+1

(
xt
)

do not depend on the (sampled) data
process. Note also that the cost-to-go functions Qt+1

(
xt
)

are convex, and since the
number of scenarios of the SAA problem is finite are piecewise linear.

The basic idea of the SDDP approach is to approximate the cost-to-go functions
Qt+1

(
xt
)

by supporting hyperplanes. This idea forms a basis of various approaches to
solving linear multistage programs. What distinguishes the SDDP method is a specific
way how the supporting hyperplanes are constructed. The SDDP algorithm consists
of the backward and forward steps. In the subsequent analysis we distinguish between
cutting and supporting planes (hyperplanes) of a given convex function Q : Rn → R.
We say that an affine function `(x) = α+βTx is a cutting plane, ofQ(x), ifQ(x) ≥ `(x)
for all x ∈ Rn. Note that cutting plane `(x) can be strictly smaller than Q(x) for all
x ∈ Rn. If, moreover, Q(x̄) = `(x̄) for some x̄ ∈ Rn, it is said that `(x) is a supporting
plane of Q(x). This supporting plane is given by `(x) = Q(x̄) + gT(x − x̄) for some
subgradient g ∈ ∂Q(x̄).

A backward step of the SDDP algorithm, applied to the SAA problem, can be
described as follows. Let x̄t ∈ Rnt be a trial decision point at stage t = 1, ..., T − 1 (it
is possible to use more than one trial point at every stage, how these trial points are
constructed will be discussed in the forward step of the algorithm described below),
and let

Qt(xt−1) = max
k∈It

{
αtk + βT

tkxt−1

}
, t = 2, ..., T, (5.6)

be a current approximation of the cost-to-go function Qt(·), given by the maximum
of a (finite) collection of its cutting planes. At stage t = T we solve the problem

Min
xT

cTTjxT s.t. BTjxT−1 + ATjxT = bTj, xT ≥ 0, (5.7)

for xT−1 = x̄T−1 and j = 1, ..., NT−1. Note that the optimal value of problem (5.7) is
equal to QTj

(
xT−1

)
.

Let x̃Tj be an optimal solution of problem (5.7) and π̃Tj be an optimal solution
of its dual

Max
πT

πT
T (bTj −BTjxT−1) s.t. AT

TjπT ≤ cTj, (5.8)

for xT−1 = x̄T−1 and j = 1, ..., NT−1. Then

`T (xT−1) := QT
(
x̄T−1

)
+ gT

T

(
xT−1 − x̄T−1

)
, (5.9)
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where

QT
(
x̄T−1

)
=

1

NT−1

NT−1∑
j=1

cTTjx̃Tj and gT = − 1

NT−1

NT−1∑
j=1

BT
Tjπ̃Tj, (5.10)

is a supporting plane for QT (·) at x̄T−1. This supporting plane is added to the
collection of supporting planes of QT (·), i.e., QT (·) is replaced by max

{
QT (·), `T (·)

}
.

Now going one stage back let us recall that QT−1,j(x̄T−2) is equal to the optimal
value of problem

Min
xT−1

cTT−1,jxT−1 +QT (xT−1) s.t. BT−1,jx̄T−2 +AT−1,jxT−1 = bT−1,j, xT−1 ≥ 0. (5.11)

However, function QT (·) is not available. Therefore we replace it by QT (·) and hence
consider problem

Min
xT−1

cTT−1,jxT−1 +QT (xT−1) s.t. BT−1,jx̄T−2 +AT−1,jxT−1 = bT−1,j, xT−1 ≥ 0. (5.12)

Recall that QT (·) is given in the form (5.6) by maximum of affine functions. Therefore
we can write problem (5.12) as the following linear programming problem

Min
xT−1,θ

cTT−1,jxT−1 + θ

s.t. BT−1,jx̄T−2 + AT−1,jxT−1 = bT−1,j, xT−1 ≥ 0,
θ ≥ αTk + βT

TkxT−1, k ∈ IT .
(5.13)

Consider the optimal value, denoted Q
T−1,j

(x̄T−2), of problem (5.12) (of problem

(5.13)), and let π̃T−1,j be the (partial) vector of an optimal solution of the dual of
problem (5.13) corresponding to the constraint BT−1,jx̄T−2 + AT−1,jxT−1 = bT−1,j.
Furthermore, let

Q
T−1

(
xT−2

)
:=

1

NT−2

NT−2∑
j=1

Q
T−1,j

(xT−2)

and

gT−1 := − 1

NT−2

NT−2∑
j=1

BT
T−1,jπ̃T−1,j.

Then
`T−1(xT−2) := Q

T−1

(
x̄T−2

)
+ gT

T−1

(
xT−2 − x̄T−2

)
(5.14)

is a supporting plane for Q
T−1

(xT−2) at xT−2 = x̄T−2. Consequently the approxima-

tion QT−1(·) is updated by replacing it with max
{
QT−1(·), `T−1(·)

}
.
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This process is continued backwards until at the first stage the following problem
is solved

Min
x1

cT1 x1 + Q2(x1) s.t. A1x1 = b1, x1 ≥ 0. (5.15)

Of course, the above backward step can be performed simultaneously for several
values of trial decisions x̄t, t = 1, ..., T − 1. It could be also noted that starting from
t = T − 1, ..., values Q

t
(xt−1) could be strictly smaller than Qt(xt−1) for some/all

xt−1, and the constructed planes are supporting planes for Q
t
(·) but could be only

cutting planes for Qt(·).
The computed approximations Q2(·), ...,QT (·) (with QT+1(·) ≡ 0 by definition)

and a feasible first stage solution20 x̄1 can be used for constructing an implementable
policy as follows. For a realization

ξt = (ct, At, Bt, bt), t = 2, ..., T,

of the data process, decisions x̄t, t = 1, ..., T , are computed recursively going forward
with x̄1 being the chosen feasible solution of the first stage problem (5.15), and x̄t
being an optimal solution of

Min
xt

cTt xt + Qt+1(xt) s.t. Atxt = bt −Btx̄t−1, xt ≥ 0, (5.16)

for t = 2, ..., T . These optimal solutions can be used as trial decisions in the backward
step of the algorithm. Note that x̄t is a function of x̄t−1 and ξt, i.e., x̄t is a function of
ξ[t] = (ξ1, ..., ξt), for t = 2, ..., T . That is, policy x̄t = x̄t(ξ[t]) is nonanticipative and by
the construction satisfies the feasibility constraints for every realization of the data
process. Thus this policy is implementable and feasible for the true problem. If we
restrict the data process to the generated sample, i.e., we consider only realizations
ξ2, ..., ξT of the data process drawn from scenarios of the SAA problem, then x̄t =
x̄t(ξ[t]) becomes an implementable and feasible policy for the corresponding SAA
problem.

Since the policy x̄t = x̄t(ξ[t]) is feasible, the expectation

E

[
T∑
t=1

cTt x̄t(ξ[t])

]
(5.17)

gives an upper bound for the optimal value of the corresponding multistage problem.
That is, if we take this expectation over the true probability distribution of the

20Note that by the construction the first stage solution computed in a backward step is feasible,
i.e., satisfies the constraints A1x1 = b1, x1 ≥ 0.
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random data process, then the above expectation (5.17) gives an upper bound for
the optimal value of the true problem. On the other hand, if we restrict the data
process to scenarios of the SAA problem, each with equal probability 1/N , then the
expectation (5.17) gives an upper bound for the optimal value of the SAA problem
conditional on the sample used in construction of the SAA problem.

The forward step of the SDDP algorithm consists in generating M random real-
izations (scenarios) of the data process and computing the respective optimal values

ϑj :=
T∑
t=1

cTtjx̄tj, j = 1, ...,M.

That is, ϑj is the value of the corresponding policy for the realization ξ1, ξ
j
2, ..., ξ

j
T

of the data process. As such, ϑj is an unbiased estimate of expected value of that

policy, i.e., E[ϑj] = E
[∑T

t=1 c
T
t x̄t(ξ[t])

]
. The forward step has two functions. First,

some (all) of computed solutions x̄tj can be used as trial points in the next iteration
of the backward step of the algorithm. Second, these solutions can be employed for
constructing a statistical upper bound for the optimal value of the corresponding
multistage program (true or SAA depending on from what distribution the sample
scenarios were generated).

Consider the average (sample mean) ϑ̃M := M−1
∑M

j=1 ϑj and standard error

σ̃M :=

√√√√ 1

M − 1

M∑
j=1

(ϑj − ϑ̃M)2

of the computed values ϑj. Since ϑj is an unbiased estimate of the expected value of
the constructed policy, we have that ϑ̃M is also an unbiased estimate of the expected
value of that policy. By invoking the Central Limit Theorem we can say that ϑ̃M
has an approximately normal distribution provided that M is reasonably large. This
leads to the following (approximate) (1− α)-confidence upper bound for the value of
that policy

uα,M := ϑ̃M + zα
σ̃M√
M
. (5.18)

Here 1 − α ∈ (0, 1) is a chosen confidence level and zα = Φ−1(1 − α), where Φ(·) is
the cdf of standard normal distribution. For example, for α = 0.05 the corresponding
critical value z0.05 = 1.64. That is, with probability approximately 1−α the expected
value of the constructed policy is less than the upper bound uα,M . Since the expected
value (5.17) of the constructed policy is bigger than or equal to the optimal value of
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the considered multistage problem, we have that uα,M also gives an upper bound for
the optimal value of the multistage problem with confidence at least 1−α. Note that
the upper bound uα,M can be used for the SAA or the true problem depending on
from what distribution the sampled scenarios were generated.

Since Qt(·) is the maximum of cutting planes of the cost-to-go function Qt(·) we
have that

Qt(·) ≥ Qt(·), t = 2, ..., T. (5.19)

Therefore the optimal value of problem (5.15), computed at a backward step of the
algorithm, gives a lower bound for the considered SAA problem, i.e., is less that or
equal to ϑ̂N . This lower bound is deterministic (i.e., is not based on sampling) if
applied to the corresponding SAA problem. As far as the true problem is concerned,
recall that ϑ∗ ≥ E[ϑ̂N ]. Therefore on average this is also a lower bound for the optimal
value of the true problem. On the other hand, the upper bound uα,M is a function of
generated scenarios and thus is stochastic even for considered (fixed) SAA problem.
This upper bound may vary for different sets of random samples, in particular from
one iteration to the next of the forward step of the algorithm.

5.2.1 The SDDP Method without Stagewise Independence

In the above development of the SDDP algorithm it was essential that the data
process is stagewise independent. There are various situations where this condition
of stagewise independence can be maintained by a suitable transformation. Consider
the (general) multistage stochastic programming problem (3.5). Suppose that the
data process satisfies the equations

ξt = ht(ξt−1, εt), t = 2, ..., T, (5.20)

where εt ∈ Rlt , t = 2, ..., T , is a sequence of independent random vectors and ht :
Rdt−1 × Rlt → Rdt are given functions. Then we can write problem (3.5) in the
following form

Min
x1∈X1

F1(x1) + E
[

inf
y2∈Y2(y1,ε2)

F2(y2) + E
[
· · ·+ E

[
inf

yT∈YT (yT−1,εT )
FT (yT )

]]]
. (5.21)

where yt := (xt, ξt) and

Yt(yt−1, εt) :=
{

(xt, ξt) : xt ∈ Xt
(
xt−1, ht(ξt−1, εt)

)
, ξt = ht(ξt−1, εt)

}
, (5.22)

t = 2, ..., T . In the above formulation (5.21), yt are new decision variables.
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Example 10 Consider the linear multistage stochastic programming problem (3.13).
Suppose that parameters of the data process ξt other than bt are stagewise indepen-
dent (in particular are deterministic) and random vectors bt, t = 2, ..., T , form a first
order autoregressive process, i.e., bt = µ+ Φbt−1 + εt, with appropriate matrix Φ, vec-
tor µ and error vectors ε2, ..., εT being independent of each other. Then the feasibility
equations of problem (3.13) can be written as

bt − Φbt−1 − µ = εt, Btxt−1 − Φbt−1 − µ+ Atxt = εt, xt ≥ 0, t = 2, ..., T. (5.23)

Therefore by replacing xt with (xt, bt) and data process with (ct, At, Bt, εt), t = 2, ..., T ,
we transform the problem into a linear multistage stochastic program with stagewise
independent data process. ♦

In the above Example 10 the transformation (5.23) preserved the linear, and hence
convexity, structure of the corresponding new problem. Of course, it can happen that
the new formulation (5.21) does not inherit convex structure of the original problem,
i.e., the corresponding cost-to-go functions (see below) may be not convex in yt.

Similar to (3.6)–(3.7) we can write the corresponding dynamic programming equa-
tions for the new problem (5.21):

Qt (yt−1, εt) = inf
yt∈Yt(yt−1,εt)

{
Ft(yt) +Qt+1(yt)

}
, (5.24)

where yt = (xt, ξt), multifunctions Yt(yt−1, εt) defined in (5.22) and

Qt+1(yt) := E {Qt+1 (yt, εt+1)} (5.25)

with QT+1(·) ≡ 0.

As another case suppose that the data process ξ2, ..., ξT of the multistage problem
(3.5) is Markovian. That is, the conditional distribution of ξt+1, given ξ[t] = (ξ1, ..., ξt),
does not depend on (ξ1, ..., ξt−1), i.e., is the same as the conditional distribution of ξt+1,
given ξt, t = 1, ..., T − 1. Then the corresponding dynamic programming equations
(3.6)–(3.7) take the form

Qt (xt−1, ξt) = inf
xt∈Xt(xt−1,ξt)

{
Ft(xt, ξt) +Qt+1 (xt, ξt)

}
, (5.26)

where
Qt+1 (xt, ξt) := E

{
Qt+1 (xt, ξt+1)

∣∣ξt} . (5.27)

Here the cost-to-go functions Qt (xt−1, ξt) and Qt+1 (xt, ξt) depend on ξt, but not on
(ξ1, ..., ξt−1).
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Suppose, further, that the process ξ2, ..., ξT can be reasonably approximated by a
discretization so that it becomes a (possibly nonhomogeneous) Markov chain. That
is, at stage t = 2, ..., T , the data process can take values ξ1

t , ..., ξ
Kt
t , with specified

probabilities of going from state ξjtt (at stage t, jt = 1, ..., Kt), to state ξ
jt+1

t+1 (at stage
t+ 1).

If the cost-to-go functions are convex in decision variables xt (e.g., the multi-
stage problem is linear) and the numbers Kt are reasonably small, then we still can
proceed with the SDDP method by constructing cuts, and hence piecewise linear ap-
proximations, of the cost-to-go functions Qt+1

(
·, ξjtt

)
, jt = 1, ..., Kt. Note that in the

backward step of the algorithm the cuts for Qt+1

(
xt, ξ

jt
t

)
, with respect to xt, should be

constructed separately for every jt = 1, ..., Kt. Therefore computational complexity
of backward steps of the SDDP algorithm grows more or less linearly with increase
of the numbers Kt.

If in the forward steps of the algorithm the sample paths are generated from the
original (may be continuous) distribution of the data process (rather than its Markov
chain discretization), then the corresponding feasibility constraints should be restored
by an appropriate projection (cf., [8]).

5.2.2 Convergence Properties of the SDDP Algorithm

One run (iteration) of the backward step of the SDDP algorithm involves solving
T − 1 linear programming problems of the form (5.13). For a given SAA problem,
the number of decision variables of the linear programs (5.13) is constant and the
number of constraints slowly grows with increase of the number of cutting planes
from one iteration to the next. Therefore for a fixed number of iterations, complexity
of one run of the backward step grows slightly faster than linearly with increase of
the number of stages, and similarly for the forward step of the algorithm. The overall
computational complexity of the SDDP algorithm is proportional to the number of
iterations, which in turn depends on an applied stopping criterion.

One possible approach to stop the iterations, for considered SAA problem, is
the following. The gap between the value of the policy associated with the computed
approximations Q2(·), ...,QT (·) and first stage solution x̄1, can be estimated by taking
the difference between the upper bound uα,M and the lower bound given by the
optimal value of problem (5.15). The algorithm can be stopped when this difference
becomes smaller than a specified precision value ε > 0. This will give a guarantee
that the SAA problem is solved with accuracy ε and confidence 1−α. Unfortunately
what often happens for larger problems with a large number of stages, is that after
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a certain number of iterations both the upper and lower bounds stabilize21 and the
decrease in the gap between these bounds becomes insignificant with increase of the
number of iterations. In that case there is no point to continue the iterations even
if the estimated gap didn’t reach the specified accuracy level. So another stopping
criterion is to stop the iterations when the lower bound starts to stabilize.

In that respect it is informative to consider the SDDP algorithm applied to the
two stage linear stochastic programming problem (2.4)–(2.5). The first stage (2.4) of
that problem can be written as

Min
x∈X

cTx+Q(x), (5.28)

where X := {x : Ax = b, x ≥ 0} and Q(x) = E[Q(x, ξ)] with Q(x, ξ) being optimal
value of the second stage problem (2.5). Let us assume that: (i) the set X is nonempty
and bounded, (ii) the relatively complete recourse holds, i.e., Q(x, ξ) < +∞ for every
x ∈ X w.p.1, (iii) the feasible set {π : WTπ ≤ q} of the dual (2.7), of the second
stage problem, is nonempty and hence Q(x, ξ) > −∞ for all x and ξ.

Let now (5.28) be an SAA problem based on a sample ξ1, ..., ξN of the random data
vector ξ. In that case Q(x) = N−1

∑N
j=1 Q(x, ξj) and under the above assumptions

(i)–(iii), the functionQ(x) is convex, finite valued and piecewise linear. The backward
step of the SDDP algorithm, applied to this SAA problem, becomes the classical
Kelley’s cutting plane algorithm, [11]. That is, let at k-th iteration, Qk(·) be the
corresponding approximation of Q(·) given by maximum of supporting planes of Q(·).
At the next iteration the backward step solves the problem

Min
x∈X

cTx+ Qk(x), (5.29)

and hence compute its optimal value vk+1, an optimal solution xk+1 of (5.29) and a
subgradient gk+1 ∈ ∂Q(xk+1). Consequently the supporting plane `(x) := Q(xk+1) +
(gk+1)T(x − xk+1) is added to the collection of cutting (supporting) planes of Q(·).
Note that for the two stage SAA problem, the backward step of the SDDP algorithm
does not involve any sampling and the forward step of the algorithm is redundant.
In the stochastic programming literature this cutting planes algorithm is often called
the L-shape method (see, e.g., [6, section 5.1]).

Since the function Q(·) is piecewise linear, it is not difficult to show that Kelley’s
algorithm converges in a finite number of iterations. Arguments of that type are
based on the observation that Q(·) is the maximum of a finite number of its support-
ing planes. However, the number of supporting planes can be very large and these

21Recall that the lower bound is monotonically increasing since no cuts are discarded, while the
upper bound uα,M is stochastic and varies from one iteration to the next.
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arguments do not give an idea about rate of convergence of the algorithm. So let us
look at the following proof of convergence which uses only convexity of the function
Q(·) (cf., [22, p.160]).

Denote f(x) := cTx+Q(x) and by f ∗ the optimal value of problem (5.28). Let xk,
k = 1, ..., be a sequence of iteration points generated by the algorithm, γk = c + gk

be the corresponding subgradients used in construction of the supporting planes and
vk be the optimal value of the problem (5.29). Note that since xk ∈ X we have
that f(xk) ≥ f ∗, and since Qk(·) ≤ Q(·) we have that vk ≤ f ∗ for all k. Note also
that since Q(·) is piecewise linear and X is bounded, the subgradients of f(·) are
bounded on X , i.e., there is a constant C such that22 ‖γ‖ ≤ C for all γ ∈ ∂f(x) and
x ∈ X (such boundedness of gradients holds for a general convex function provided
the function is finite valued on a neighborhood of the set X ). Choose the precision
level ε > 0 and denote Kε := {k : f(xk)− f ∗ ≥ ε}. For k < k′ we have

f(xk) + (γk)T
(
xk
′ − xk

)
≤ vk

′ ≤ f ∗,

and hence

f(xk)− f ∗ ≤ (γk)T
(
xk − xk′

)
≤ ‖γk‖ ‖xk − xk′‖ ≤ C‖xk − xk′‖.

This implies that for any k, k′ ∈ Kε the following inequality holds

‖xk − xk′‖ ≥ ε/(2C). (5.30)

Since the set X is bounded, it follows that the set Kε is finite. That is, after a finite
number of iterations f(xk) − f ∗ becomes less than ε, i.e., the algorithm reaches the
precision ε in a finite number of iterations.

For η > 0 denote by N(X , η) the maximal number of points in the set X such
that the distance between any two of these points is not less than η. The inequality
(5.30) implies that N(X , η), with η = ε/(2C), gives an upper bound for the number
of iterations required to obtain an ε-optimal solution of problem (5.28) by Kelley’s
algorithm. Unfortunately, for a given η and X ⊂ Rn say being a ball of fixed diameter,
the number N(X , η), although is finite, grows exponentially with increase of the
dimension n. Worst case analysis of Kelley’s algorithm is discussed in [15, pp. 158-
160], with the following example of a convex problem

Min
x∈Rn+1

f(x) s.t. ‖x‖ ≤ 1, (5.31)

where f(x) := max {x2
1 + ...+ x2

n, |xn+1|}. It is shown there that Kelley’s algorithm
applied to problem (5.31) with starting point x0 := (0, ..., 0, 1), requires at least

22Unless stated otherwise we assume that the considered norm ‖ · ‖ is Euclidean.
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ln(ε−1)
2 ln 2

(
2√
3

)n−1

calls of the oracle to obtain an ε-optimal solution, i.e., the number

of required iterations grows exponentially with increase of the dimension n of the
problem. It was also observed empirically that Kelley’s algorithm could behave quite
poorly in practice.

The above analysis suggests quite a pessimistic view on Kelley’s algorithm for
convex problems of large dimension n. Unfortunately it is not clear how more efficient,
bundle type algorithms, can be extended to a multistage setting. On the other hand,
from the number-of-scenarios point of view complexity of multistage SAA problems
grows very fast with increase of the number of stages even for problems with relatively
small dimensions of the involved decision variables. It is possible to show that under
mild regularity conditions the SDDP algorithm converges (w.p.1) with increase of
the number of iterations. The available proofs of convergence ([19],[31]) are based on
arguments that since the number of scenarios is finite, eventually the piecewise linear
cost-to-go functions Qt(·) will be reconstructed and hence (w.p.1) an optimal policy
will be computed in a finite number of iterations. Unfortunately, these proofs don’t
give an indication of how many iterations will be needed in order to solve the problem
with a given accuracy. The analysis of two stage problems indicates that the SDDP
method could give reasonable results for problems with a not too large number of
decision variables; this seems to be confirmed by numerical experiments.

5.2.3 Risk Averse Implementations of the SDDP Method

Let us look again at the linear multistage stochastic programming problem (3.13).

In that formulation the expected value E
[∑T

t=1 c
T
t xt

]
of the total cost is minimized

subject to the feasibility constraints. That is, the total cost is optimized (minimized)
on average. Since the costs cTt xt = cTt xt(ξ[t]), t = 2, ..., T , are functions of the random
data process, they are random and hence are subject to random perturbations. For
a particular realization of the random process these costs could be much bigger than
their average (i.e., expectation) values. Recall that we referred to the formulation
(3.13) as risk neutral as opposed to risk averse approaches. The goal of a risk averse
approach is to avoid large values of the costs for some possible realizations of the data
process. One such approach will be to maintain constraints cTt xt ≤ νt, t = 1, ..., T ,
for chosen upper levels νt and all possible realizations of the data process. However,
trying to enforce these upper limits under any circumstances could be unrealistic and
infeasible. One may try to relax these constraints by enforcing them with a high
(close to one) probability. However, introducing such chance constraints can still
result in infeasibility and moreover is difficult to handle numerically. So we consider
here penalization approaches. That is, at every stage the cost is penalized while
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exceeding a specified upper limit.
In a simple form this leads to the following risk averse formulation

Min
A1x1=b1
x1≥0

cT1 x1 + E

 min
B2x1+A2x2=b2

x2≥0

F2(x2) + E
[
· · ·+ E

[
min

BT xT−1+AT xT=bT
xT≥0

FT (xT )
]] ,

(5.32)
where

Ft(xt) := cTt xt + κt[c
T
t xt − νt]+, t = 2, ..., T,

with νt and κt ≥ 0 being chosen constants. The additional terms κt[c
T
t xt − νt]+

represent the penalty for exceeding the upper limits νt. An immediate question is
how to choose constants νt and κt. One possible approach is to take νt to be the
(1 − α)-quantile (say, the 95% quantile) of the distribution of the cost cTt x̄t of the
optimal policy of the risk neutral problem. These quantiles can be estimated by, first,
solving the risk neutral problem and hence computing its optimal policy x̄t = x̄t(ξ[t]),
t = 2, ..., T . Then at each stage the (1 − α)-quantile of the distribution of the cost
cTt x̄t is estimated by randomly generating M realizations of the random process and
computing respective costs in the forward step procedure. For the constants κt one
can use the same value κ for all stages, with this value being gradually increased in
experiments.

The SDDP algorithm with simple modifications can be applied to the problem
(5.32) in a rather straightforward way. In the backward step of the algorithm at the
last stage the corresponding problem (5.7), of the risk neutral formulation, should be
replaced by

Min
xT

cTTjxT + κT [cTTjxT − νT ]+ s.t. BTjxT−1 + ATjxT = bTj, xT ≥ 0, (5.33)

which can be written as the following linear programming problem

Min
xT ,wT

cTTjxT + κTwT

s.t. BTjxT−1 + ATjxT = bTj, xT ≥ 0,
wT ≥ cTTjxT − νT , wT ≥ 0.

(5.34)

At stage T − 1 the corresponding problem (5.13) of risk neutral formulation should
be replaced by

Min
xT−1,wT−1,θ

cTT−1,jxT−1 + κT−1wT−1 + θ

s.t. BT−1,jx̄T−2 + AT−1,jxT−1 = bT−1,j, xT−1 ≥ 0,
θ ≥ αTk + βT

TkxT−1, k ∈ IT ,
wT−1 ≥ cTT−1,jxT−1 − νT−1, wT−1 ≥ 0,

(5.35)
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and so on going backward in time. The forward step of the algorithm basically is the
same as in the risk neutral case with costs cTt xt replaced by cTt xt + κt[c

T
t xt − νt]+.

It could be noted that in the above approach the upper limits νt are fixed and
their calculations are based on solving the risk neutral problem which involves all
possible realizations of the data process. In other words in formulation (5.32) the
upper limits are not adapted to a current realization of the random process. Let us
observe that optimal solutions of problem (5.32) will be not changed if the penalty
term at t-th stage is changed to νt + κt[c

T
t xt − νt]+ by adding the constant νt. Now

if we adapt the upper limits νt to a realization of the data process by taking these
upper limits to be (1−αt)-quantiles of cTt xt conditional on observed history ξ[t−1], we
end up with penalty terms given by AV@Rαt|ξ[t−1]

with αt = 1/κt. This leads to the
nested risk averse formulation (3.107)–(3.108).

It is also possible to give the following interpretation of the risk averse formu-
lation (3.107)–(3.108). Recall that AV@Rα[Z] ≥ V@Rα(Z). Therefore ρt|ξ[t−1]

[Z] ≥
ϑt|ξ[t−1]

[Z], where

ϑt|ξ[t−1]
[Z] := (1− λt)E

[
Z|ξ[t−1]

]
+ λtV@Rαt

[
Z|ξ[t−1]

]
. (5.36)

If we replace ρt|ξ[t−1]
[Z] in the risk averse formulation (3.108) by ϑt|ξ[t−1]

[Z], we will
be minimizing the weighted average of means and (1− α)-quantiles, which will be a
natural way of dealing with the involved risk. Unfortunately such formulation will
lead to a nonconvex and computationally intractable problem. This is one of the main
reasons of using AV@Rα instead of V@Rα in the corresponding risk averse formulation.

Dynamic programming equations for the risk averse problem (3.107)–(3.108) are
given in (3.118)–(3.119). For the SAA problem (recall that we use the identical con-
ditional sampling approach so that the stagewise independence property is preserved
in the SAA problem) these equations for t = T, ..., 2, take the form

Qtj (xt−1) = inf
xt∈Rnt ,ut∈R

{
cTtjxt + λt+1ut + Vt+1(xt, ut) : Btjxt−1 + Atjxt = btj, xt ≥ 0

}
,

(5.37)
j = 1, ..., Nt−1, where

Vt+1 (xt, ut) =
1

Nt

Nt∑
j=1

{
(1− λt+1)Qt+1,j (xt) + λt+1α

−1
t+1 [Qt+1,j (xt)− ut]+

}
(5.38)

with VT+1(·) ≡ 0 and λT+1 := 0. At the first stage problem

Min
x1∈Rn1 ,u1∈R

cT1 x1 + λ2u1 + V2(x1, u1) s.t. A1x1 = b1, x1 ≥ 0, (5.39)
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should be solved. Note again that in this formulation decision variables at t-th stage
are xt ∈ Rnt and ut ∈ R.

By the chain rule for subdifferentials we have that the subdifferential of the (con-
vex) function φ(xt−1, ut−1) := [Qtj (xt−1)− ut−1]+ at a point (xt−1, ut−1) = (x̄t−1, ūt−1)
can be written as

∂φ(x̄t−1, ūt−1) =


[0, 0] if Qtj (x̄t−1) < ūt−1,⋃
g∈∂Qtj(x̄t−1)[g,−1] if Qtj (x̄t−1) > ūt−1,⋃
g∈∂Qtj(x̄t−1)

t∈[0,1]

[tg,−t] if Qtj (x̄t−1) = ūt−1.
(5.40)

Consequently, if gtj ∈ ∂Qtj (x̄t−1), j = 1, ..., Nt−1, then a subgradient of Vt (xt−1, ut−1)
at (x̄t−1, ūt−1) is given by23

1

Nt−1

[
(1− λt)

Nt−1∑
j=1

gtj + λtα
−1
t

∑
j∈Jt

gtj, −λtα−1
t |Jt|

]
, (5.41)

where
Jt := {j : Qtj (x̄t−1) > ūt−1, j = 1, ..., Nt−1} .

One can proceed now in backward steps of the SDDP algorithm in a way similar to the
risk neutral case by adding cutting planes of the cost-to-go functions Vt (xt−1, ut−1).

Let us consider now construction of the corresponding forward step procedure.
Given a feasible first stage solution (x̄1, ū1) and a current set of piecewise linear lower
approximations Vt (xt−1, ut−1) of cost-to-go functions Vt (xt−1, ut−1), t = 2, ..., T , we
can proceed iteratively forward by solving problems

Min
xt,ut

cTt xt + λt+1ut + Vt+1(xt, ut) s.t. Atxt = bt −Btxt−1, xt ≥ 0, (5.42)

for a (randomly) generated scenario ξ2, ..., ξT . Let (x̄t, ūt), t = 1, ..., T , be respective
optimal solutions. These solutions can be used in constructions of cutting planes in
the backward step procedure. We have that x̄t = x̄t(ξ[t]) and ūt = ūt(ξ[t]), t = 1, ..., T ,
are functions of the data process, and x̄t(ξ[t]) gives a feasible and implementable
policy. Unfortunately, here the forward step of the SDDP algorithm cannot be easily
adapted for estimating value of this policy.

5.3 Reduction to Static Problems

Another possible approach to multistage stochastic programming is to reduce dynamic
setting to a static case. Consider the multistage problem (3.5). Suppose that we can

23Recall that |Jt| denotes the cardinality, i.e., the number of elements, of the set Jt.
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identify a parametric family of policies x̄t(ξ[t], θ), t = 1, ..., T , depending on a finite
number of parameters θ ∈ Rq (compare with section 2.2 where this was discussed
for two stage problems). Suppose further that we can construct a set Θ ⊂ Rq such
that these policies are feasible for all θ ∈ Θ. That is, for all θ ∈ Θ it holds that
x̄1(θ) ∈ X1 and x̄t(ξ[t], θ) ∈ Xt

(
x̄t−1(ξ[t−1], θ), ξt

)
, t = 2, ..., T , w.p.1. Consider the

following stochastic program

Min
θ∈Θ

F1

(
x̄1(θ)

)
+ E

[
T∑
t=2

Ft
(
x̄t(ξ[t], θ), ξt

)]
. (5.43)

Since by construction the considered policies are feasible, the optimal value of problem
(5.43) gives an upper bound for the optimal value of the original multistage problem
(3.5). Of course, quality of a solution x̄t(ξ[t], θ

∗), t = 1, ..., T , of (5.43), viewed as a
solution of the original multistage problem (3.5), depends on a successful choice of
the parametric family.

The above problem (5.43) is a (static) stochastic problem and could be solved,
say by the SAA method, provided that the set Θ is defined in a computationally
accessible way. That is, a random sample of N scenarios ξj2, ..., ξ

j
T , j = 1, ..., N , of the

data process is generated and problem (5.43) is approximated by the corresponding
SAA problem

Min
θ∈Θ

F1

(
x̄1(θ)

)
+

1

N

N∑
j=1

T∑
t=2

Ft
(
x̄t(ξ

j
[t], θ), ξ

j
t

)
. (5.44)

Recall that the number N of generated scenarios required to solve static problem
(5.43) with a given accuracy ε > 0, by employing the SAA problem (5.44), is of order
O(ε−2) provided some standard regularity conditions hold (see [30, section 5.3]).

Example 11 Suppose that we have a finite family of feasible policies{
xkt (ξ[t]), t = 1, ..., T

}
, k = 1, ..., K.

Suppose, further, that the multifunctions Xt(·, ξt) are convex, i.e., the set X1 is convex
and for a.e. ξt and all xt−1, x

′
t−1 and τ ∈ [0, 1] it holds that

τXt(xt−1, ξt) + (1− τ)Xt(x′t−1, ξt) ⊂ Xt
(
τxt−1 + (1− τ)x′t−1, ξt

)
, t = 2, ..., T. (5.45)

For example, the multifunctions Xt(·, ξt) representing feasible sets of linear multistage
programs, defined in (3.3), are convex. Consider convex combination

x̄t(ξ[t], θ) :=
K∑
k=1

θkx
k
t (ξ[t]), t = 1, ..., T, (5.46)
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of these policies. Here θ = (θ1, ..., θK) ∈ ∆K , with ∆K :=
{
θ ∈ RK

+ :
∑K

k=1 θk = 1
}

being the K-dimensional simplex. Feasibility of the considered policies means that
for k = 1, ..., K,

xkt (ξ[t]) ∈ Xt(xkt−1(ξ[t−1]), ξt), t = 2, . . ., T, w.p.1, (5.47)

and hence

x̄t(ξ[t], θ) ∈
K∑
k=1

θkXt(xkt−1(ξ[t−1]), ξt), t = 2, . . ., T, w.p.1. (5.48)

By convexity of the multifunctions Xt(·, ξt) we have that the right hand side of (5.48)
is included in Xt(x̄t(ξ[t], θ), ξt), and hence it follows that x̄t(ξ[t], θ), t = 1, ..., T , is a
feasible policy for any θ ∈ ∆K . This approach with several examples is discussed in
[12]. Note that for the linear multistage problem (3.13), with linear objective function,
the corresponding problem (5.43) has an optimal solution at one of the extreme points
of ∆K , i.e., at a point of the form θ∗ = (0, ..., 0, 1, 0, ..., 0). That is, in that case the
optimal policy x̄t(ξ[t], θ

∗) coincides with one of the considered policies. ♦

5.3.1 Affine Policies

Another way of constructing parametric policies is to consider policies which are
affine functions of the data process (compare with section 2.2.1). As an example let
us consider the inventory model (4.15) with a specified probability distribution of the
demand process:

Min
xt≥yt

E
{∑T

t=1 ct(xt − yt) + bt[Dt − xt]+ + ht[xt −Dt]+

}
s.t. yt+1 = xt −Dt, t = 1, ..., T − 1.

(5.49)

Recall that the minimization in (5.49) is performed over (nonanticipative) policies of
the form x1, x2(D[1]), ..., xT (D[T−1]) satisfying the feasibility constraints of (5.49) for
almost every realization of the demand process.

Consider now policies of the form

xt(D[t−1]) := θ1t +
t∑

τ=2

θτtDτ−1, t = 2, ..., T, (5.50)

depending on the parameter vector θ = (θ12, ..., θTT ). Since these policies are given
as affine functions of the data (demand) process, such policies are called affine. Sub-
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stituting these policies into (5.49) we obtain the following optimization problem

Min
x1≥y1, θ

E
{
c1(x1 − y1) + b1[D1 − x1]+ + h1[x1 −D1]+

+
∑T

t=2 ct(θ1t +
∑t

τ=2 θτtDτ−1 − θ1,t−1 −
∑t−1

τ=2 θτ,t−1Dτ−2 +Dt−1)

+bt[Dt − θ1t −
∑t

τ=2 θτtDτ−1]+ + ht[θ1t +
∑t

τ=2 θτtDτ−1 −Dt]+

}
s.t. θ1t +

∑t
τ=2 θτtDτ−1 ≥ θ1,t−1 +

∑t−1
τ=2 θτ,t−1Dτ−2 −Dt−1,

t = 2, ..., T − 1, (D1, ..., DT ) ∈ D,
(5.51)

where D0 := 0 and D ⊂ RT
+ is the support of the distribution of random vector

(D1, ..., DT ). Since in problem (5.51) optimization is constrained to affine policies,
its optimal value gives an upper bound for the optimal value of the original problem
(5.49). Of course, if optimal values of problems (5.49) and (5.51) do coincide, then
an optimal solution of problem (5.51) defines an affine policy which is an optimal
solution of problem (5.49).

Problem (5.51) is a static stochastic problem with a finite number of decision
variables, θ12, ..., θTT and x1, and an infinite number of linear constraints. There are
two basic difficulties in solving problem (5.51). One is that the expected value cannot
be computed in a closed form and should be approximated. This can be approached
by generating a random sample of the demand vector (D1, ..., DT ) and approximating
the corresponding expectation by the sample average, that is by constructing the
Sample Average Approximation (SAA) problem. Still the infinite number of linear
constraints could be difficult to handle in a general case.

Note that the feasibility constraints of problem (5.51) can be written in the fol-
lowing equivalent form

max
(D1,...,DT )∈D

{
θ1,t−1 +

∑t−1
τ=2 θτ,t−1Dτ−2 −Dt−1 − θ1t −

∑t
τ=2 θτtDτ−1

}
≤ 0,

t = 2, ..., T − 1.
(5.52)

In some cases the maximum in (5.52) can be written in a closed form. Suppose that
random variables D1, ..., DT are independent, i.e., the demand process is stagewise
independent, with distribution of Dt being supported on interval It = [lt, ut] ⊂ R+,
t = 1, ..., T . That is, D = I1× · · ·× IT . In that case the maximization in (5.52) sepa-
rates into maximization with respect to each Dt ∈ It individually, and the maximum
is attained either at Dt = lt or Dt = ut, t = 1, ..., T . Consequently the feasibility
constraints of problem (5.51) can be written explicitly as a finite number of linear
constraints.
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Suppose now that the demand process can be modeled as an autoregresive process
AR(p) of the form

Dt = µ+ φ1Dt−1 + ...+ φpDt−p + εt, (5.53)

with εt being a sequence of iid random variables, t = 1, ..., T , and D1−p, ..., D0 being
given (observed) values. We can write this AR(p) in the following matrix form wt =
M + Φwt−1 + Υt, where wt := (Dt−1, ..., Dt−p)

T,

Φ :=


φ1 · · · φp
1 0 · · · 0
· · · · · ·
0 · · · 1 0

 ,
M := (µ, 0, ..., 0)T and Υt := (εt−1, 0, ..., 0)T. Substituting this into (5.49) we obtain
problem

Min
xt≥yt

E
{∑T

t=1 ct(xt − yt) + bt[µ+ φTwt − xt + εt]+ + ht[xt − µ− φTwt − εt]+
}

s.t. yt+1 = xt − µ− φTwt − εt, t = 1, ..., T − 1,
wt+1 = M + Φwt + Υt+1, t = 1, ..., T − 1,

(5.54)
where φ := (φ1, ..., φp)

T. Note that optimization in (5.54) is performed over decision
variables xt and wt, and the random process is ε1, ..., εT (compare with Example 10
on page 93).

Formulation (5.54) allows to write dynamic programming equations, with cost-to-
go functions Qt(yt, wt), and hence to apply, say, the SDDP algorithm. In order to
formulate affine policies in terms of the random process ε1, ..., εT we can proceed as
follows. We can write the demand process in the form Dt = µt +

∑t
τ=1 βτtετ , where

the coefficients µt and βτt can be computed recursively using equation (5.53). We can
consider now affine policies of the form

xt(ε[t−1]) := γ1t +
t∑

τ=2

γτtετ−1, t = 2, ..., T. (5.55)

Substituting this into (5.49) we obtain similar to (5.51) a static stochastic program
in terms of decision variables x1 and γτt and random variables εt.

Such affine policies can be formulated for more complex stochastic programs. For
example for linear stochastic programs of the form (3.13), with only right hand sides
b2, ..., bT being random, we can consider affine policies of the form

xt(b[t]) = µt +
t∑

τ=2

Ψτtbτ , t = 2, ..., T, (5.56)
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depending on parameters – vectors µt and matrices Ψτt. In this case the objec-
tive function is linear in bt and hence its expectation can be written explicitly as
cT1 x1 +

∑T
t=2 c

T
t

(
µt +

∑t
τ=2 Ψτtβτ

)
, where βt := E[bt]. The feasibility constraints

could be more difficult to handle and would require a careful formulation adjusted to
a particular problem.

Remark 9 It is possible to show that a linear stochastic program of the form (3.13)
has a continuous piecewise affine optimal policy, provided that: (i) its optimal value
is finite, (ii) only its right hand sides b2, ..., bT are random, (iii) the process b2, ..., bT is
stagewise independent, (iv) the number of scenarios is finite. The arguments are sim-
ilar to those of Example 1 on page 6. That is, because of the stagewise independence
the (expectation) cost-to-go functions Qt+1(xt) do not depend on the data process,
are convex and piecewise linear since the number of scenarios is finite. Consequently
the optimization problems in dynamic equations, given in the right hand side of (5.3),
can be formulated as linear programming problems with the corresponding right hand
sides being linear functions of btj and Btjxt−1. By a standard result of the theory of
parametric linear programming we have then that an optimal solution of the right
hand side of (5.3) is a continuous piecewise affine function of btj and xt−1. The proof
can be completed by induction going backward in time (cf., [2]). Note that for these
arguments to be valid the conditions (i)–(iv) are essential. ♦
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Index

(Ω,F , P ) probability space, 4
:= equal by definition, 2
AT transpose of matrix (vector) A, 3
C∗ polar of cone C, 38
T1 ◦ T2 composition of two mappings, 22
Z � Z ′ notation, 17

Z
D∼Z ′ relation, 21

[a]+ = max{0, a}, 19
B Borel sigma algebra, 27
∆(α) measure of mass one (Dirac mea-

sure), 26
L∞(Ω,F , P ) space, 16
Lp(Ω,F , P ) space, 16
Lp(Ω,F , P ; Rm) space, 5
M2 ⊗ · · · ⊗MT , 64
NX (x) normal cone to set X at point x ∈

X , 13
Φ(·) cdf of standard normal distribution,

91
Z∗ dual space, 16
AV@Rα Average Value-at-Risk, 20
E expectation operator, 2
A dual set, 18
E(x, ξ) set of Nash equilibrium points, 45
G group of measure-preserving transfor-

mations, 21
M uncertainty set of probability measures,

2
P set of probability density functions, 17
conv{A} convex hull of set A, 14
dom O domain of multifunction Q, 7
R extended real line, 2
♦ end of example or remark, 8
ess sup essential supremum, 16
Ext(Ξ) set of extreme points, 37

end of proof, 22
1A(·) indicator function of set A, 25
〈·, ·〉 scalar product, 16
| J | cardinality of set J , 100
∂f(x) subdifferential of convex function,

13
posW positive hull of matrix W , 4
Pr(A) probability of event A, 11
ρ|Y conditional risk measure, 56
V@Rα Value-at-Risk, 20
ξ[s,t] history of the process from time s to

time t, 53
ξ[t] history of the process, 49
E|Y conditional expectation, 49

affine decision rule, 8

chance constraints, 40
ambiguous, 41

comonotonicity, 23
conditional sampling, 85

identical, 86
convex hull, 14
cumulative distribution function, 20
cumulative distribution function (cdf), 78
cutting plane, 88

decision rule, 6, 49
distribution

unimodal, 80
dual set, 18
duality gap, 12
dynamic programming equations, 50

essential supremum, 16

function
cost-to-go, 50
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indicator, 25
random lower semicontinuous, 5
support, 18

independent identically distributed (iid),
78

Kelley’s cutting plane algorithm, 95

Law of Large Numbers (LLN), 78

Markov chain, 94
measurable space, 4
measure

absolutely continuous, 19
Dirac, 26
nonatomic, 21

measure-preserving transformation, 21
metric projection, 48
multifunction, 3

convex, 101

Nash equilibrium, 44
nonanticipativity, 49

constraints, 53
Lagrange multipliers, 54

point
extreme, 37

polar cone, 38
policy, 6, 49

affine, 8, 102
feasible, 49
nonanticipative, 49
optimal, 50

positive hull, 4
probability space, 4
problem

adjustable robust, 67
linear multistage, 49
linear two-stage, 3

newsboy, 76
newsvendor, 76
of moments, 36
risk averse multistage, 59
risk neutral multistage, 49
semi-infinite programming, 39

process
Markovian, 93
random data, 48
stagewise independent, 49

quantile, 20, 78

random variables, 16
reference distribution, 16
reference probability measure, 16
relatively complete recourse, 4
risk measure, 16

Average Value-at-Risk, 20
coherent, 17
comonotonic, 23
law invariant, 21
mean-upper-semideviation, 19
Value-at-Risk, 20

saddle point, 13
Sample Average Approximation (SAA), 11,

32
multistage, 85

scenario tree, 85
scenarios, 3, 85
Slater condition, 33
SMPEQ problems, 47
space

decomposable, 5
dual, 16
finite signed measures, 35
reflexive, 16

stagewise independence, 49
stochastic programming problem
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multistage, 48
multistage linear, 51
two stage, 3
with equilibrium constraints, 47

support of probability distribution, 8
supporting plane, 88

theorem
Banach-Alaoglu, 17
Brouwer’s fixed point, 48
Fenchel-Moreau, 18
Hoffman’s lemma, 7
Khintchine, 80
Kusuoka, 23, 24
Levin-Valadier, 15
Minkowski, 37
Moreau-Rockafellar, 14
Prohorov, 15
Radon-Nikodym, 19
Richter-Rogosinski, 36

tight, 15
time consistency, 63
topology

strong, 16
weak, 14
weak∗, 17

variational inequality, 47
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