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In-process quality improvement: Concepts, methodologies, and applications

Jianjun Shi

H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA

ABSTRACT
This article presents the concepts, methodologies, and applications of In-Process Quality
Improvement (IPQI) in complex manufacturing systems. As opposed to traditional quality control
concepts that emphasize process change detection, acceptance sampling, and offline designed
experiments, IPQI focuses on integrating data science and system theory, taking full advantage of
in-process sensing data to achieve process monitoring, diagnosis, and control. The implementation
of IPQI leads to root cause diagnosis (in addition to change detection), automatic compensation
(in addition to off-line adjustment), and defect prevention (in addition to defect inspection). The
methodologies of IPQI have been developed and implemented in various manufacturing proc-
esses. This paper provides a brief historical review of the IPQI, summarizes the developments and
applications of IPQI methodologies, and discusses some challenges and opportunities in the cur-
rent data-rich manufacturing systems. Future research directions are discussed at the end of the
article with a special focus on leveraging emerging machine learning tools to address quality
improvements in data-rich advanced manufacturing systems.
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1. Introduction

About 25 years ago, while in the author’s early career, he saw
a significant opportunity to combine his training in systems
and control theories with the quality improvement demands in
the emerging, data-rich manufacturing systems. He coined the
term, “In-Process Quality Improvement”, or IPQI, to describe
this new branch of quality science research and dedicated his
career to developing it into a full-blown research field. This
article aims to provide a historical review of IPQI: discussing
the concepts, methodologies, and applications of IPQI; and
exploring IPQI opportunities for future research and applica-
tions. Due to the rich literature in the past two and a half dec-
ades, this article cannot cover all the achievements related to
IPQI methodologies and applications. Instead, this article
focuses on selected IPQI topics and uses them to illustrate the
development and implementation of IPQI concepts in selected
applications with which the author is more familiar.

� How does the concept of IPQI fit into the general frame-
work of quality engineering?

Before the introduction of the IPQI, the quality improve-
ment methodologies had four major components: design of
experiments (DOE) for response surface modeling and
robust parameter design, statistical process control (SPC),
acceptance sampling, and quality management (Figure 1).

Robust parameter design via DOE response surface model-
ing emphasizes how to design and optimize products or
processes that will be robust to disturbances in a

manufacturing system; SPC mainly focuses on monitoring
and change detections for manufacturing processes; accept-
ance sampling makes the lot sentencing decisions; and qual-
ity management emphasizes policies and procedures of
quality control at the organization level. Although those
four methodologies played important roles in quality control
and improvement, there were inherent limitations. For
example, the robust parameter design assumes that all input
variables and the distributions of anticipated disturbances
are known in advance to achieve a robust design of the
product/process. However, these assumptions may not
always be satisfied in practice, and some unanticipated dis-
turbances (e.g., random machine degradations/failures with
unknown root causes and associated severities) may occur
during the real-time production. Hence, off-line DOE meth-
ods cannot adequately address all unanticipated disturbances
occurring during the production period. SPC can detect pro-
cess changes, but relies on laborious manual efforts to find
root causes of those changes, which can be time-consuming
and heavily relies on operators’ experiences. Acceptance
sampling evaluates the lot quality, but does not improve its
quality. Quality management defines the procedures and
policies on quality in an organization, but quality manage-
ment is not designed to address the root causes of failures
in machines or production systems. Moreover, one funda-
mental component is missing in the existing quality control
frameworks: how to make use of multiple in-situ sensing
signals, integrated with other process and product data and
engineering knowledge, to achieve in-process quality
improvements.
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� What is the innovation of the IPQI, and what are its
unique characteristics?

IPQI refers to a set of methodologies of engineering-driven
data fusion for process monitoring, root cause diagnosis, and
feedback and feed-forward control. The data concerned in
IPQI embodies those methodologies throughout the life cycle
of a process and product, ranging from product design, pro-
cess design, in-situ sensors, product quality measurement, and
maintenance information, among others. Data fusion is
achieved by developing advanced statistical and machine
learning methods guided by engineering knowledge. This
resulting method or decision-making is further enhanced by
optimization methods and control theories (Figure 2). By
implementing IPQI, one expects to achieve root cause diagno-
sis (in addition to change detection), online automatic control
(in addition to off-line adjustment), and defect prevention (in
addition to defect inspection) in manufacturing systems.

� How does IPQI enhance conventional machine automa-
tion with a focus on quality improvements?

Machine automation is essential for manufacturing systems.
High-precision robots, machine tools, and equipment are well
developed by using conventional system and control theory. As

shown in Figure 3(a), the typical control objective of “machine
automation” is to adjust the system’s inputs to achieve high
precision of the outputs, typically reaching and maintaining
the setting points of position, speed, temperature, force, torque,
etc. Using machine automation methods, the best settings of a
machine or production line are needed a priori for delivering
the best products by a manufacturing system.

Although machine automation provides the potential cap-
ability to produce a high-quality product, it does not com-
pletely close the whole loop when in-situ product quality
measurements are available. The IPQI-enhanced automation
closes this loop by fully utilizing the in-situ quality sensing
signals with feedback or feed-forward control to determine
the (best) machine setting points as illustrated in Figure
3(b). This outer loop provides quality measurement feedback
to the machine inputs/controls to achieve engineering speci-
fications defined by the product design.

A systematic comparison between traditional machine
automation and IPQI-enhanced automation is provided in
Table 1. The IPQI-enhanced automation has several unique
characteristics in terms of measurement signals, sampling
frequencies, system dynamics, which raise challenges in sys-
tem modeling and control algorithm development.
Depending on the combinations of those characteristics,
some unique algorithms are worthy of investigation.

� What is the evolution of the IPQI and its applications?

Since the introduction of the IPQI (Shi, 1996), a tremen-
dous amount of effort has been made by the author himself
and others interested in IPQI to develop and enrich IPQI
methodologies and applications. The evolution of IPQI can
be observed from different aspects related to types of data

Figure 1. Conventional quality control methods vs. IPQI.

Figure 2. Comparison of SPC vs. IPQI.

Figure 3. Machine automation vs. IPQI-enhanced automation.

Table 1. Comparison between machine automation and IPQI-enhanced automation.

Machine automation IPQI-enhanced automation

Feedback variables machine operation status product quality status
Output data types homogeneous heterogeneous (digital, text, image)
Model differential or difference equations Various depending on quality data type/format, automation capabilities
Data sampling freq. uniform high freq. sampling mixed sampling rate, low frequency
Control algorithms PID, adaptive, robust, fuzzy, etc. depending on the model & objective
System characteristics dynamic system dynamic or static, or mixed system
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addressed, system control and statistical methods, and appli-
cations. First, the types of data addressed in IPQI have
evolved from real-time univariate data to multivariate data,
time series, functional/waveform signals, high-dimensional
streaming signals, high-resolution images, and high-reso-
lution video signals. Second, regarding system control and
statistical methods, IPQI methodologies span the fields of
univariate and multivariate statistical methods (e.g., principal
component analysis, factor analysis, singular value decom-
position, partial least squares regression, etc.), wavelet ana-
lysis, causal discovery and modeling, tensor-based modeling
and analysis, and more recently, various emerging machine
learning methods. Third, applications of IPQI have been
implemented in different manufacturing systems, such as
automotive assembly, machining, forming, rolling, semicon-
ductor manufacturing, nanomanufacturing, and aerospace
manufacturing processes.

2. IPQI methodologies for assembly, machining,
and forming

In the 1990s, in-situ sensing technology were introduced
and implemented in some commercial production systems
and provided in-process measurements of quality character-
istics on 100% of the products. At the same time, the real-
time sensing of process variables and machine conditions
(e.g., temperature, force, torque, vibration, etc.) was widely
adopted with advanced data acquisition systems. The data
format is typically characterized as vectors (e.g., dimensional
measurements of stamped parts, assemblies, or machined
parts) and functional waveform signals (e.g., forming force,
pressure, welding current, etc.). The conventional SPC meth-
ods are ineffective in dealing with those types of data gener-
ated from 100% measurement of products and functional
waveform signals. Those new challenges and opportunities
motivated the development of IPQI methodologies and
applications. A key characteristic of the IPQI methodology
development is the fusion of advanced statistics, control the-
ory, and engineering domain knowledge. This section will
discuss the IPQI methodologies development and applica-
tions, with the focus on root cause diagnosis for assembly,
waveform signature analysis for forming, Stream of
Variation (SoV) theory for multistage manufacturing, and
causation-based process control.

2.1. Root cause diagnosis for automotive body assembly

In the early 1990s, an in-line Optical Coordinate
Measurement Machine (OCMM) was installed in the assem-
bly line to measure every car assembly, which provided
about 130 critical dimensions for a final Body-In-White
(BIW). The conventional SPC control charts cannot handle
those massive data due to unavoidable false alarms or false
negatives (i.e., missed defects). Furthermore, even if SPC
control charts correctly detect the changes of the dimensions
in a BIW, the root cause identification of those changes
remains a significant challenge, since a BIW assembly typic-
ally has 150 stamped parts assembled in hundreds of

assembly stations with thousands of assembly fixtures/loca-
tors (Ceglarek et al., 1994). The challenges, i.e., how to fully
utilize the in-line OCMM sensing data and quickly identify
root causes for dimensional variation reduction, triggered
the initial research of IPQI.

Based on the OCMM measurement, the first effort con-
stitutes the identification of the assembly station that con-
tributes to the final dimensional variation in the BIW. In
order to achieve this goal, a hierarchical model of the BIW
assembly process was developed to represent the stamped
parts, assembly stations, subassemblies, and assembly
sequence based on the engineering design, as shown in
Figure 4 (Ceglarek et al., 1994). Then, in-line OCMM data
was analyzed by focusing on sensing data with large vari-
ation, clustering those data, and mapping each data cluster
into the hierarchical model to find the candidate parts and
candidate stations of root causes. A set of decision rules
were developed to find the station that constitutes the root
cause of the dimensional variation (Ceglarek et al., 1994;
Ceglarek and Shi, 1995).

After a root cause station is identified, the next question
is which fixture locator failed, leading to the large dimen-
sional variation. Principal Component Analysis (PCA)
(Wold et al., 1987) was utilized to analyze the parts dimen-
sional measurements to address this problem. It has been
proven that the first principal component has a bijective
(one-to-one) correspondence with the failure vector
obtained from the fixture design if a single locator fails
(Ceglarek and Shi, 1996). Further study was conducted to
consider multiple faults (Apley and Shi, 1998) and with
measurement noise and model uncertainties (Ceglarek and
Shi, 1999).

Figure 4. Automotive body assembly process and hierarchical structure repre-
sentation (reproduced from Shi (2006)).
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To further improve the IPQI methodology for assembly,
a series of topics have been investigated, including optimal
sensor layout for fixture diagnosis (Khan et al., 1999), diag-
nosis with multiple assembly stations (Shiu et al., 1996), and
root cause diagnosis for compliant parts assembly (Rong
et al., 2000, 2001).

2.2. Waveform analysis for cyclic signals for stamping
or forming

The waveform analysis for cyclic signals was motivated by
stamping or forming applications. A typical quality assur-
ance strategy in a stamping plant is to take a sample of parts
and inspect each one for its Key Product Characteristics
(KPCs). If a quality concern arises, production engineers
will try to identify the root causes and take appropriate
actions to resolve the quality issue. However, this practice
has two limitations: (i) the inspected samples only constitute
a small subset of the fabricated products, and therefore, can-
not guarantee a 100% quality satisfaction; (ii) it is difficult
to find root causes from more than 40 process variables that
may lead to a defective part.

To address these limitations, IPQI concepts were used in
the stamping process control. In a stamping press, there are
many sensors to measure the stamping press and the die in
each stamping cycle, including tonnage sensors, shut heights,
nitrogen cushion pressure, vibration sensors, etc. These sen-
sors provide cyclic signals corresponding to each stamped
part. Furthermore, each cycle of the waveform signals can
be divided into multiple segments, and each segment corre-
sponds to specific mechanic interactions among the press,
the die, and the part (Figure 5). Thus, these in-press/in-die
sensors provide rich information for the IPQI methodology
development for stamping.

Koh et al. (1995) studied the tonnage signal analysis with
press maintenance information. Jin and Shi (1999a) further
identified the time and frequency characteristics in the seg-
mented tonnage signals and used wavelet analysis to extract
features from those signals for process monitoring and diag-
nosis. With the development of the models between tonnage
signal and product quality (Jin and Shi, 2000; Ding et al.,
2006, Kim et al., 2006; Kim et al., 2007), the tonnage signal
can be used to directly monitor the quality of the stamped
parts. In essence, the IPQI study for waveform signal sets a
basis for later research and the expansion of the IPQI
research for automotive engine manufacturing (Paynabar
and Jin, 2011), nanomanufacturing (Yue et al., 2016), and
semiconductor manufacturing (Zhang et al., 2018).

2.3. Stream of Variation theory for multistage
manufacturing processes

A multistage system refers to a system consisting of multiple
units, stations, or operations to finish the final product or
service. The multistage system is very common in modern
manufacturing processes. In most cases, the final product
quality of a Multistage Manufacturing Process (MMP) is
determined by complex interactions among multiple stages

– the quality characteristics of one stage are not only influ-
enced by the local variations at that stage, but also by the
propagated variations from upstream stages. Multistage sys-
tems present significant challenges, yet also opportunities for
quality engineering research.

The concept of Stream of Variation has been proposed to
describe the complex production stream and the data stream
involved in modeling and analysis of variation and its
propagation in an MMP (Figure 6). An interpretation of the
SoV reflects the complex data relationships in an MMP
(Figure 7). As shown in Figure 7, the X-axis represents the
manufacturing stages; the Y-axis represents the time (or
product job number over time); the Z-axis represents the
quality attributes. Thus, Mx, y, z represents the z-th quality
attributes in the stage x at time y. In an MMP, there are
three types of correlations among those data streams: (i) the
quality attributes are auto-correlated in terms of the stages
along the production line along the X-axis; (ii) the quality
attributes are cross-correlated among them within the same
stage along the Z-axis; and (iii) each quality attribute is also
auto-correlated in terms of time due to the degradation or
wear of production tooling over time along the Y-axis.

Figure 5. Segmentation of a tonnage signal (reproduced from Jin and
Shi (1999a)).

Figure 6. Variation propagation and notations in the SoV modeling (reproduced
from Shi (2006)).
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These three types of correlations, observed in the data
stream, introduce significant challenges in variation model-
ing, analysis, and control. The SoV methodology (Shi, 2006)
was developed to investigate the variations of these
data streams.

The foundation of the SoV methodology is a mathemat-
ical model that links the key product quality characteristics
with key control characteristics (e.g., fixture error, machine
error, etc.). This model has a state space representation (Jin
and Shi, 1999b) that describes the deviation and its propaga-
tion in an N-station process (as shown in Figures 6 and 7),
i.e.

xk ¼ Ak�1xk�1 þ Bkuk þ wk, k 2 1, 2, :::, Nf g, (1)

yk ¼ Ckxk þ vk, k 2 1, 2, :::, Nf g, (2)

where k is the stage index and k 2 1, 2, :::, Nf g: xk is the
state vector representing the key quality characteristics of
the product (or intermediate workpiece) after stage k: uk is
the control vector representing the tooling errors (e.g., small
random deviation within tolerance when no faults occur, or
large deviation when failures occur on the tooling) at stage
k: yk is the measurement vector representing product quality
measurements at stage k: wk and vk are modeling error
and sensing error, respectively. The coefficient matrices
Ak, Bk, and Ck are determined by product and process
design information: Ak represents the impact of deviation
transition from stage k� 1 to stage k, Bk represents the
impact of the local tooling deviation on the product qual-
ity at stage k, and Ck is the measurement matrix, which
can be obtained from the defined quality features of the
product at stage k: Evidently, the SoV theory assumed lin-
earity in its models, i.e., Equations (1) and (2). The suit-
ability of the linearity was confirmed by Ren et al. (2006)
through their study quantifying the impact of nonlinearity
in typical MMPs.

With the mathematical models ð1Þ and ð2Þ, variation
reduction can be achieved in both design and manufacturing
stages through rigorous mathematical analysis for decision-
making. However, significant challenges exist in both model
development and utilization to realize the benefits of the
analytical capability of this model. These challenges were
addressed in the SoV methodological research (Shi, 2006).
In detail, the SoV methodology addressed the following

important questions for the variation reduction and IPQI in
an MMP:

� How to model and integrate the product and process
design information for variation reduction?
In Shi (2006), two basic methods were investigated: the
physics-based modeling method and the data-driven
modeling method. In the former method, the kinematics
relationship between Key Control Characteristic (KCC)
and KPC is identified through a detailed physical analysis
of the manufacturing process (Ding et al., 2002); whereas
in the latter method, the model is achieved through a
statistical estimation procedure based on historical meas-
urement data. The details of SoV modeling are discussed
in Chapters 6, 7, and 8 of Shi (2006).

� How to systematically identify the root causes of variabil-
ity in terms of which manufacturing station and what
faults in the station introduce the variability?
During continuous production, a product variation may
occur at any stage of an MMP, due to the tooling wear-
ing out, tooling breakage, and incoming part variation.
The SoV book (Shi 2006) presents a systematic approach
for root cause identification. In this approach, a new
concept of “statistical methods driven by engineering
models” is proposed to integrate the product and process
design knowledge with statistical analysis. The variation
models (1) and (2), developed from the design informa-
tion, are used to link the product variation (quality char-
acteristics) with the tooling variation (or potential
failures) (Ding et al., 2002). The product features are
measured during the production, and the data are used
to conduct statistical analysis – based on the model (1) –
to identify root causes. To this end, advanced statistics
and estimation theories are utilized. The SoV book (Shi,
2006) presented two types of diagnostic techniques for
root cause identification for the MMPs: a variation pat-
tern matching method for pre-defined faulty patterns in
Chapter 10 and an estimation-based diagnosis for detect-
ing changes in monitoring statistics in Chapter 11.

� How to distribute measurement sensors for effective pro-
cess control in an MMP by determining when, where, and
what to measure regarding the final and intermediate
workpieces?
One of the major tasks in variation reduction is to design
gauging strategies to measure product features in an
MMP. Most of the existing industrial practices focus on
product conformity inspection (i.e., product-oriented
measurements), which is effective for detecting product
imperfection, but may not be effective in identifying root
causes of product variation. The SoV book proposed a
“process-oriented” measurement concept with a distrib-
uted sensing strategy (Ding et al., 2003; Liu et al., 2005;
Ding and Apley, 2007). In this strategy, selected key con-
trol characteristics, as well as selected key product char-
acteristics, will be measured in the selected stages in
order to simultaneously detect product defects and iden-
tify their root causes. Chapter 12 of Shi (2006) discusses
a wide range of issues and methods on the optimal

Figure 7. A 3D diagram of the MMP illustrating the complex data relationships
(revised from (Ding et al., 2002).
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sensor placement and distribution in an MMP. One fun-
damental metric used in guiding sensor placement is the
so-called diagnosability (Ding et al., 2002; Zhou et al.,
2003; Apley and Ding, 2005), namely the capability to
identify potential root causes of the process variation for
a given measurement strategy. The issue of diagnosability
is comprehensively analyzed in Chapter 9 of Shi (2006).

� How to conduct design evaluation and tolerance synthesis
to ensure product quality for an MMP?
Variation analysis and design evaluation are conducted in
the product and process design stage to identify critical
components, features, and manufacturing operations (Kim
and Ding, 2004; Ding et al., 2005; Kim and Ding, 2005).
With the SoV model defined in ð1Þ, the following three
tasks can be performed: (i) tolerance analysis by allocating
the intermediate part tolerance (x0) and tooling tolerance
(uk) and then predicting the final product natural tolerance
(xN) by solving the difference equations; (ii) tolerance syn-
thesis by fixing the final product specifications on tolerance
(xN) and then assigning the natural tolerance for individual
parts (x0) and tooling components (uk) by minimizing the
specified cost objective functions; and (iii) sensitivity ana-
lysis by identifying the critical parts (xk) or tooling compo-
nents (uk) that have a significant impact on the final
product variation by evaluating the defined sensitivity indi-
ces. Details of these topics are discussed in Chapters 13, 14,
and 15 in Shi (2006).

� How to integrate product quality and production tooling
reliability for an effective system configuration and tooling
design, and maintenance decision-making?
There is a complex, intriguing relationship between
product quality and tooling reliability. A degraded (or
failed) production tooling will lead to a larger product
variability or number of defects; meanwhile, the variabil-
ity of product quality features will impact the degrad-
ation rate or failure rate of production tooling. For an
MMP, these interactions are more complex as variations
propagate from one stage to the next stage (Chen et al.,
2006). Thus, a “chain effect” between the product quality
(Q) and tooling reliability (R) can be observed and is
thus denoted as the “QR Chain” effect. The modeling of
the QR Chain is an integrated effort of the SoV model
and Semi-Markov process models. Chapter 16 of Shi
(2006) discusses the modeling of the QR Chain effects
for MMPs. Chapter 17 of Shi (2006) investigates the
applications of the QR Chain effect in reliability and
maintenance decisions.

The SoV theory for MMP is fully explained in Shi (2006);
a summary of the SoV concepts can be found in Shi (2014),
and Shi and Zhou (2009) provide a survey of emerging
methodologies for tackling various challenges in multi-
stage systems.

2.4. Causation-based quality control

Most of the existing multivariate quality control research
and methods focus on correlation or association among

variables, which concerns how to predict some system fea-
tures reliably and accurately from other features of a system.
However, for effective process control, there is a need to
identify the cause–effect relationships (also called causal rela-
tionships) among variables that cannot be inferred solely
based on the correlation or association. This idea leads to
the concept of “causation-based quality control” (Li and Shi,
2007; Li et al. 2008; Liu and Shi, 2013, Liu et al. 2013),
which is built upon observational data, causal modeling,
causal inference, and decision-making. It should be pointed
out that the causation in the “causation-based quality con-
trol" is inherent cause–effect relationships among variables
in a system. The findings of causal relationships can be
based on the physical laws or physical understanding of a
system, or by using data–driven causal discovery methods
from observationary data, or combining both methods as
“engineering-driven causal discovery from observa-
tional data”.

Observational data is referred to as the sensing data
obtained from a manufacturing system during the produc-
tion, as well as other data generated in the product and pro-
cess design. In general, they are passively observed, as
opposed to experimental data in which one or more varia-
bles are manipulated (often randomly) and the effects on
other variables are measured. Observational data is more
readily available than experimental data, especially in com-
plex manufacturing systems where the excessive number of
variables and practical constraints prohibit the execution of
designed experiments. As observational data becomes
increasingly available, the opportunities for successful causal
discovery increase.

Causal discovery from observational (uncontrolled non-
experimental) data is challenging and of interest to many
researchers and practitioners. The challenges in causal dis-
covery involve an intricate interplay between the assump-
tions on the data generating process, patterns of associations
in the data, and aspects of causal processes that are consist-
ent with the constraints and can explain the patterns in the
data. Although various research efforts have been made to
develop generic causal modeling algorithms, most of the
implementations and applications focus on problems in
social and medical science. However, the literature on causal
modeling based on manufacturing data is sparse, especially
for process control problems.

In a real manufacturing system, the causal relationships
are complicated, nonlinear, and dynamic, which generates
considerable difficulties for causal modeling of an underly-
ing system. It is almost impossible to develop a universal
causal modeling method without knowledge of the underly-
ing manufacturing system. Therefore, the research emphasis
is placed on developing an engineering-driven causal model-
ing approach that integrates the generic statistical causal dis-
covery algorithm with manufacturing domain knowledge. In
a manufacturing system, the information flow is determined
by the nature of each physical activity and the topology of
the physical system. The information related to the key pro-
cess and product features are evolving in the system follow-
ing engineering principles. Some engineering domain
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knowledge exists from product and process design, which
helps identify the key variables and potential causal relation-
ships. Meanwhile, the data captured by the in-process sensor
records the process changes and interrelationships among
variables in practice. By integrating those two sets of infor-
mation (information flow defined by production system lay-
out and engineering principles and data), a causal model
can be discovered from the observational data and further
used to develop effective process control strategies. In the
past decade, concepts of causation-based quality control
have been proposed. Several topics have been investigated,
including but not limited to the following:

� Causation-based quality control for rolling processes (Li
et al., 2008): In this study, an integrated approach is pro-
posed to discover the causal model represented by a
causal Bayesian network (or causal network for short). In
the developed causal discovery approach, engineering
domain knowledge is embedded in the statistical causal
discovery algorithms in various critical stages of the
modeling process. With the integrated approach, an
effective and efficient causal model is obtained (Figure
8). The approach is demonstrated with a rolling process
control problem, where the real production data are col-
lected for causal discovery. In the rolling process, the
product quality is measured by the number of surface
defects, and the process variation is measured by 22 vari-
ables, collected from two major manufacturing stages,
continuous casting (pre-rolling) and rolling. With the
causal network representation, causal relationships
among variables can be identified both qualitatively and
quantitatively. The results can further facilitate diagnosis,
prediction, and the development of control strategies.

� Optimal sensor allocation by integrating causal models
and optimization algorithms (Li and Jin, 2010; Liu and
Shi, 2013): Optimal sensor allocation for system anomaly
detection is an important research topic in quality engin-
eering. An optimal sensor allocation method is developed
in a distributed sensing network to timely detect anoma-
lies in an underlying physical system. This method
involves two steps: first, a Bayesian Network (BN) is built
to represent causal relationships among physical variables
in the system; second, an integrated algorithm by com-
bining the BN and a set-covering algorithm is developed

to determine which physical variables should be sensed,
in order to minimize the total sensing cost as well as sat-
isfying a prescribed detectability requirement (Li and Jin,
2010). Further studies were conducted to develop better
sensor allocation strategies based on the causal relation-
ships to achieve optimal performance with the minimal
sensor cost (Liu and Shi, 2013). Case studies were per-
formed on a hot forming process and a large-scale cap
alignment process, showing that the developed algorithm
satisfies both cost and detectability requirements.

� Causation-based T2 decomposition for multivariate process
monitoring and diagnosis (Li et al., 2008): Multivariate
process monitoring and diagnosis is an important and
challenging issue. The widely adopted Hotelling T2 con-
trol chart can effectively detect a change in a system, but
cannot diagnose the root causes of the change. The MTY
approach (Mason et al., 1995) makes efforts to improve
the diagnosability by decomposing the T2 statistic.
However, this approach is computationally intensive and
has a limited capability in root cause diagnosis for high-
dimensional variables. The developed causation-based T2

decomposition method (Li et al., 2008) integrates the
causal relationships revealed by a BN with the traditional
MTY approach. Theoretical analysis and simulation stud-
ies demonstrate that the proposed method substantially
reduces the computational complexity and enhances the
diagnosability compared with the MTY approach.

3. IPQI methodologies for high-dimensional
streaming data

In the past decade, high-resolution images and video signals
have been increasingly introduced to generate multichannel,
High-Dimensional (HD) streaming data in a production sys-
tem. As shown in Figure 9, those HD streaming data can be
obtained in each manufacturing stage to measure both pro-
cess variables and product quality characteristics. Those HD
streaming data contain rich information about production
system conditions and quality responses. Furthermore, there
are inherent interrelationships among those HD streaming
data, due to interactions within a manufacturing stage and
between manufacturing stages due to the quality/variation
propagation. New IPQI methodologies need to be developed to
address the challenges and availabilities of HD streaming data
in more sophisticated multistage manufacturing systems. Those
challenges and opportunities lead to new IPQI research by
using advanced algorithms, such as tensor-based analysis and

Figure 8. An abstracted causal model developed from rolling process data
(Li et al., (2008)).

Figure 9. Heterogeneous inputs and outputs with HD streaming data in a semi-
conductor MMP.
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modeling, engineering-driven machine learning, advanced opti-
mization algorithms, and computation capabilities.

3.1. HD streaming data monitoring and diagnosis

HD streaming data refers to multiple functional waveform
signals or high-resolution video signals that are used to
monitor manufacturing process variables or product quality
variables. With the wide adoption of in-situ sensors, HD
streaming data is prevalent in many advanced manufactur-
ing processes, such as semiconductors, hot rolling, nanoma-
nufacturing, 3D printing, etc. There are a set of challenges
in monitoring and diagnosis based on HD streaming data,
including unknown patterns of anomalies, random time and
location of occurrence of anomalies in HD streaming data.
Furthermore, predominantly in-control samples, but a small
number of out-of-control samples (or anomalies) in a pro-
duction system, are available. Labeling anomalies in HD
streaming data is either too costly or even infeasible, due to
the lack of a complete set of anomalies that can cover all
possible types of manufacturing defects. Thus, supervised
learning is infeasible or too costly in developing effective
monitoring and diagnosis algorithm for HD streaming data.
A set of algorithms have been developed in the past decade
to address those challenges. We discuss two categories of
methodologies in the remainder of this subsection.

3.1.1. Adaptive sampling-based statistical decision-making
for change detection

In the literature, most of the existing methods focus on pro-
cess monitoring for lower-dimensional data or complete
measurement data. To extend the monitoring framework to
HD data with incomplete measurement, Liu et al. (2015)
developed an adaptive sampling algorithm with top-r statis-
tical decision–making to automatically update CUSUM sta-
tistics in HD streaming data to detect and localize the
anomalies. The method assumes that there are a limited
number of sensors (denoted by s) to monitor multivariate
HD stream data (denoted as dimension p, s � p), and the
sensor can be reallocated to monitor a new data stream at
each sampling point. A CUSUM statistic is updated with
real sensing data if the data stream is measured with a sen-
sor; or is updated with a predetermined off-set value Dð Þ if
the data stream is not measured with a sensor. Based on the
CUSUM statistics, two decisions will be made: (i) sensors
will always be reallocated to measure the data streams that
have top-s largest CUSUM statistics, and (ii) the system is
out of control if the summation of the top-r largest CUSUM
statistics is larger than a decision threshold. The values of
off-set value D, r, and the decision threshold are design
parameters of the algorithm.

The algorithm of an adaptive sampling algorithm with
top-r statistics decision-making (Liu et al., 2015) has desir-
able properties, including (i) it guarantees to cover all HD
data streams if there is no anomaly occurring, and (ii) it
detects the anomaly quickly with probability 1 if anomalies
occur. Furthermore, a top-r decision-making strategy has a

unique interpretation and excellent intuition as it always
focuses on a few (e.g., top-r) statistics that behave the worst
in the system. Thus, it provides effective capabilities for sys-
tem-level anomaly detection.

Since the algorithm was developed, various efforts have
been made to generalize the concept to other HD streaming
data monitoring and diagnosis problems. Zhang and Mei
(2020) extended this framework into a Bayesian decision
framework. Nabhan et al. (2021) extended the above method
by considering the cross-correlation of variables, which sig-
nificantly improves the anomaly detection performance
when the data is cross-correlated.

3.1.2. Decomposition-based methods for anomaly detec-
tion and the extensions

For more efficient anomaly detection, Yan et al. (2017) first
proposed the Smooth Sparse Decomposition (SSD) method
to estimate the smooth background data, detect sparse
anomalies, and filter noises automatically and simultan-
eously. In the SSD method, the problem formulation can be
represented as

argminh, hakek
2
2 þ khTRhþ ckhak1, s:t: y ¼ Bhþ Baha þ e,

(3)

where Bh, Baha, and e indicate the background, anomalies,
and error, respectively. B and Ba are the smooth bases for
the background (mean) and anomalies, which need to be
specified by the engineers, R is the roughness matrix and
k, c are tuning parameters. Finally, proximal gradient meth-
ods are developed to optimize (3) efficiently.

Several extensions on the decomposition methods have
been developed. The first direction is to extend SSD to higher-
order tensors, or spatio-temporal data, with larger dimensional-
ity. In the original SSD work, the authors also proposed to
extend the method by defining the basis B and Ba as the ten-
sor product of the basis in each dimension B ¼ B2 � B1 and
Ba ¼ Ba2 � Ba1, which is illustrated in Figure 10. To deal
with HD, nonstationary data with spatio-temporal correlation
structure, Yan et al. (2018) extended the SSD to the ST-SSD
algorithm that addresses HD streaming video signals. Shen
et al. (2022) further extended the SSD to smooth and sparse
tensor decomposition to address the challenges of incomplete
tensor data, as well as learning the basis automatically from
the data.

Figure 10. Illustration of SSD for image/video signals (Yan et al., 2017).
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Another line of research focuses on extending the SSD
framework to other data structures, such as non-smooth
background or temporally clustered anomalies. For example,
Yue et al. (2017) extended the decomposition idea to the
waveform signals with wavelet basis to penalize mixed-
effects decomposition and applied it to multichannel profile
change detection with random effects in nanomanufacturing.
Yan et al. (2021) further extended this method by incorpo-
rating the temporal consistency of anomaly structures in
hotspot detection in the additive manufacturing. Mou et al.
(2021) extended the SSD to Additive Tensor Decomposition
(ATD) by incorporating structural data information such as
low rank and smoothness along specific modes or their
combinations to decompose tensor data.

Finally, some other works improved the efficiency by
adaptively observing incomplete high-resolution video sig-
nals. For example, Yan et al. (2020) further extended the
SSD to the AKM2D algorithm by integrating adaptive sam-
pling, which combines the exploration and exploitation of
HD data streams. Guo et al. (2020) extended the SSD to a
Bayesian SSD method that adopts an adaptive sampling
framework to decide the best sampling locations in a
dynamic setting.

3.2. Tensor decomposition-based modeling and analysis
for multi-channel HD data

In many engineering applications, both the system inputs
(or process variables) and outputs (product quality variables)
are multi-channel signals measured by multiple sensors,
image signals, or video signals. Those waveform signals or
image signals can be represented in tensor format, as shown
in Figure 11. Early works focus on various PCA methods to
reduce the dimensionality of the profile data or multi-chan-
nel profile (Zhang et al., 2018). However, these methods
require vectorizing the original tensor data into vectors,
which leads to a loss of the important structural information
contained in the original tensor.

The major idea of tensor-based process monitoring and
quality modeling is dimensionality reduction. This can be
achieved by utilizing the tensor structures with the help of
various tensor decomposition methods, such as Tucker and
Candecomp/Parafac (CP) decompositions.

For the process monitoring, Yan et al. (2014) developed a
tensor-based process monitoring technique for flame moni-
toring in a steel manufacturing process. The main idea is to
utilize Tucker and CP decompositions to reduce the dimen-
sionality of the original tensor data and build monitoring
statistics on the core tensors with the reduced

dimensionality and the residual tensor. There are also other
tensor-based process monitoring methods developed, includ-
ing UMPCA (Paynabar et al., 2013) and multichannel PCA
(Paynabar et al., 2016).

For the quality monitoring, Yan et al. (2010) developed a
tensor-on-scalar regression model of the output tensor vari-
able with respect to the input variables with Tucker decom-
position to model the influence of the process variables on
the shape of the product. Gahrooei et al. (2021) studied a
more general case on multiple tensor-on-tensor regression
(MTOT), where both input and output variables are tensors;
and Tucker decomposition (Kolda and Bader, 2009) is then
applied on the tensor coefficient to reduce the parameter
dimensionality as

Yi ¼
Xp
j¼1

Xji � Bj þ ℇi, i 2 1, :::,Mf g, (4)

where Yi is the response tensor i 2 1, :::,Mf g, Xji is the
input tensor i 2 1, :::, Mf g, j 2 1, :::, pf g, Bj is the model
parameter to be estimated, and ℇi is an error tensor. p is the
number of inputs.

The proposed MTOT method addresses the problem of
modeling the relationship between the system output (a sca-
lar, curve, image, or structured point cloud) and heteroge-
neous system input variables. Wang et al. (2021) extended
the MTOT model to address missing data/signal problems
by integrating the concept of tensor completion. Miao et al.
(2022) extended the MTOT regression by considering the
interaction effects of input tensors in the model.

Yue et al. (2020) proposed a Tensor Mixed-Effects (TME)
model to analyze massive HD Raman spectroscopy data
with complex structures. The proposed TME model can (i)
separate fixed effects and random effects in a tensor domain;
(ii) explore correlations along different dimensions; and (iii)
realize the efficient parameter estimation by a proposed
iterative double Flip-Flop algorithm. Yue et al. (2020) also
investigated properties of the TME model, the existence and
identifiability of parameter estimation, and applied it to the
in-line Raman signal monitoring of a nanomanufacturing
process. Gao et al. (2020) proposed an optimal integration
of tensor decomposition and ensemble learning, where ten-
sor decomposition with regularization can select the critical
features and enhance the performance of ensemble learning.
This method has been applied to in-situ quality evaluation
of friction stir blind riveting.

3.3. IPQI for other heterogeneous data types such as
distributed data, categorical data, and event data

Heterogeneous HD data (such as sparse inputs, mixed profile
outputs, event data, categorical data, and point cloud data) can
be generated in some MMPs, which raises new challenges for
IPQI. With the advancements of Machine Learning (ML) algo-
rithms, the IPQI has entered a new era. Here are a few exam-
ples of how ML algorithms were developed to solve IPQI
problems, which involves complex and heterogeneous dataFigure 11. Multichannel Raman spectra, a tensor; A type of tensor decomposition.
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types (such as distributed data, categorical data, and event
data), that conventional methodologies cannot solve.

The first direction is to model the heterogeneous data
distributed in different stages of a production line in MMPs.
MMPs are equipped with complex sensing systems, which
generate data with several unique characteristics: the output
quality measurements from each stage are of different types,
the comprehensive set of inputs (or process variables) have
distinct degrees of influence over the process, and the rela-
tionship between inputs and outputs is sometimes ambigu-
ous, and multiple types of faults repetitively occur during
the process operation. To address those challenges, Wang
and Shi (2021) proposed a holistic modeling approach for
MMPs, aiming at understanding how intermediate quality
measurements of mixed profile/image outputs relate to
sparse effective inputs across the entire MMP.

The second direction involves modeling categorical varia-
bles, denoting the process configurations and product cus-
tomizations. These categorical variables lead to a flexible
relationship between input process variables and output
quality measurements, because there are many potential
configurations of the manufacturing process. It causes sig-
nificant challenges for data-driven process modeling and
root cause diagnosis. To combine both categorical quality
variables and the continuous quality variables, Deng and Jin
(2015) proposed the Quantitative and Qualitative (QQ)
model to combine both types of quality responses in a man-
ufacturing process for joint modeling. Later, Sun et al.
(2017) extended this into functional quantitative and quali-
tative quality response variables. Miao et al. (2022) proposed
a data-driven additive model to address the effects of differ-
ent categorical variables on the relationship between process
variables and quality measurements. The estimation algo-
rithm automatically identifies variables that have a signifi-
cant impact on the product quality, aggregates the levels of
each categorical variable based on a priori knowledge of
level similarity, and provides an accurate model that
describes the relationship between process variables and
quality measurements.

Event data is another common data type in manufactur-
ing systems including maintenance events and failure events,
etc. The first line of research focuses on modeling soft fail-
ure, which is typically modeled by degradation signals.
Techniques such as Bayesian analysis (Gebraeel et al., 2005),
data-fusion-driven prognostics (Liu et al. 2013; Liu and
Huang, 2014; Yan et al., 2016), and deep learning prognostic
analysis methods have been developed (Fink et al., 2020;
Kim and Liu, 2020; Wang et al. 2021). The second line of
research focuses on modeling hard failure, where time-to-
event types of models and point process-based models are
integrated. Rather than modeling each individual event,
recent research has been developed on monitoring and mod-
eling multiple event sequences (Deep et al., 2021a; Deep
et al. 2021b; Jahani et al. 2021). Another direction is to
identify the correct event type from other information,
including the maintenance report and real-time signals. For
example, the word embedding model is developed to cluster
the maintenance reports for different event data

automatically (Bhardwaj et al., 2021). Furthermore, a retro-
spective analysis method (Wang et al. 2021) is proposed to
identify multiple events from the multichannel functional
signals by updating the event signature and sequences.

4. IPQI-enhanced automation

As discussed in the introduction, the IPQI demands further
development of machine automation methods with a focus
on quality improvements by closing the loop of in-process
measurements of quality data, which leads to IPQI enhanced
automation. Depending on system dynamics, characteristics,
measurement information, and control actuator capabilities,
different modeling and control algorithms should be investi-
gated to develop the IPQI-enhanced automation. Here we
discuss four topics related to IPQI-enhanced automation.

4.1. DOE-based automatic process control

Design of Experiments has been widely used in the product
and process design stage. It is often used to conduct efficient
experiments to build a process/product model, based on
which the Robust Parameter Design (RPD) can be per-
formed off-line to effectively minimize the system perform-
ance variation to disturbances that may occur during system
operations. RPD assumes that distributions of noise factors
(or disturbances) are known in the design stage, thus the
control factors can be pre-set to the optimal values that
make the system performance robust to the changes of
noise factors.

In many systems, in-situ sensors are used to measure
some noise factors during system operations. Thus, an
accurate measurement of noise variables can be obtained in
real-time. At the same time, some control factors can be
adjusted online during the system operation, which provides
capabilities to feedback/feed-forward in-line sensing signals
to improve the control performance. Thus, the DOE-based
Automatic Process Control (APC) (Jin and Ding, 2004;
Zhong et al., 2009) was developed to fully take advantage of
in-line sensing, real-time control, and DOE modeling of the
system. The framework of DOE-based APC is illustrated in
Figure 12.

In a DOE-based APC (Figure 12), the process variables
are classified as follows: noise factors as in-line measurable
factors (e) and non-measurable factors (nÞ, control factors
as off-line setting factors (XÞ and in-line adjustable factors
(UÞ: A DOE modeling procedure (Wu and Hamada, 2011)
is adapted to identify the relationships among those

Figure 12. Illustration of DOE-based APC.

IISE TRANSACTIONS 11



variables (bi and Bi, i ¼ 1, 2, 3, 4Þ in the model below:

y ¼ b0 þ bT1X þ bT2U þ bT3 eþ bT4nþ XTB1eþ UTB2e

þ XTB3nþ UTB4nþ �: (5)

Based on the model, an optimal control index is defined as

JAPC X,Ujbe, bb� �
¼ Ee, n,b, � c y� tð Þ2jbe,bb

h i
: (6)

By solving the optimization problem, a DOE-based APC strat-
egy can be obtained for both off-line setting control variables
(XÞ and in-line control variables (UÞ: If model parameter esti-
mation errors are considered in the control law calculation, a
cautious control strategy (Shi and Apley, 1998) can be obtained
to improve the robustness to modeling errors.

The DOE-based APC strategy has broad applications. Any
system that uses DOE to do modeling and robust parameter
design has the potential to apply the DOE-based APC if (i)
there are in-situ sensing to measure noise variables, and (ii)
there are online control/adjustment capabilities for control var-
iables. Furthermore, SPC methods can be used to monitor pro-
cess changes and the adequacy of the DOE model. The
monitoring results can be integrated into supervisory strategies
to achieve supervised DOE-based APC.

4.2. SoV model-based dimensional variation reduction
and control

In an MMP, there are opportunities to make in-line adjust-
ments of tooling settings at stage k to impact the output
quality of this stage, as well as the output quality of all
downstream stages. In the SoV model ð1Þ, such a control
strategy is reflected as the adjustment of uk to impact the
quality yj (j¼ kþ1, … , N). Thus, an SoV model-based con-

trol strategy can be formulated as

J ¼ min
uk, ukþ1, :::, uN

byN=kQbyTN=k (7)

where byN=k is the prediction made at stage k for the final

product quality at stage N as a function of uk, ukþ1, :::, uNf g
and Q is a weight matrix.

The key ideas of the SoV model-based control can be
summarized as follows:

1. At stage k, all quality features (xk) up to stage k can be
obtained via in-situ sensing and estimation.

2. A prediction of the final product quality at stage N is
made by using the SoV model ð1Þ at stage k,
assume uj � 0, j 2 kþ 1, kþ 2, :::, Nf g:

3. An adjustment of tooling locator (uk) at stage k is per-
formed to minimize the variance of the predicted qual-
ity at stage N:

4. At next stage kþ 1, we repeat the steps 1 to 3 until the
product arrives at the final stage N:

The SoV model-based control has been implemented for
dimensional variation reductions in the automotive assembly
process (Izquierdo et al., 2007). The method was further
improved with the Bayesian estimation to adaptively

estimate unknown parameters during production, which
serves as inputs to obtain the optimal control strategy via
dynamic programming (Chaipradabgiat et al., 2009). To
address model uncertainties, SoV-based cautious control was
investigated for MMPs (Zhong et al., 2010).

4.3. Tensor-based feedback control

Based on the tensor-on-tensor regression method, Zhong et al.
(2022) proposed an image-based feedback control method
where the system outputs are image/video signals with tem-
poral and spatial correlation. Zhong et al. (2022) developed a
novel tensor-based process control approach by incorporating
the tensor time series and regression techniques, which models
the image output as a tensor Yt at time t:

Yt ¼ Rp
j¼1Yt�j � Aj þ Rl

n¼1Xt�n � Bn þ Et , (8)

where Xt is the control signal and Et is the temporally corre-
lated error at time t. Aj, j 2 1, :::, pf g and Bn, n 2 1, :::, lf g
are coefficient tensors. Using Tensor Basis representation, we
have:

Bn ¼ CBn�1UBn1:::�lUBnl�lþ1VBn1�lþ2:::�lþdVBnd, (9)

Aj ¼ Cj�1Uj1�2:::�dUjd�dþ1Vj1�dþ2:::�2dVjd, (10)

where U and V are orthogonal basis matrices and C is the
core tensor. The unknown parameters to be estimated con-
stitute C, U,V to get A and B: More discussions on the
notations and modeling algorithems can be found in Zhong
et al. (2022). By using tensor representation, the number of
parameters to be estimated is reduced from 4:3� 109

unknown parameters to 3153 unknown parameters, if we
assume that a 256� 256 image is used as the system output.

Based on the process model (8), a control law Xt is
obtained by minimizing an objective function;

min
Xt

E bY tþ1 Xtð Þ � T
� �2

, (11)

where bY tþ1 Xtð Þ is the one-step-ahead prediction made at
time t, and T is the control target.

It should be pointed out that the image-based feedback
control is still in its infant stage. There are strong assump-
tions to obtain model ð8Þ: the low-rank property of control
signals and response signals. There are a few topics worthy
of further investigation, including (i) how to relax low-rank
assumptions; (ii) how to consider model parameter and
modeling uncertainties; (iii) how to adopt model predictive
control concepts, and using a sliding prediction horizon (Shi
and Apley, 1998), instead of one-step-ahead output predic-
tion, as the objective function; and (iv) how to address the
heterogeneous outputs with a mixture of images, functional
curves, etc.

4.4. Automatic shape control for composite fuselage
assembly

Another important IPQI issue in the aerospace industry is
the automatic shape control for composite fuselage assembly.
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Due to the dimensional variation among fuselages, there
could be a mismatch, or gap, between two fuselages to be
joined (Gates, 2007; Sloan, 2020), as shown in Figure 13.
Thus, two fuselages need shape control methods to adjust
their dimensions to match each other for assembly. In order
to realize automatic shape control for the composite fusel-
age, efforts have been made to develop the foundation of
fuselage control concerning (i) the modeling of the fuselage
control systems; and (ii) the development of optimal con-
trol algorithms.

4.4.1. Modeling of the fuselage assembly system
The shape control for fuselage assembly requires modeling
the relationships between the fuselage shape deviation (Yk)
and the actuator inputs (Fk), which can be represented as

Yk ¼ f ðFkÞ þ e

In order to find the relationship, various efforts have
been made with different assumptions and conditions. Yue
et al. (2018) developed a surrogate model considering uncer-
tainties (e.g., actuators’ uncertainty, part uncertainty, and
unquantified uncertainty), and derived the best linear
unbiased predictor for this model. Zhang and Shi (2016a,
2016b) proposed the SoV modeling for compliant composite
parts, in which the part manufacturing error, fixture pos-
ition error, and relocation-induced error are integrated
within a state space model. Wen et al. (2018, 2019) devel-
oped a finite element simulation platform to exactly mimic
the fabrication process of composite fuselages, which consid-
ers the detailed material property, ply design, fixture struc-
ture, and actuators installation. The simulation platform was
calibrated with real fuselage experimental data by using the
sparse learning method (Wang et al., 2020), and then it was
used to conduct feasibility analysis, virtual assembly, and
stress analysis for composite fuselage assembly.

4.4.2. Optimal control of the fuselage assembly
Based on the model of the shape control system, an optimal
control strategy is obtained by minimizing the gap between
the deviations of a real fuselage from its target shape, e.g.,

F� ¼ argmin
F

J ¼ Yc þ YðFÞ � Y�ð ÞTW Yc þ YðFÞ � Y�ð Þ,

where Yc is the initial dimension, YðF) is the magnitude of
the shape change due to actuator force F, and Y� is the tar-
get shape. To obtain the control law, initial efforts were
made to develop an accurate predictive model for the shape
control of a fuselage (Yue et al., 2018). However, each fusel-
age may have its own unique dimension errors in practice.
Thus, it is desirable to place the actuators at the best posi-
tions on the edge of a fuselage, which will lead to the best
shape control precision while minimizing the adjustment
forces. This was a challenging problem until Du et al. (2019)
applied the sparse learning method to find the optimal loca-
tions for actuators and the optimal force applied by each
actuator. In the sparse learning method, the actuator loca-
tion selection problem was formulated into a convex opti-
mization problem, which minimizes the loss function

LðFÞ ¼ Wþ UFð ÞTB Wþ UFð Þ þ kkFk1: In this function, W
represents the initial shape distortions, U represents the dis-
placement matrix, F is the force vector associated with the
actuators. B is a diagonal weighted matrix indicating the
importance of different measurement points. By regularizing
the L1 norm of F, a limited number of actuators’ locations
will be selected to conduct the shape control.

Considering the modeling error in parameter estimations,
a cautious control method (Zhong et al., 2021) is developed
to improve the robustness of the control results. Recently, a
sparse sensor placement-based adaptive control strategy
(Mou et al. 2021) has been developed to actively compensate
the control performance based on the feedback information.
To this end, a minimal subset of in-situ dimensional meas-
urements is obtained to efficiently reconstruct the entire
response surface based on the concept of compressive sens-
ing and this information is applied to the perturbed system
caused by process and product variability for feed-
back control.

Even though this subsection discusses the dimensional
shape control for fuselage assembly, the concepts and proce-
dures are applicable to other assembly processes where there
are larger inherent dimensional variations on each part/sub-
assembly, and meanwhile, there are high precision require-
ments on the assembled products.

5. The future of IPQI methodologies and
applications

We are currently in the era of Industry 4.0. The rapid
advancements in sensor technologies, communication net-
works, and computing power have resulted in temporally
and spatially dense data-rich environments in modern man-
ufacturing systems. In addition to the volume, the data have
an increased complexity such as streaming data, spatial-tem-
poral structures, or network relationships; please refer to a

Figure 13. Illustration of Shape control of composite fuselage: (a-b) dimen-
sional gap between two fuselage sections (Gates, 2007; Sloan, 2020); (c) shape
control system with actuators, and (d) stress analysis for shape control (Wen
et al., 2018).
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recent book dedicated to the same challenges in the nano-
material and nanomanufacturing (Park and Ding, 2021).
Furthermore, the Industrial Internet of Things (IIoT) pro-
vides a great capability for data harvesting, which leads to
deeply intertwined physical and software components
(Nguyen et al., 2021). The IPQI for such a sophisticated
cyber-physical system will demand interdisciplinary efforts
to capture and characterize many challenges associated with
collecting, managing, analyzing, and visualizing massive
amounts of data. In detail, these challenges/opportunities
can be put into four categories:

� Data harvesting and curation. With the arrival of tremen-
dous amounts of data in contemporary smart manufac-
turing systems, organizing, labeling, and curating the
data for effective learning and knowledge extraction
remains challenging.

� Application of emerging ML and Artificial Intelligence
(AI) techniques to IPQI. Many recently developed ML/AI
techniques have demonstrated significant modeling and
predictive power for complex engineering problems such
as image analysis, natural language processing, etc.
Applying these techniques to IPQI presents a significant
opportunity in achieving the next quantum leap in IPQI.

� Application of IPQI strategies to emerging manufacturing
processes. In addition to traditional metal-based manufac-
turing processes, IPQI can be applied to other manufac-
turing processes such as additive manufacturing, nano/
bio manufacturing processes, and process industry and
create significant quality improvements.

� Cybersecurity issues in smart manufacturing. The wide
application of information technology in manufacturing
systems creates great opportunities for smart process con-
trol and operations. However, those opportunities are
accompanied by more potential security vulnerabilities.
Hence, cybersecurity issues need to be addressed to confi-
dently apply and implement IPQI strategy in manufactur-
ing, which heavily depends on information technologies.

The following list of topics consists of timely topics of
IPQI worthy of further investigation according to the
author’s point of view. However, it is not intended to be a
comprehensive list of all future IPQI research topics; rather,
it is intended to serve as inspiring examples and guiding
directions that could be extended to more open issues and
applications in the years to come.

5.1. Data harvesting and curation

(1) Automatic data pre-processing, synchronization, and
alignment: In an MMP, sensing data are continuously
collected over time by each process sensor. In order to
conduct meaningful data analytics, the data need to be
processed to make the sensing data aligned with indi-
vidual product and tasks. (i) In a discrete part manu-
facturing process, efforts are needed to connect those
continuous sensing data from all MMP with each
product and further align them correctly. The

abnormal parts or signals need to be identified and
cleaned in this effort. More complexity may occur if
the MMP has a mix of serial-parallel configurations.
To this end, Miao et al. (2022) have made some initial
efforts for hot rolling processes. More efforts are
needed to make such automatic process-to-product
data connections and alignments. (ii) In a continuous
manufacturing process, a series of chemical/physical
actions occur one after another. Each action may
involve different process variables with different rela-
tionships. It is essential to automatically detect the
change points of such a process action and automatic-
ally identify the clusters of variables associated with
each change/action. Zhang et al. (2021) investigated
dynamic clustering of functional data assuming that
functional data has the same mathematical basis in
each segment. Qian et al. (2017) and Qian et al.
(2019) investigated, both retrospectively and prospect-
ively, change detection for delineating the growth
stages in nanomaterial production. Overall, manually
aligning, segmenting, and labeling the data could be
very time-consuming in practice. There is a strong
demand to develop more generic, robust, and scalable
algorithms to automate this process.

(2) Holistic retrospective data analytics: In practice, the
massive data generated from a production system are
not re-visited again, which leads to a significant loss
of information and knowledge. As an example, one
day of production in a semiconductor plant will gen-
erate 2TB of data. Less than 20% of those data are
processed for quality control and system improve-
ment, and more than 80% of data has less usage or
has not been processed. Thus, holistic retrospective
data analytic methodologies are needed to systematic-
ally identify special events that occurred in specific
production periods, and further identify when they
occurred and which variables/machines/products are
involved in those special events. This retrospective
data analysis will provide opportunities to find the
relevant datasets, develop models, and further develop
decision-making algorithms that are capable and effi-
cient for the IPQI in future production systems. Wang
and Shi (2021) explored this idea in a hot rolling pro-
cess, but more investigations on this topic are needed.

(3) Synthetic defect data generation: Nowadays, companies
attempt to train automatic inspection or diagnostic
systems based on ML techniques. However, one main
challenge of building such an ML-based system is the
lack of defect samples in the training dataset because:
(i) the in-control manufacturing process is data-rich
but defect-rare, which creates a highly imbalanced
training dataset. Using those imbalanced datasets will
lead to very low or even no detection in conventional
classification methods (Byon et al., 2010); (ii) the lack
of defect annotations due to the expensive and time-
consuming defect labeling process, which requires
domain expertise and needs to be conducted by expe-
rienced engineers. To circumvent the challenge of the
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scarcity of defect data, developing effective synthetic
defect data generation is critical. Synthetic data gener-
ation has been studied in autonomous vehicles and
robotic navigation (Tsirikoglou et al., 2017) and
healthcare (Walonoski et al., 2018), where data is hard
to collect, but a large amount of data is needed. We
also note that one branch of methods in handling
imbalanced datasets is based on synthetic data gener-
ation (Chawla et al., 2002; Pourhabib et al., 2015).
However, the explorations in the advanced manufac-
turing field are limited (Bo et al., 2020; Niu et al.,
2020; Li et al. 2021), where the integration of ML
techniques with physical knowledge of the manufac-
turing process plays an important role. More discus-
sions on synthetic data generation can be found in
Libes et al. (2017).

5.2. Application of emerging ML/AI techniques to IPQI

(1) Deep learning-enabled IPQI: Deep learning has
achieved great success in many different domains,
such as computer vision and natural language process-
ing. Many ongoing efforts apply deep learning meth-
ods to the monitoring and modeling of manufacturing
systems. Related to process monitoring, given no
labeled data is provided, initial efforts such as autoen-
coders (Alfeo et al., 2020), variational autoencoders
(Sergin and Yan, 2021), and generative adversarial
learning (Yan et al. 2019; Kusiak, 2020) have been
developed for process monitoring of images or profile
data in a manufacturing system. Related to failure
mode classification and quality prediction, recurrent
neural networks (Mozaffar et al., 2018; Tian et al.,
2021; Wang et al. 2021) and convolutional neural net-
works (Lee et al., 2017; Guo et al., 2022) have been
developed. Bayesian neural networks have also been
developed to quantify the uncertainty in a manufac-
turing system (Ferreira et al., 2019). Recently, there is
also some research focusing on utilizing deep learning
for joint modeling of multiple manufacturing stages
transitions (Yan et al. 2021), with the ability to iden-
tify the most important input variables in each stage.
However, the adaptation of deep learning methods to
heterogeneous data, unstructured point cloud data,
and HD streaming data in manufacturing systems
with moderate sample sizes remains an open challenge
and is worthy of further investigation. Please refer to
Wang et al. (2018) for a more detailed review of deep
learning methods in manufacturing systems.

(2) Reinforcement learning-enabled data-driven automation
control for IPQI: The ubiquitous data and information
flows provide us with new opportunities for the con-
trol and automation of manufacturing systems. As
mentioned before, DOE-based APC and surrogate
model-based control are two examples that leverage
data-driven methods to estimate the model for
improving control and automation. It can be foreseen
that manufacturing automation will be dramatically

enhanced at the device level, machine level, and sys-
tem levels via interconnected cyber physical systems
by making full use of the data resources and ML tech-
niques such as Reinforcement Learning (RL). Recently,
RL has achieved great success in the ML literature.
For example, AlphaGo and AlphaZero have been
developed to master chess, shogi, the game of Go,
which can realize self-play without human interven-
tions and can beat human experts (Silver et al. 2017;
Silver et al., 2018). However, such a RL strategy
requires a large number of simulated games, and the
amount of data required to learn an action policy may
be infeasible for manufacturing systems. Furthermore,
these RLs are typically applied to simulated games
with little randomness or noise. Some initial efforts on
applying RL to manufacturing systems have emerged
for maintenance optimization (Xanthopoulos et al.
2017; Liu et al., 2020; Yang et al., 2021), task schedul-
ing (Park et al., 2019; Dong et al., 2020), and adaptive
control (Dornheim et al., 2020; Kuhnle et al., 2021).
More research is needed to apply RL methods for
quality improvement in manufacturing systems. At
this stage, it remains unclear whether an AI-based sys-
tem (or an “AlphaZero” for manufacturing) can
achieve self-optimization and automatic IPQI of man-
ufacturing systems or even outperforms human manu-
facturing experts under some scenarios.

(3) Transfer learning and domain adaptation learning-
enabled IPQI: One specific challenge about the manu-
facturing system is that each manufacturing process is
unique due to different physical processes, different
machines, and different process settings. Unlike com-
puter vision or natural language processing, there is
no “gold standard” dataset that can be used for all
manufacturing systems. Even within the same manu-
facturing process, such as additive manufacturing,
each part design is unique and leads to completely dif-
ferent process variable observations. Being able to
transfer the knowledge from one manufacturing pro-
cess (i.e., source domain) to the other (i.e., target
domain) is essential to obtain an accurate model for a
new manufacturing process even with limited data. To
address this challenge, transfer learning and domain
adaptation learning techniques (Azamfar, Li, and Lee,
2020) are developed for quality modeling (Cheng
et al., 2017; Sabbaghi and Huang, 2018; Li et al. 2021)
and statistical process control (Tsung et al., 2018).
More efforts are needed to identify which knowledge,
at what level and accuracy, in what format, to conduct
transfer learning for a given class of manufactur-
ing systems.

(4) Weakly supervised learning: A broad field to deal with
limitations in the quantity and quality of labeled sam-
ples is known as weakly-supervised learning. Weakly-
supervised learning assumes that for an unlabeled or
partially labeled sample Y, there may be domain or
within-data knowledge that can provide some weak
labelling information of Y. Weakly-supervised learning
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can be divided into three major sub-fields: (i)
Incomplete-supervision: only a subset of samples is
labeled, (ii) inexact-supervision: only coarse labels are
available, and (iii) inaccurate-supervision: given labels
are not always ground truth (Zhou, 2018; Nodet et al.,
2020). Incomplete supervision is often expected in the
quality control of an industrial process, where anom-
aly labels are scarce by nature, or comprehensive qual-
ity testing to produce enough accurate labels is costly
and possibly infeasible. One example is the laser weld-
ing application, in which error events can be distin-
guished from regular frames in terms of their spatial
appearance and temporal dynamics, whose class labels
are only available for the complete sequence, and the
quality of the produced part is determined to be either
error-free or faulty (Jager et al., 2008). Two major
sub-fields that branch from incomplete supervision are
active learning (Settles, 2009) and semi-supervised
learning (Chapelle et al., 2006; Zhu, 2008; Zhou and
Li, 2010).
Active learning assumes that we can interactively

query an ‘oracle’, such as a human expert, to get labels
for selected unlabeled samples (Settles, 2009). In the
statistical literature, it is sometimes also called sequen-
tial experimental design. Conventional ML models
acquire a training dataset first before training, whereas
the active learning approach queries the data inter-
actively to maximize the data efficiency and ultimately
reduces the number of samples needed for labeling.
Readers are referred to Shim et al. (2021) for initial
use of the active learning approach in manufacturing
systems.
Semi-Supervised Learning (SSL) assumes no ‘oracle’

intervention; instead, it aims to integrate labeled and
unlabeled samples to train a model to predict or clas-
sify Y (e.g., product quality varables) using X (e.g.,
process variables). There are different types of SSL
algorithms such as cluster-based methods (Chapelle,
Weston, and Sch€olkopf 2003) and graph-based meth-
ods (Blum and Chawla 2001). Readers are referred to
Okaro et al. (2019) and Kang et al. (2016) for some
applications of SSL in manufacturing.

(5) Distributed computing and federated learning: Industry
4.0 emphasizes interconnected systems, cyber-physical
systems, and IIoT, which generates tremendous data
to represent system operation conditions and perform-
ances. Overall, the amount of data collected in the
entire manufacturing system is too large to be ana-
lyzed by existing cloud data storage and cloud com-
puting, due to the communication loss. In order to
effectively take advantage of cloud data storage and
cloud computing, several fundamental problems need
to be addressed, including how to extract valuable and
relevant information quickly, how to decide what data
should be calculated locally and what should be sent
to the server. For IPQI, those questions are more rele-
vant, as it typically requires real-time decision-making.
A system failure analysis should be well conducted to

provide a basis for those decisions. Another related
challenge is the data fusion for time-variant sampling
data: the in-situ data may have different sampling fre-
quencies, including high frequency, such as vibration,
intermediate frequency, such as pressure or tempera-
ture, and low frequency such as the quality measure-
ment for discrete parts. There are some initial efforts
in this direction: On the software side, the usage of
distributed computing platforms such as Apache
Hadoop and Spark has enabled large-scale distributed
computing. On the algorithm side, methods such as
federated learning have enabled efficient model infer-
ence without aggregating the raw data across different
machines while obtaining the near-optimal solution in
a reasonable amount of computational time. Interested
readers are referred to O’Donovan et al. (2015) and
Kusiak (2017) for a review of big data challenges in
manufacturing systems and federated learning.

5.3. IPQI application to emerging manufacturing processes

3D printing, or Additive Manufacturing (AM), has been
increasingly adopted in the defense, aerospace, and medical
industries. Various in-situ sensing systems have been
installed to monitor AM processes in real-time to prevent
poor dimensional tolerances, surface roughness, and materi-
als and structural defects (Tapia and Elwany, 2014; Rao
et al., 2015). An important direction is how to achieve in-
situ product evaluation and quantification on the material
or functional characteristics, which provides confidence on
the part and saves time from the post-fabrication evaluations
(Mani et al., 2017). To this end, IPQI is a very suitable
framework to conduct data fusion for real-time monitoring
and anomaly detection to enable in-situ product evaluation
and quantification. To achieve this goal, a model needs to
be developed to link the raw material properties, product
design, in-situ sensing signals during printing, and post-print-
ing part testing and quantifications. Uncertainty quantifications
and analysis should be conducted to consider the impacts of
data acquisition, signal-to-noise ratio, and tolerance of the
engineering specifications (Colosimo et al., 2018).

5.4. Cybersecurity issues in IPQI

In the era of Industry 4.0, the increased software-defined
automation, control, and monitoring of manufacturing
assets across connected networks also increase the risk of
cyber-attacks. The cyber-threats may compromise the integ-
rity of manufacturing assets (manufacturing systems and
processes, machine tools, fabricated parts), reduce manufac-
turing productivity, and increase costs. Some cyber-threats,
including integrity attacks, are only partially observable in
cyberspace alone, and therefore need to be detected and
diagnosed through the inter-dependency analysis of both
cyber and physical signals. Thus, there is a significant
opportunity to jointly analyze physical and cyber signals to
advance the trustworthiness and resilience of manufacturing
system operations. By utilizing the inherent strength of IPQI
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methodologies such as the monitoring and control of the
complex system via in-situ sensing data, there is a significant
opportunity to extend IPQI to perform Cyber-threat
Detection and Diagnosis (CDD) in manufacturing systems.
The IPQI-CDD framework should monitor various cyber
and physical signals and perform cyber-threat detection and
root cause diagnosis through advanced cyber-physical data
fusion and taint analysis. The goal is to enable the preven-
tion and mitigation of potential harms at an early stage via
proactive and predictive countermeasures and system design.
This effort needs to integrate and analyze the in-situ process
and quality signals and the signals from cyber networks of
manufacturing systems to detect and diagnose cyber-threats.
New data analytics methodologies are to be developed to
integrate cyber and physical signals to gain the fundamental
understanding of cyber-threat detection and diagnosis in
manufacturing systems, and to further expand to other
cyber-physical systems. In line with the IPQI principles,
engineering domain knowledge needs to be integrated to
analyze and synthetically generate attacks on CPS and
develop a comprehensive and holistic CDD framework. The
underlying data assumptions of IPQI methodologies need to
be revisited in the face of adversarial, stealthy attacks exe-
cuted by intelligent attackers of a CPS, and novel methodol-
ogies need to be developed accordingly. Readers are referred
to Elhabashy et al. (2019) for more discussions on
this topic.

6. Summary

This article provides a historical review of the evolution of
concepts, methodologies, and applications of the IPQI
research and applications. The IPQI methodologies have
been evolving and call upon significant new developments
due to (i) the advancements of advanced data analytics and
ML/AI techniques and unprecedented computation capabil-
ities; (ii) the availability of tremendous sensing signals, data
acquisition, and networking capabilities; and (iii) the require-
ments of high precision, performance, productivity, flexibility,
agility, and low cost in manufacturing systems. The author’s
sincere belief is that IPQI will advance alongside Industry 4.0,
Cyber-Physical Systems, Smart Manufacturing, and in general,
the advancements of modern manufacturing systems.
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