
IISE Transactions

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/uiie21

Physics-Informed Neural ODE with Heterogeneous
control Inputs (PINOHI) for quality prediction of
composite adhesive joints

Yifeng Wang, Shancong Mou, Jianjun Shi & Chuck Zhang

To cite this article: Yifeng Wang, Shancong Mou, Jianjun Shi & Chuck Zhang (30
Oct 2024): Physics-Informed Neural ODE with Heterogeneous control Inputs
(PINOHI) for quality prediction of composite adhesive joints, IISE Transactions, DOI:
10.1080/24725854.2024.2408546

To link to this article:  https://doi.org/10.1080/24725854.2024.2408546

View supplementary material 

Published online: 30 Oct 2024.

Submit your article to this journal 

Article views: 76

View related articles 

View Crossmark data

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uiie21

https://www.tandfonline.com/journals/uiie21?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/24725854.2024.2408546
https://doi.org/10.1080/24725854.2024.2408546
https://www.tandfonline.com/doi/suppl/10.1080/24725854.2024.2408546
https://www.tandfonline.com/doi/suppl/10.1080/24725854.2024.2408546
https://www.tandfonline.com/action/authorSubmission?journalCode=uiie21&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=uiie21&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/24725854.2024.2408546?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/24725854.2024.2408546?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2024.2408546&domain=pdf&date_stamp=30%20Oct%202024
http://crossmark.crossref.org/dialog/?doi=10.1080/24725854.2024.2408546&domain=pdf&date_stamp=30%20Oct%202024
https://www.tandfonline.com/action/journalInformation?journalCode=uiie21


Physics-Informed Neural ODE with Heterogeneous control Inputs (PINOHI) 
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ABSTRACT 
Composite materials have long been used in various industries due to their superior properties 
such as high strength, light weight and corrosive resistance. Bonded composite joints are finding 
increasing applications, as they provide extensive structural benefits and design flexibility. On the 
other hand, the failure mechanism of composite adhesive joints is not fully understood. A model 
that bridges manufacturing parameters and final quality measures is highly desired for the design 
and optimization of the manufacturing process of composite adhesive joints. In this study, a novel 
framework of Physics-Informed Neural Ordinary Differential Equation (ODE) with Heterogeneous 
Control Input (PINOHI) is proposed, which links the heterogeneous manufacturing parameters to 
the final bonding quality of composite joints. The proposed model structure is heavily motivated 
by engineering knowledge, incorporating a calibrated mathematical physics model into the Neural 
ODE framework, which can significantly reduce the number of data samples required from costly 
experiments while maintaining high prediction accuracy. The proposed PINOHI model is imple
mented in the quality prediction of composite adhesive joints bonding problem. A set of experi
ments and associated data analytics are conducted to demonstrate the superior property of the 
PINOHI model by using both the leave-one-batch-out cross-validation and sensitivity analysis.
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1. Introduction

With the increasing use of composite materials in aviation and 
aerospace industries for weight reduction and energy efficiency 
improvement, adhesive joining has received much more interest 
at an unprecedented rate as a major manufacturing process. 
Composite adhesive joining uses specially designed adhesive 
pastes or films to bond composite panels. Compared with trad
itional mechanical fasteners, such as riveted or bolted joints, 
composite adhesive joining can significantly reduce weight and 
avoid material damage and stress concentrations.

As shown in Figure 1 and Table 1, composite adhesive 
joints are made from complicated, Multi-stage Manufacturing 
Processes (MMPs), involving material thawing, panel fabrica
tion, surface treatment, and joint curing, followed by a lap 
shear testing process. The input (control variables) and output 
for each stage of the MMP can be multiple heterogeneous 
manufacturing parameters, in the form of scalar, functional 
curve, matrix, and tensor, whose effects can propagate from 
the current stage to the downstream stages and finally impact 
the bonding quality. In addition, the anisotropy of composite 
materials and the chemical and physical reactions during each 
stage also add to the complexity.

Accurate mechanical property knowledge and characteriza
tion of the adhesive bonded joints, with respect to the manu
facturing process, is not only of critical safety consideration, 

but also important in bonding quality prediction, design opti
mization, and root cause diagnosis. A common metric of the 
bonding quality is the bonding strength which is the output of 
a destructive test performed on lap joints. Such mechanical 
tests generate load–displacement curves that characterize the 
mechanical property of the adhesive bonding. Based on the 
load–displacement curves, one can further derive stress–strain 
curves, bonding strength, overall bonding stiffness at different 
strain levels, total energy required to cause failure, etc. 
However, destructive tests are often expensive and time- 
consuming.

In order to proceed to the downstream tasks such as 
design optimization and root cause diagnosis, it is highly 
desirable to develop an end-to-end model that links hetero
geneous manufacturing parameters in the manufacturing 
processes and the output of the destructive testing process 
for bonding quality prediction. Numerous efforts on phys
ics-based modeling (Owens and Lee-Sullivan, 2000a; Deb 
et al., 2008; Zimmermann et al., 2022) have been made to 
understand the lap shear testing process. In those studies, 
assumptions are typically made that the lap shear testing 
process is governed by a set of Ordinary/Partial Differential 
Equations (ODEs/PDEs). Computer simulations, such as 
Finite Element Analysis (FEA), are utilized to emulate the 
underlying relationships. However, such simulations are 
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often computationally expensive and suffer from over- 
simplified assumptions. Also, those models often take mater
ial properties (e.g., Young’s modulus, Poisson’s ratio) and 
geometric dimensions as inputs, and the bonding strength 
or stiffness as the output/result. These material properties 
are results of the upstream manufacturing stages, which are 
often unknown functions of the manufacturing parameters 
and cannot be measured directly. Additionally, due to the 
complex chemical and physical interactions and heteroge
neous process parameters during manufacturing processes, 
physics-based models usually restrain their scopes to the 
mechanical testing stage itself.

On the other hand, researchers also explored data-driven 
models (Kang et al., 2021; Wang et al., 2023), attempting to 
bridge manufacturing parameters and mechanical properties. 
This usually requires massive amounts of experimental data to 
build a model with high confidence, especially when there are 
multiple heterogeneous process parameters involved. Such 
methods are typically infeasible for composite adhesive joints, 
as costly destructive tests lead to data scarcity in practice.

To mitigate the issue of lacking labeled data for training, 
combining physics-based models and data-driven methods 
to exploit the advantages of each technique is of significance. 
The lap shear testing stage shown in Figure 1 can be esti
mated as a collection of springs (Owens and Lee-Sullivan, 
2000a) under a quasi-static tensile loading with certain 
assumptions, which is a first-order dynamical ODE system 
in terms of load with respect to displacement. With 
unknown system parameters determined by the manufactur
ing parameters, the Neural ODE (Chen et al., 2018) will be 
a natural choice to model this system. However, the original 
Neural ODE structure only takes the system state with its 
derivatives as inputs, ignoring related manufacturing param
eters in the upstream stages. In other words, it focuses on 
the evolution of the system state in the testing stage, but not 
the relationships between those manufacturing parameters 
with the quality measures of the final product. Also, Neural 
ODE incorporates physics by approximating the underlying 
ODE using a neural network instead of considering any 
known or partially known governing physical equations.

To address these challenges of data shortage and end-to- 
end physics learning, a novel framework of the Neural ODE 

structure with additional heterogeneous manufacturing con
trol inputs and explicit physical knowledge embedding 
(PINOHI) is proposed. It addresses those challenges and dif
ficulties by

1. Integrating physics knowledge into the Neural ODE 
framework in addition to the ODE structure.

2. Generalizing the Neural ODE framework by incorporat
ing additional upstream heterogeneous manufacturing 
parameters as control inputs, such that it can leverage 
product quality and process features and be used for 
control purposes.

3. Pre-determining the model structure for variable selec
tion based on engineering domain knowledge to reduce 
the amount of training data required to obtain adequate 
accuracy.

4. Optimizing the data-driven model and the calibration 
process of the physics-based model in an end-to-end 
fashion to obtain a better predictive performance.

The primary contribution of this article lies in the appli
cation of a novel modeling framework to the field of com
posite material/structure manufacturing and maintenance, 
which involve complicated processes but lack adequate phys
ical understanding. Unlike existing efforts focusing only on 
the testing process (stage V in Figure 1) modeling of com
posite adhesive joints, the proposed PINOHI framework is 
an end-to-end model that takes heterogeneous manufactur
ing parameters as inputs and covers both manufacturing 
and testing processes (stages I-V in Figure 1), which pro
vides a key contribution and insight to quality characteriza
tion and downstream manufacturing optimization. 
Specifically, the contributions of this article are summarized 
as follows:

1. We propose a novel modeling framework, PINOHI, for 
quality prediction using heterogeneous manufacturing 
parameters, which is the first end-to-end model for the 
application of composite adhesive joints. It is a pioneer
ing framework of the Neural ODE structure with add
itional heterogeneous manufacturing control inputs and 
explicit physical knowledge embedding.

Figure 1. MMPs of composite adhesive joints.
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2. The proposed PINOHI framework integrates the 
known/partially known physics knowledge and the 
modeling capability of the Neural ODE structure in 
solving dynamical systems, achieving superior predictive 
performance with limited experiment data.

3. The proposed PINOHI framework is extendable to gen
eral dynamical systems where the governing equation is 
an ODE given physics knowledge that can be repre
sented by an analytical model or numerical method.

The remainder of this article is organized as follows. 
Section 2 gives a brief literature review of related work. 
Then, the proposed PINOHI framework is introduced in 
Section 3. In Section 4, the application of the proposed 
framework to quality prediction of composite adhesive joints 
is presented. Finally, a conclusion and outline of future 
research directions are discussed in Section 5.

2. Related work

The composite in this article specifically refers to Carbon Fiber 
Reinforced Polymer (CFRP). The adhesive joint configuration 
is the classic single-lap joint, whose modeling has been exten
sively studied (Banea and da Silva, 2009). The majority of exist
ing modeling work focuses on physics-based methods. The 
typical physics-based model for the testing processes of brittle 
composite adhesive joints is the Cohesive Zone Model (CZM) 
(Dugdale, 1960) with a simplified bi-linear (triangular) trac
tion-separation law and a homogeneity assumption in FEA to 
emulate the evolution of the fracture process. Early attempts 
(Pereira et al., 2010; Song et al., 2010) were made to explore the 
relationship between manufacturing parameters (or methods) 
and the bonding quality through an experimental or numerical 
approach. Utilizing CZM, a parametric numerical study was 
conducted by Neto et al. (2012) on single-lap joints with differ
ent adhesives and overlap lengths to predict bonding strength. 
Campilho et al. (2013) compared different CZM laws with tri
angular, exponential, and trapezoidal shapes for single-lap 
joints with brittle and ductile adhesives, where the numerical 
results closely agree with experimental data in the linear stage, 
but not for the following nonlinearity in the load– 
displacement curve. Nastos and Zarouchas (2022) developed a 
stochastic finite element model considering the uncertainties of 
mechanical properties of the constituent materials, focusing on 
strength prediction.

In addition to finite element simulations, mechanics- 
based theoretical results have also been explored by 
researchers. Owens and Lee-Sullivan (2000a, 2000b) devel
oped a theoretical model for the stiffness behavior in an 
adhesively bonded composite-to-aluminium single-lap joint. 
They modeled it as a collection of springs, which is a first- 
order dynamical system and verified it through an experi
mental study, which generally well predicts the stiffness 
change due to crack growth. Considering out-of-plane 
deflection due to tensile loading and asymmetric geometry, 
Zimmermann et al. (2022) derived an analytical estimate of 
the adhesive bonding stiffness, which offers a more compre
hensive result.Ta
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Physics-based models often rely on strong assumptions 
about material and geometric properties, which can lead to 
model discrepancy. In addition, they can only model testing 
processes, whose inputs are usually unknown functions of 
manufacturing parameters. Therefore, additional modeling 
effort is needed to further: (i) calibrate the physical model; 
and (ii) bridge the end-to-end relationship between manu
facturing parameters and final quality measure. For the first 
point, data-driven methods are used. Gu et al. (2021) pre
dicted the failure load of joints using a Deep Neural 
Network (DNN) with geometric and material inputs to 
obtain the optimal design of the structure. Freed et al. 
(2022) utilized Gaussian Process Regression (GPR) to find 
the optimal failure parameters trained by mixed mode bend
ing samples simulated by CZM. These parameters were then 
verified by resultant failure strength with different adhesive 
thicknesses. However, models that attempt to link manufac
turing parameters with final quality measures, have not been 
fully explored. Preliminary efforts (Kang et al., 2021; 
Sommer et al., 2022; Wang et al., 2023) have been made to 
reveal the connection between the manufacturing parameters 
and mechanical properties of the adhesive itself using 
machine learning methods, rather than the whole manufac
turing process. Rangaswamy et al. (2020) linked two manu
facturing parameters, bonding length and adhesive 
thickness, to the bonding strength using a DNN, which are 
only a small subset of all manufacturing parameters.

Physics-Informed Machine Learning (PIML) has great 
potential to simultaneously complete the two tasks, physical 
model calibration and end-to-end modeling, by seamlessly 
incorporating known or partially known mathematical phys
ics models with data (Karniadakis et al., 2021). Adopting a 
physics-informed loss function to incorporate the governing 
PDE, Raissi et al. (2019) proposed a Physics-Informed Neural 
Network (PINN) framework for forward and inverse prob
lems. Chen, Liu, and Sun (2021) integrated sparse regression 
with PINN to efficiently identify the key parameters from 
scarce data for PDE discovery in nonlinear spatiotemporal 
systems. Another important innovation of PIML is the 
Neural ODE framework introduced by Chen et al. (2018), 
which is designated to emulate the ODE dynamics end-to- 
end with a continuous depth. Liu et al. (2022) preserved the 
PDE form in a neural network by discretizing it on a finite 
difference grid and representing it by a Convolutional Neural 
Network (CNN) with fixed weights. In the autoregressive 
stepping of the Neural ODE framework, preserving the math
ematical form of the governing PDE, even partially, could 
mitigate the issue of error accumulation, since it carries the 
underlying physics information. Wang et al. (2022) extended 
the Neural ODE framework with deterministic and stochastic 
encoders (NP-ODE) to build a physics-informed data-driven 
surrogate for FEA simulations with uncertainty quantifica
tion. Sholokhov et al. (2023) proposed a Physics-Informed 
Neural ODE (PINODE) model by adding an additional collo
cation reconstruction loss term to the ordinary loss function 
when building autoencoder-based Reduced-Order Models 
(ROMs).

In terms of the application of PIML to the area of com
posites, Tao et al. (2021) employed the Neural ODE frame
work with a b-variational autoencoder for feature extraction 
to learn the underlying dynamics of the damage accumula
tion mechanism that describes the stiffness degradation of 
composite laminates by an ODE. Sharma et al. (2021) 
adopted PINNs to estimate the stresses in the tablets and 
interphase of a single-lap joint based on mechanics with 
pre-determined material properties. Akhare et al. (2023) 
developed a physics-integrated neural differentiable 
(PiNDiff) model where the system state is summed with a 
known, or partially known, PDE and showed its efficacy in 
an application to the curing process of composite prepregs.

However, these efforts did not include the end-to-end mod
eling of the whole manufacturing process. In the scope of a 
whole MMP with mechanical testing, the aforementioned 
efforts only handled parameters in certain single stages, not 
connecting the manufacturing process with the final quality 
measure. To the best of the authors’ knowledge, the proposed 
PINOHI is the first work for end-to-end modeling of the whole 
adhesive joint manufacturing process that bridges heteroge
neous manufacturing parameters and the final quality measure.

3. The PINOHI methodology

This section presents the development of PINOHI, which is 
a generalized Neural ODE framework with heterogeneous 
manufacturing controls and physical knowledge embeddings. 
Section 3.1 provides a brief introduction to basic Neural 
ODE. Section 3.2 introduces the formulations and details of 
the PINOHI model structure. Finally, Section 3.3 describes 
the loss function for learning.

3.1. Neural ODE introduction

Generally, Neural ODE (Chen et al., 2018) models a system 
of spatio-temporal ODEs/PDEs with a governing equation,

@u x, tð Þ

@t
¼ F u,ru,r2u, :::; kphy

� �
, x, t 2 Xs, t , (1) 

and a boundary condition,

B u,ru,r2u, :::ð Þ ¼ 0, x, t 2 @Xs, t , (2) 

where u x, tð Þ 2 Rn is the system state vector in the space 
and time coordinates x, t, respectively, and ru,r2u, ::: are 
its spatial derivatives; kphy is the physical parameter vector/ 
set; Xs, t ¼ X� ½0, Ts� is the spatial-temporal domain coupled 
by a physical domain X and a time span ½0, Ts�, and @Xs, t is 
the corresponding boundary; F and B are the functions of 
dynamics and boundary conditions, respectively.

Neural ODE learns the system dynamics F using a 
neural network fh with the system state and its spatial deriv
atives as input, which can be described as

@u x, tð Þ

@t
¼ fh u,ru,r2u, :::; x, t

� �
, x, t 2 Xs, t , (3) 

where f is a neural network with parameter h:
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3.2. Model structure of PINOHI

There are two unique characteristics of the composite joint 
manufacturing process: (i) partially known process: as a 
MMP, the lap shear testing stage can be modeled as an 
ODE, while the effects of the manufacturing stages remain 
implicit; and (ii) additional control actions: manufacturing 
parameters control the physical process. Considering these 
two significant characteristics, we made a critical generaliza
tion of the Neural ODE model. To incorporate the partially 
known physical knowledge, we assume the following addi
tive structure of the system dynamics function F , i.e.,

F �ð Þ ¼ A �ð Þ þ R �ð Þ, (4) 

where A is the known physics from the analytical physics 
model and R is the residual to be learned. This assumption 
is based on the idea of residual modeling with R as the 
model discrepancy for “bias correction” to correct or miti
gate the gap caused by a potentially mis-specified analytical 
physics model A due to partially known physics or oversim
plified assumptions (Kennedy and O’Hagan, 2001; Cross 
et al., 2022).

Considering control variables in the manufacturing pro
cess, in addition to the physical parameters, we further 
incorporate the manufacturing parameters as the input for 
the residual part. Thus, the system becomes as follows:
@u x, tð Þ

@t
¼A u,ru,r2u, :::, kphy

� �

þR u,ru,r2u, :::, kphy, kmfg

� �
, x, t 2 Xs, t ,

(5) 

where the analytical physics part A needs calibration for 
unknown parameters, and the learnable residual part R can 
be further parameterized by a neural network fh2 with 
parameter h2: Then, the model will become as

@u x, tð Þ

@t
¼ uh1

A u,ru,r2u, :::, k̂phy, k0
phy

� �
; x, t, kmfg

� �

þfh2 u,ru,r2u, :::; x, t, k0
phy, kmfg

� �
, x, t 2 Xs, t ,

(6) 

where uh1 
is the calibration function learned by neural oper

ators with parameter h1, the physical parameter vector/set 

kphy :¼ k̂phy , k0
phy

h iT 
is divided into two parts: (i) k̂phy is the 

calibrated value of the part in kphy that needs calibration, 
e.g., material properties, environment-related parameters, 
etc.; and (ii) k0

phy is the left part which is calibration-free, 
e.g., geometric dimensions, physical constants, etc. 
Specifically, in addition to the physics of first-order dynam
ics learned by the Neural ODE structure, physics knowledge 
is incorporated from three parts: (i) the first part is the ana
lytical approximation function A to the underlying 
unknown system dynamics F ; (ii) the second part comes 
from the manufacturing parameter vector/set kmfg in the 
calibration function uh1 

of the analytical model; and (iii) the 
last part is the calibration-free physical parameter vector 
k0

phy and manufacturing parameter vector/set kmfg in both 
parts. The neural network fh2 is designed to mitigate the 

gap between analytical function and the true dynamics. 
Note that the manufacturing parameter vector/set kmfg here 
refers to those parameters not included in the analytical 
function, but still related to the system state of interest 
when modeling a complex manufacturing process. The phys
ical parameter vector/set kphy, in general, is some unknown 
function of kmfg , and its estimated value k̂phy is one of the 
inputs in analytical physics model A:

As shown in Figure 2, the proposed PINOHI structure 
follows the basic framework of Neural ODE that leverages 
system dynamics by outputting the first derivative for for
ward time-stepping and processes information in an autore
gressive way. However, unlike conventional black-box 
methods, it also: (i) incorporates physical knowledge by pre
serving the mathematical formula of the analytical physics 
model A; and (ii) takes additional heterogeneous manufac
turing parameters as control input of the Neural ODE net
work. The network structure is designed as follows:

First, the predicted result from the last step, ûkDt is fed 
into non-trainable operators to compute the spatial deriva
tives of the system state ûkDt at time point kDt, i.e., 
rûkDt ,r2ûkDt , :::: This can be implemented by a convolu
tion operation using pre-defined kernels depending on the 
data structure of the system state. Then, to solve the hetero
geneity issue, a data fusion layer is used to fuse the extracted 
features from the system state ûkDt with its spatial deriva
tives rûkDt ,r2ûkDt, :::, the calibration-free physical param
eter k0

phy, and the heterogeneous manufacturing parameter 
vector/set kmfg :

The neural operators marked in blue in Figure 2(b) and 
the embedded residual network (ResNet) are trainable. The 
selection of ResNet is because it can be regarded as a dis
cretization of a continuous ODE, which is a natural choice 
in this scenario. The extracted manufacturing feature zmfg 

and calibration-free physical parameter k0
phy are inputs for 

the calibration of the physical parameter k̂phy: The analytical 
approximation A then takes the calibrated k̂phy together 
with calibration-free physical parameter k0

phy and system 
states ûkDt ,rûkDt,r2ûkDt , ::: as inputs. The embedded neural 
network is designed as stacked convolutional or linear 
residual network (He et al., 2016) blocks depending on the 
data format of the system state. Later, the results of the 
neural network fh2 and the calibrated analytical physics 
model uh1

Að Þ are summed together as the first-order 
derivative of the system state, which is for a forward time- 
stepping, e.g., Euler or Runge-Kutta methods, with system 
state, to yield the next time step result ûðkþ1ÞDt:

3.3. Loss function

The loss function L hð Þ, similar as in Wang et al. (2021), is 
defined as

L hð Þ ¼
1
Ts

XTs

t¼0
cbLMSE hð Þ þ 1 − cb

� �
LMSPE hð Þ

h i
, (7) 
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where

LMSE hð Þ ¼ kut − ût kphy , kmfg , h
� �

k
2
2, (8) 

and

LMSPE hð Þ ¼
X

x2X

Xn

i¼1

ui
x, t − ûi

x, t kphy , kmfg , h
� �h i2

ui
x, t

� �2 , (9) 

in which LMSE hð Þ computes the Mean Squared Error 
(MSE) between the prediction ût kphy, kmfg , h

� �
using phys

ical parameter vector/set kphy, manufacturing parameter 
vector/set kmfg , trainable parameter h ¼ h1, h2½ �

T and the 
label ut at time point t; LMSPE hð Þ measures the Mean 
Squared Percentage Error (MSPE). Specifically, 
ûi

x, t kphy, kmfg , h
� �

is the ith element in the predicted system 
state vector û at spatial coordinate x and time point t 
using certain parameters kphy, kmfg , h

� �
, and ui

x, t is its cor
responding label; k � k2 is the l2-norm; cb 2 ½0, 1� is an 
adjustable weight updated with the training epoch index 
b, which is a hyper-parameter balancing MSE and the 
MSPE. Generally, MSE can improve prediction on large 
values, whereas MSPE works well on small values. A suit
able cb helps the loss robust to both large and small val
ues and ensures an overall optimal functional curve 
prediction. Then the training process is implemented by 
solving the optimization problem as follows,

h� ¼ arg min
h
L hð Þ, (10) 

via gradient descent. Commonly used optimizers such as 
stochastic gradient descent and Adam (Kingma and Ba, 
2014) can be utilized. The implementation details are dis
cussed in Section 4.3.

4. Quality prediction of composite adhesive joints

This section will present how to use the PINOHI model for 
bonding quality prediction of adhesively bonded composite 
joints. Section 4.1 will describe the analytical physics model 
for lap shear load dynamics. Section 4.2 will introduce the 
detailed trainable component of the PINOHI model. A com
prehensive experimental study is conducted to validate the 
performance of the proposed method, including the leave- 
one-batch-out cross-validation in Section 4.3 and sensitivity 
analysis of training data samples size in Section 4.4.

4.1. Analytical physics model for lap shear load 
dynamics

The lap shear testing process of a quasi-static tensile load 
under displacement control with a fixed rate is modeled 
assuming the load as the system state and its evolution fol
lowing an ODE,

dF dð Þ

dd
¼ F F dð Þ, kphy

� �
¼ F F dð Þ, kmat , kgeo

� �
, (11) 

where F dð Þ 2 R is the load of a displacement-control lap 
shear process at displacement d, the whole response is rec
ognized as a functional curve but with various lengths the 

Figure 2. (a) Overview of the PINOHI structure, where “Calib. Ana.” and “NN” denote the calibrated analytical physics function uh1
Að Þ and the neural network fh2 , 

and kphy ¼ k̂phy , k0
phy

h iT
: (b) Detailed structure of the iterative physics-informed unit in (a), which consists of uh1

Að Þ and fh2 where neural operators represent linear 

or convolutional layers.
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physical parameter vector kphy ¼ k̂phy, k0
phy

h iT 
is categorized 

into material property vector k̂phy :¼ kmat and geometric 
dimension vector k0

phy :¼ kgeo: The analytical physics model 
(Zimmermann et al., 2022) is as follows:

A F, kmat , kgeo
� �

¼
F2

2 2 U1 þ U2ð Þ þ Ua½ �
, (12) 

where

U1 ¼
b

2E
E2t3

12 1 − �2ð Þ
2

ðl

0
w00 xð Þ
� �2dxþ lt

F
bt

� �2
" #

, (13) 

U2 ¼
F2c

3Ebt
, (14) 

Ua ¼
F2ta

4Gabc
, (15) 

in which
ðl

0
w00 xð Þ
� �2dx ¼

l3
1

4
½2l1l A2

1 − B2
1

� �
þ A2

1 þ B2
1

� �
sinh 2l1lð Þ

þ 2A1B1 cosh 2l1lð Þ − 1ð Þ�,
(16) 

A1 ¼ −
t þ ta

2
− l1 l þ cð ÞB1, (17) 

B1 ¼ −
t þ ta

2
l2
N

Cc þ
t þ ta

2
1
N

l2ClCc þ l1SlScð Þ, (18) 

N ¼ l1ClSc þ l2SlCc − l1 l þ cð Þ l2ClCc þ l1SlScð Þ, (19) 

li ¼

ffiffiffiffiffi
F
Di

r

for i ¼ 1, 2, (20) 

with Cc ¼ cosh ðl2cÞ, Cl ¼ cosh ðl1lÞ, Sc ¼ sinh ðl2cÞ, Sl ¼

sinh ðl1lÞ, D1 ¼ Et3b=12 1 − �2ð Þ, and D2 ¼ 8D1:

In the analytical physics model A F, kmat , kgeo
� �

, the 
material property vector kmat :¼ E, �, Ga½ �

T involves the elas
tic modulus of adherend E [MPa], Poisson’s ratio of adher
end � [-], and shear modulus of adhesive Ga [MPa]; the 
geometric dimension vector kgeo :¼ b, c, t, l, ta½ �

T contains 
joint width b [mm], half-length of bonded region c [mm], 
thickness of adherend t [mm], length of unbonded region l 
[mm], and thickness of adhesive ta [mm]. Specifically, each 
of the material properties is considered as some unknown 
function of manufacturing parameter vector/set kmfg : Note 
that these three material properties assume that both the 
adhesive and adherend materials are isotropic. In conclu
sion, the analytical physics model provides an ideal value of 
the load dynamics in terms of displacement given a simpli
fied assumption of isotropic material.

4.2. Trainable neural operators and embedded residual 
network in PINOHI

The geometric dimension vector kgeo ¼ b, c, t, l, ta½ �
T here, as 

one of the inputs, is a direct physical measurements of lap 
joint samples. The manufacturing parameter vector/set kmfg 
is divided into two parts: (i) manufacturing parameter vec
tor/set for panel fabrication kfab (stage II in Figure 1); and 
(ii) manufacturing parameter vector/set for lap joining klap 
(stage IV in Figure 1). Both of these manufacturing parame
ters include controllable variables, process characterizations, 
and environmental factors involved in the manufacturing 
processes of composite adhesive lap joints. Namely, they are 
dwelling temperature distribution averaged over time during 
fabrication (superscript with F) and lap joining (superscript 
with J) cure process TF

avg , TJ
avg 2 R

2�2 [�C], contact angle 
distribution on the bonding area of both adherends 
WA, WB 2 R2�2 [�], total out-of-freezer time of adherend 
(superscript with C) and adhesive (superscript with A) 
tC
out , tA

out [s], minimum vacuum pressure during fabrication 
and lap joining cure process pF

min, pJ
min [Pa], ramp-up rate 

and dwelling time of lap joining cure process rJ [�C/s] and 
tJ [s], flashes along bonding edges XF [-], ambient tempera
ture TF

e , TJ
e [�C], and the environment’s relative humidity 

HT
e , HJ

e [%]. Among them, the nominal value of the curing 
parameters, i.e., ramp-up rate and dwelling time rJ , tJ , 
dwelling temperature TF , TJ and vacuum pressure pF , pJ , are 
controllable variables for the design of experiments, but 
some of the corresponding measurements TF

avg , TJ
avg , pF

min, 
pJ

min are considered as process characterizations for model 
training and testing; contact angle distribution WA, WB on 
the bonding area of each adherend is surface characteriza
tion; total out-of-freezer time of adherend and adhesive 
tC
out , tA

out are controllable variables; TF
e , TJ

e , HF
e , HJ

e are environ
mental factors that are typically uncontrollable; and lastly, 
flashes along bonding edges XF is a categorical variable rep
resenting the state of flashes, i.e., no flashes, flashes on one 
side, and flashes on both sides. Those parameters are sum
marized in Table 1.

As shown in Figure 3(a), the neural operators following 
the dwelling temperature distribution TF

avg , TJ
avg and contact 

angle distribution WA, WB are defined as a convolutional 
layer with a 2�2 kernel. The geometric parameter vector 
kgeo ¼ b, c, t, l, ta½ �

T and sub-manufacturing vectors nfab :¼

tC
out , pF

min, TF
e , HF

e
� �T and nlap :¼ tA

out , rJ , tJ , pJ
min, TJ

e , HJ
e , XF

h iT
, 

composed of ramp-up rate and dwelling time rJ , tJ , total 
out-of-freezer time tC

out , tA
out , minimum vacuum pressure 

pF
min, pJ

min, flashes XF , environmental temperature and 
humidity TF

e , TJ
e , HT

e , HJ
e , are fed into a linear neural oper

ator, respectively. Both the convolutional channel and out
put size of linear layers are defined as a feature size of 16. 
Thus, the output of each feature extraction neural operator 
is a 16-dimensional vector, and they are stacked to form a 
feature matrix zmfg 2 R5�16: To be consistent with the struc
ture of analytical function, the non-trainable neural operator 
for taking derivatives of the load F is not included in the 
model for quality prediction of the composite adhesive lap 
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joint. The displacement d is a scalar. A linear layer with out
put size of 16 is used to transform F̂kDd into a feature vector 
sd 2 R16: Then the feature matrix zmfg and the feature vector 
sd are multiplied for data fusion as the input into the 
embedded residual network.

In the part of calibration for the analytical physics model, 
every entry of material property vector kmat ¼ E, �, Ga½ �

T is 
set as the output of a linear layer with output size of one. 
The calibrated values of Ê, �̂ , Ĝa will be the inputs for the 
analytical model together with current load F̂kDd and geo
metric dimension vector kgeo of the analytical function. 
Specifically, (i) the Young’s modulus E and Poisson’s ratio �
of the adherend are determined by the manufacturing par
ameter vector/set in the curing process for panel fabrication 
(kfab); and (ii) the shear modulus of the adhesive Ga is 
determined by the manufacturing parameter vector/set in 
the curing process for lap joining (klap). This is because that 
the mechanical properties of the adherend (E, �) are only 
dependent on the panel fabrication stage and will not be 
influenced by the downstream joints curing. Note that the 
geometric dimension vector kgeo is not used for calibration, 
since they are not relevant to material properties. The out
put linear layer after the analytical model is a one-to-one 
transformation for scaling. This variable selection is engin
eering-domain-knowledge-driven which efficiently reduced 
the degree of freedom of the model, thus decreasing the 
required training samples to mitigate the issue of data 
scarcity.

The details of the embedded residual network are shown 
in Figure 3(b), where it is modeled as five stacked residual 
blocks. The output dimension is set the same as the input, 
which equals five since zmfg � sd 2 R5: The neural operator 
after this neural network is a five-to-one linear layer. All 
the hidden size in the residual blocks is h ¼128. The 

activation functions of linear layers for the calibration of 
analytical function are softplus functions with a default 
parameter value of one to ensure positivity. These layers 
are further clamped within the range of 50% to 150% of 
their nominal values. All the remaining activation functions 
are leaky rectified linear units (Leaky ReLU) with negative 
slope of 0.01.

4.3. Testing experiments and leave-one-batch-out 
cross-validation

The testing experiments include a total of 15 batches of 77 
lap joint samples that were made through the MMP 
described in Figure 1. Specifically, 11-ply CFRP panels were 
fabricated under the manufacturer’s recommended cure 
cycle using an out-of-autoclave curing system. CFRP panels 
were then cut into lþ 2cð Þ � b ¼ 101.6 mm � 25.4 mm 
pieces for surface treatment and characterization. The sur
face treatment consists in applying artificial contamination 
on selected CFRP pieces. Lap joint samples were made of 
two CFRP pieces with 2c� b ¼ 25.4 mm � 25.4 mm over
lapping area that are bonded by an adhesive film after a sec
ondary curing. These dimensions are per ASTM D5868-01. 
The adhesive film is with a nominal thickness of ta ¼

0.2413 mm. The secondary curing is for joining. Lap shear 
testing was later conducted on the cured lap joint samples 
with a digital image correlation system measuring the rela
tive displacement. The load–displacement curves were 
exported afterwards.

In these 15 batches, the first six batches, which contain 
20 pristine and six contaminated samples, are made per the 
manufacturer’s recommended cure cycle of the secondary 
curing. The remaining nine batches are manufactured 
according to the design of experiment result with 25 pristine 

Figure 3. (a) Detailed scheme of the iterative physics-informed unit for lap shear process. (b) Architecture of the embedded residual network.
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and 26 contaminated samples in total. In detail, lap joining 
cure parameters rJ , tJ , pJ , TJ are considered as multilevel fac
tors to formulate an orthogonal main-effect plan 
(Addelman, 1962). To keep a balanced dataset for the leave- 
one-batch-out cross-validation, from the set of manufac
turer’s recommended cure cycle, batch 6 is randomly 
selected. Thus, batches 6 to 15 were used in the leave-one- 
batch-out cross-validation.

The quality measure of composite adhesive lap joints is 
selected as the load–displacement curve FðdÞ for d from 
zero to the break value. Compared with a single value of the 
maximum load, the load–displacement curve contains 
more information, such as the overall stiffness of the adhe
sive joints at different strain levels and the total energy 
required to cause failure. The boundary condition of this 
specific case is

B F dð Þð Þ ¼ F 0ð Þ ¼ 0, (21) 

which is also an initial condition. This is intuitive since 
there will be no load exerted on the joints if it has no 
displacement.

In the training process, the adjusting weight cb was set to 
0.5, due to the similar magnitude of MSE and MSPE. The 
Adam optimizer was used with the initial learning rate of 
0.001 and the coefficient of weight decay of 0.0001. A 
reduce-learning-rate-on-plateau scheduler was defined with 
a reducing factor of 0.5 and a waiting patience of 20. Also, 
five repetitions were carried out for each scenario and the 
average error with corresponding standard deviation are 
reported. The convergence is determined by an early stop 
criterion Lb − Lb−1

�
�

�
�=Lb−1 � 0.001 to avoid overfitting. All 

the training and testing processes were implemented by 
PyTorch in Python on a NVIDIA GeForce RTX 3060 
Laptop GPU. The average training and inference time are 
2831.93 s and 0.50387 s, respectively.

The Mean Absolute Relative Error (MARE) metric (Chen 
et al., 2021) is selected as the error metric for each load–dis
placement curve since it computes the relative error in terms 
of the area under one curve, in this specific case of compos
ite adhesive joints, naturally reflecting the total energy 
needed to break one joint, which is a mechanical character
ization of the overall joint property, defined as,

MARE ¼
Ð

F dð Þ − F̂ dð Þ
�
�

�
�dd

Ð
F dð Þ
�
�

�
�dd

, (22) 

where FðdÞ and F̂ðdÞ are experimental and predicted loads 
at displacement level d: Since MARE is designed for a single 
sample, the mean value over the testing set, i.e., mMARE, 
is computed and its average value over five repetitions is 
used for evaluation in each scenario in the cross-validation. 
The results of leave-one-batch-out cross-validation are com
pared among the following models, and summarized in 
Table 2 and Figure 4:

1. PINOHI: The proposed model which combines analyt
ical physics part uh1

ðAÞ and neural network fh2 with 
heterogeneous manufacturing parameter vector/set kmfg 
as control inputs.

2. Neural ODE 1 Mfg.: A generalization of Neural ODE 
fh2 by incorporating heterogeneous manufacturing par
ameter vector/set kmfg as control inputs, which is 
equivalent to the proposed model PINOHI without the 
analytical physics part uh1

ðAÞ:

3. Calib. Ana.: Only the calibrated analytical physics 
model uh1

ðAÞ using heterogeneous manufacturing par
ameter vector/set kmfg for calibration, but without 
neural network fh2 and feature extractor.

4. Neural ODE: Only the neural ODE structure fh2 with
out: (i) the analytical physics function uh1

ðAÞ; and (ii) 
heterogeneous manufacturing parameter vector/set kmfg :

Based on the results listed in Table 2, the proposed 
PINOHI model achieves the best average mMARE in each 
scenario of the leave-one-batch-out cross-validation. We 
provide a detailed analysis of the cross-validation study as 
follows:

1. As illustrated in Figure 4, in terms of the overall per
formance in the leave-one-batch-out cross-validation, 
PINOHI obtains the minimum total mean, median, and 
range of average mMARE, showing a superior perform
ance over the other three ablated models.

2. The analytical model calibrated by heterogeneous manu
facturing parameters (Calib. Ana.) is a common practice 

Table 2. Results of leave-one-batch-out cross-validation of PINOHI vs. different ablated models.

mMARE (Average 6 Std.) Over 5 Repetitions

Models

Scenario Index

1 2 3 4 5 6

PINOHI 0.2052 6 0.0082 0.1131 6 0.0051 0.1203 6 0.0094 0.0772 6 0.0188 0.0910 6 0.0010 0.0724 6 0.0050
Neural ODEþMfg. 0.2238 6 0.0332 0.1289 6 0.0100 0.1495 6 0.0228 0.1151 6 0.0192 0.0950 6 0.0047 0.0986 6 0.0130
Calib. Ana. 0.2765 6 0.0006 0.1565 6 0.0033 0.1688 6 0.0012 0.1864 6 0.0032 0.1010 6 0.0001 0.0844 6 0.0003
Neural ODE 0.2517 6 0.0016 0.1269 6 0.0075 0.1349 6 0.0070 0.1581 6 0.0186 0.0955 6 0.0054 0.1056 6 0.0057

Models

Scenario Index

7 8 9 10 Total Mean

PINOHI 0.0627 6 0.0081 0.1069 6 0.0110 0.0840 6 0.0006 0.1091 6 0.0127 0.1042 6 0.0382
Neural ODEþMfg. 0.0883 6 0.0131 0.1654 6 0.0184 0.1471 6 0.0362 0.1660 6 0.0189 0.1378 6 0.0395
Calib. Ana. 0.0687 6 0.0004 0.1133 6 0.0108 0.0910 6 0.0009 0.1594 6 0.0006 0.1406 6 0.0592
Neural ODE 0.0751 6 0.0118 0.1433 6 0.0081 0.0899 6 0.0156 0.1468 6 0.0014 0.1328 6 0.0474

Notes: Bold text emphasizes the minimum average value of mMARE in each column.
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using physics-based models, which achieves the worst 
overall performance (Figure 4). This reflects the com
plexity of the system and the inadequacy of the simpli
fied physical modeling assumptions.

3. On the other hand, PINOHI outperforms the data- 
driven methods (Neural ODE and Neural ODEþMfg.), 
as shown in Figure 4, indicating that the inclusion of 
physics knowledge can significantly improve predictive 
accuracy in a complex system.

Overall, the proposed PINOHI method achieves the best 
performance, which indicates that integration of heteroge
neous manufacturing parameters and an analytical physics 
equation can help the Neural ODE structure to a greater 
prediction accuracy and a better generalization ability.

4.4. Sensitivity analysis of samples in training

In addition to the leave-one-batch-out cross-validation, a 
sensitivity analysis of samples in training was performed to 
explore the minimum amount of data in the training set 
required to achieve an adequately accurate prediction of the 
load–displacement curve in the lap shear testing process. 
This is of great industrial interest and significance, as the 

training data is time-consuming and expensive to collect 
due to its nature of the destructive testing methods.

In the sensitivity study, the testing set was randomly 
selected as batch 7 that contains three pristine and two conta
minated samples. The remaining 72 samples formed the 
training set. In this sensitivity analysis, the amount of data in 
the training set starts from a small sample setting that only 
has 10 samples, and then increases with a step of 10 up to 60. 
The training samples were randomly sampled from the whole 
training set of 72 samples while keeping a balance between 
pristine and contaminated samples. For each case, five repeti
tions were conducted to mitigate the randomness of learning. 
In addition, this whole process was repeated three times to 
exploit the training space and to mitigate the randomness of 
selecting training sets. In other words, with batch 7 as the 
testing set, in total three rounds of sensitivity analysis of sam
ples in training were carried out, in which five repetitions 
were run for each of the cases with the number of training 
samples varying from 10 to 72. The hyperparameters and 
error metric were set to be identical to those in the leave- 
one-batch-out cross-validation, and the average mMARE 
with its standard deviation over three rounds of five repeti
tions for each case is reported. The results of the sensitivity 
analysis are summarized in Table 3, and Figures 5 and 6.

In each case in the sensitivity analysis, as shown in 
Table 3 and Figure 5, the average mMARE over three 
rounds of five repetitions achieved by PINOHI is consist
ently smaller than those of the competing models, maintain
ing a minimum variation across different training set sizes. 
Furthermore, a significant gap can be observed when the 
training set is small, i.e., equal to 10, which shows the 
advantage of PINOHI in the small sample scenario. This is 
because of the incorporation of an analytical model into the 
Neural ODE framework and the engineering-domain-know
ledge-driven variable selection, which reduces the number of 
degrees of freedom of the model. Moreover, the Calib. Ana. 
has a worse performance compared with PINOHI, due to a 
lack of flexibility and over-simplified assumptions. In add
ition, the data-driven benchmark Neural ODE also retains a 
small variation with respect to the training set size, but it is 
significantly worse than PINOHI, indicating the naïve 
Neural ODE structure cannot capture the complex dynamics 
without manufacturing parameters.

Figure 4. Boxplots of average mMARE for all models in leave-one-batch-out 
cross-validation.

Table 3. Results of sensitivity analysis of PINOHI vs. different ablated models.

mMARE (Average 6 Std.) Over 15 Repetitions (3 Rounds of 5 Repetitions)

Models

Samples in Training

72 60 50 40

PINOHI 0.1003 6 0.0112 0.1087 6 0.0060 0.1092 6 0.0068 0.1078 6 0.0065
Neural ODEþMfg. 0.1223 6 0.0201 0.1137 6 0.0089 0.1203 6 0.0102 0.1268 6 0.0247
Calib. Ana. 0.1147 6 0.0017 0.1153 6 0.0019 0.1146 6 0.0035 0.1213 6 0.0045
Neural ODE 0.1339 6 0.0030 0.1370 6 0.0037 0.1384 6 0.0031 0.1387 6 0.0035

Models

Samples in Training

30 20 10

PINOHI 0.1119 6 0.0086 0.1115 6 0.0124 0.1123 6 0.0179
Neural ODEþMfg. 0.1291 6 0.0187 0.1344 6 0.0253 0.1868 6 0.0613
Calib. Ana. 0.1265 6 0.0122 0.1725 6 0.0341 0.1780 6 0.0116
Neural ODE 0.1452 6 0.0045 0.1394 6 0.0038 0.1531 6 0.0236

Notes: Bold text emphasizes the minimum average value of mMARE in each column.
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In addition to the average performance, a more detailed 
comparison of the variability in different cases was explored 
by showing the boxplot of mMARE for PINOHI and the 
best competing model Neural ODEþMfg. in Figure 6. 
Comparing with Neural ODEþMfg., PINOHI has either a 
smaller median mMARE or less variation or both in each 
case, indicating the analytical structure in PINOHI improves 
the robustness with respect to the number of samples in 
training.

In summary, PINOHI outperformed the other three com
peting modelling methods in each scenario of the sensitivity 
analysis and maintained a minimum variation, which dem
onstrates its superiority in predictive accuracy and robust
ness to the training set size.

5. Conclusion

Despite various efforts in the development of physics-based 
and data-driven models and methods for predicting the qual
ity of composite adhesive joints, the complicated MMP 

hinders the accurate estimation of bonding quality. The bond
ing quality contains not only bonding strength, but also other 
important mechanical characterizations, e.g., stress–strain 
curves, overall bonding stiffness at different strain levels, total 
energy required to cause failure, etc.

In this study, the novel framework of PINOHI is proposed 
for the quality prediction of composite adhesive joints. 
Compared with existing models in the literature, PINOHI 
outputs the load–displacement curve in an autoregressive way 
from which the aforementioned mechanical characterizations 
can be easily derived. PINOHI incorporates additional physics 
knowledge and heterogeneous manufacturing parameters 
with an engineering domain knowledge-driven variable selec
tion structure. This mitigates the issue of data scarcity in the 
case of composite adhesive joints and improves predictive per
formance. Its superior performance in predicting load- 
displacement curves of the lap shearing test is demonstrated 
in the comparison of leave-one-batch-out cross-validation 
with three ablated models, showing the benefits of adding the 
manufacturing controls and analytical function. A sensitivity 
analysis of samples in training is further explored to show the 
robustness of PINOHI with respect to the number of samples 
in training.

There is still room to improve the proposed PINOHI and 
its applications in to composite joining processes. First, an 
automatic stopping criterion can be added to the PINOHI 
framework rather than a user-defined stopping point to 
meet industrial demands in a one-stop fashion. Second, the 
current analytical model in PINOHI for the lap shearing 
process mainly focuses on the test stage, with an assumption 
that material is isotropic. Incorporating more advanced 
physics-based analytical or numerical models depicting the 
physics of different stages is expected to improve the pre
dictive performance. Moreover, the data fusion method and 
embedded residual network in PINOHI can be substituted 
for different application cases. In conclusion, PINOHI pro
vides a valid prototype of incorporating an analytical model 
into the neural ODE framework for the prediction of 
dynamics of complex physical processes, which has the 
potential for further extensions both methodologically and 
practically.
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