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ABSTRACT

Composite materials have long been used in various industries due to their superior properties
such as high strength, light weight and corrosive resistance. Bonded composite joints are finding
increasing applications, as they provide extensive structural benefits and design flexibility. On the
other hand, the failure mechanism of composite adhesive joints is not fully understood. A model
that bridges manufacturing parameters and final quality measures is highly desired for the design
and optimization of the manufacturing process of composite adhesive joints. In this study, a novel
framework of Physics-Informed Neural Ordinary Differential Equation (ODE) with Heterogeneous
Control Input (PINOHI) is proposed, which links the heterogeneous manufacturing parameters to
the final bonding quality of composite joints. The proposed model structure is heavily motivated
by engineering knowledge, incorporating a calibrated mathematical physics model into the Neural
ODE framework, which can significantly reduce the number of data samples required from costly
experiments while maintaining high prediction accuracy. The proposed PINOHI model is imple-
mented in the quality prediction of composite adhesive joints bonding problem. A set of experi-
ments and associated data analytics are conducted to demonstrate the superior property of the
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PINOHI model by using both the leave-one-batch-out cross-validation and sensitivity analysis.

1. Introduction

With the increasing use of composite materials in aviation and
aerospace industries for weight reduction and energy efficiency
improvement, adhesive joining has received much more interest
at an unprecedented rate as a major manufacturing process.
Composite adhesive joining uses specially designed adhesive
pastes or films to bond composite panels. Compared with trad-
itional mechanical fasteners, such as riveted or bolted joints,
composite adhesive joining can significantly reduce weight and
avoid material damage and stress concentrations.

As shown in Figure 1 and Table 1, composite adhesive
joints are made from complicated, Multi-stage Manufacturing
Processes (MMPs), involving material thawing, panel fabrica-
tion, surface treatment, and joint curing, followed by a lap
shear testing process. The input (control variables) and output
for each stage of the MMP can be multiple heterogeneous
manufacturing parameters, in the form of scalar, functional
curve, matrix, and tensor, whose effects can propagate from
the current stage to the downstream stages and finally impact
the bonding quality. In addition, the anisotropy of composite
materials and the chemical and physical reactions during each
stage also add to the complexity.

Accurate mechanical property knowledge and characteriza-
tion of the adhesive bonded joints, with respect to the manu-
facturing process, is not only of critical safety consideration,

but also important in bonding quality prediction, design opti-
mization, and root cause diagnosis. A common metric of the
bonding quality is the bonding strength which is the output of
a destructive test performed on lap joints. Such mechanical
tests generate load—displacement curves that characterize the
mechanical property of the adhesive bonding. Based on the
load-displacement curves, one can further derive stress—strain
curves, bonding strength, overall bonding stiffness at different
strain levels, total energy required to cause failure, etc.
However, destructive tests are often expensive and time-
consuming.

In order to proceed to the downstream tasks such as
design optimization and root cause diagnosis, it is highly
desirable to develop an end-to-end model that links hetero-
geneous manufacturing parameters in the manufacturing
processes and the output of the destructive testing process
for bonding quality prediction. Numerous efforts on phys-
ics-based modeling (Owens and Lee-Sullivan, 2000a; Deb
et al., 2008; Zimmermann et al., 2022) have been made to
understand the lap shear testing process. In those studies,
assumptions are typically made that the lap shear testing
process is governed by a set of Ordinary/Partial Differential
Equations (ODEs/PDEs). Computer simulations, such as
Finite Element Analysis (FEA), are utilized to emulate the
underlying relationships. However, such simulations are
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Figure 1. MMPs of composite adhesive joints.

often computationally expensive and suffer from over-
simplified assumptions. Also, those models often take mater-
ial properties (e.g., Young’s modulus, Poisson’s ratio) and
geometric dimensions as inputs, and the bonding strength
or stiffness as the output/result. These material properties
are results of the upstream manufacturing stages, which are
often unknown functions of the manufacturing parameters
and cannot be measured directly. Additionally, due to the
complex chemical and physical interactions and heteroge-
neous process parameters during manufacturing processes,
physics-based models usually restrain their scopes to the
mechanical testing stage itself.

On the other hand, researchers also explored data-driven
models (Kang et al., 2021; Wang et al., 2023), attempting to
bridge manufacturing parameters and mechanical properties.
This usually requires massive amounts of experimental data to
build a model with high confidence, especially when there are
multiple heterogeneous process parameters involved. Such
methods are typically infeasible for composite adhesive joints,
as costly destructive tests lead to data scarcity in practice.

To mitigate the issue of lacking labeled data for training,
combining physics-based models and data-driven methods
to exploit the advantages of each technique is of significance.
The lap shear testing stage shown in Figure 1 can be esti-
mated as a collection of springs (Owens and Lee-Sullivan,
2000a) under a quasi-static tensile loading with certain
assumptions, which is a first-order dynamical ODE system
in terms of load with respect to displacement. With
unknown system parameters determined by the manufactur-
ing parameters, the Neural ODE (Chen et al., 2018) will be
a natural choice to model this system. However, the original
Neural ODE structure only takes the system state with its
derivatives as inputs, ignoring related manufacturing param-
eters in the upstream stages. In other words, it focuses on
the evolution of the system state in the testing stage, but not
the relationships between those manufacturing parameters
with the quality measures of the final product. Also, Neural
ODE incorporates physics by approximating the underlying
ODE using a neural network instead of considering any
known or partially known governing physical equations.

To address these challenges of data shortage and end-to-
end physics learning, a novel framework of the Neural ODE

structure with additional heterogeneous manufacturing con-
trol inputs and explicit physical knowledge embedding
(PINOHI) is proposed. It addresses those challenges and dif-
ficulties by

1. Integrating physics knowledge into the Neural ODE
framework in addition to the ODE structure.

2. Generalizing the Neural ODE framework by incorporat-
ing additional upstream heterogeneous manufacturing
parameters as control inputs, such that it can leverage
product quality and process features and be used for
control purposes.

3. Pre-determining the model structure for variable selec-
tion based on engineering domain knowledge to reduce
the amount of training data required to obtain adequate
accuracy.

4. Optimizing the data-driven model and the calibration
process of the physics-based model in an end-to-end
fashion to obtain a better predictive performance.

The primary contribution of this article lies in the appli-
cation of a novel modeling framework to the field of com-
posite material/structure manufacturing and maintenance,
which involve complicated processes but lack adequate phys-
ical understanding. Unlike existing efforts focusing only on
the testing process (stage V in Figure 1) modeling of com-
posite adhesive joints, the proposed PINOHI framework is
an end-to-end model that takes heterogeneous manufactur-
ing parameters as inputs and covers both manufacturing
and testing processes (stages I-V in Figure 1), which pro-
vides a key contribution and insight to quality characteriza-
tion and downstream manufacturing optimization.
Specifically, the contributions of this article are summarized
as follows:

1. We propose a novel modeling framework, PINOHI, for
quality prediction using heterogeneous manufacturing
parameters, which is the first end-to-end model for the
application of composite adhesive joints. It is a pioneer-
ing framework of the Neural ODE structure with add-
itional heterogeneous manufacturing control inputs and
explicit physical knowledge embedding.



Table 1. Heterogeneous manufacturing parameters involved in MMPs of composite adhesive joints.

Heterogeneous Manufacturing Parameters

Environ. Factor

Output

Input

Description

Var.

Description

Var.

Description

Var.

Stage

N/A
N/A
Ambient temp. [° C]

N/A
N/A
TFeR
HE e R

Total out-of-freezer time of adherend [s]

eR
to € R

C
Lout
TF(f) c R‘FXZXZ

N/A
N/A
Ramp-up rate [° C/s]

N/A
N/A
feRr
tf eR

Total out-of-freezer time of adhesive [s]

TC readings [° C]
Avg. TC reading [° C]

Relative humidity [%]

-F 2x2
avg € R X;
pf(t) eR'

7

Dwelling time [s]

N/A

N/A

N/A

N/A
Ambient temp. [° C]

N/A
N/A
N/A
N/A

T,

Vac. reading [Pa]

Dwelling temp. [° C]

T eR
pFeR
geR
XcE{O,]}

Min. pressure [Pa]

eR

F,
min
bt lt; eR

p
‘l’A,‘l’g S RZXZ

Vac. pressure [Pa]

Geometric dim. [mm]

Sandpaper grit [-]

Contact angle dist. of panel A, B [°]

Categ. var. of contamination [-]

eR

TC readings [° C]
Avg. TC reading [° C]

Ramp-up rate [° C/s] T(t) e RV>2

rFeR

v

Relative humidity [%]

eR
N/A
N/A
N/A
N/A

)
e

H

-;vg c RZXZ
Pt eR’

Dwelling time [s]

teR

N/A
N/A
N/A
N/A

Vac. reading [Pa]

Dwelling temp. [° C]

TeR
P eRrR

Min. pressure [Pa]

pﬁninE]R

Xr € {0,1,2}

Vac. pressure [Pa]

Categ. var. of flash [-]

N/A
Load rate [mm/s]

N/A
seR

F(5) € R

Load-disp. curve [N]
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2. The proposed PINOHI framework integrates the
known/partially known physics knowledge and the
modeling capability of the Neural ODE structure in
solving dynamical systems, achieving superior predictive
performance with limited experiment data.

3. The proposed PINOHI framework is extendable to gen-
eral dynamical systems where the governing equation is
an ODE given physics knowledge that can be repre-
sented by an analytical model or numerical method.

The remainder of this article is organized as follows.
Section 2 gives a brief literature review of related work.
Then, the proposed PINOHI framework is introduced in
Section 3. In Section 4, the application of the proposed
framework to quality prediction of composite adhesive joints
is presented. Finally, a conclusion and outline of future
research directions are discussed in Section 5.

2. Related work

The composite in this article specifically refers to Carbon Fiber
Reinforced Polymer (CFRP). The adhesive joint configuration
is the classic single-lap joint, whose modeling has been exten-
sively studied (Banea and da Silva, 2009). The majority of exist-
ing modeling work focuses on physics-based methods. The
typical physics-based model for the testing processes of brittle
composite adhesive joints is the Cohesive Zone Model (CZM)
(Dugdale, 1960) with a simplified bi-linear (triangular) trac-
tion-separation law and a homogeneity assumption in FEA to
emulate the evolution of the fracture process. Early attempts
(Pereira et al., 2010; Song et al., 2010) were made to explore the
relationship between manufacturing parameters (or methods)
and the bonding quality through an experimental or numerical
approach. Utilizing CZM, a parametric numerical study was
conducted by Neto et al. (2012) on single-lap joints with differ-
ent adhesives and overlap lengths to predict bonding strength.
Campilho et al. (2013) compared different CZM laws with tri-
angular, exponential, and trapezoidal shapes for single-lap
joints with brittle and ductile adhesives, where the numerical
results closely agree with experimental data in the linear stage,
but not for the following nonlinearity in the load-
displacement curve. Nastos and Zarouchas (2022) developed a
stochastic finite element model considering the uncertainties of
mechanical properties of the constituent materials, focusing on
strength prediction.

In addition to finite element simulations, mechanics-
based theoretical results have also been explored by
researchers. Owens and Lee-Sullivan (2000a, 2000b) devel-
oped a theoretical model for the stiffness behavior in an
adhesively bonded composite-to-aluminium single-lap joint.
They modeled it as a collection of springs, which is a first-
order dynamical system and verified it through an experi-
mental study, which generally well predicts the stiffness
change due to crack growth. Considering out-of-plane
deflection due to tensile loading and asymmetric geometry,
Zimmermann et al. (2022) derived an analytical estimate of
the adhesive bonding stiffness, which offers a more compre-
hensive result.



4 Y. WANG ET AL.

Physics-based models often rely on strong assumptions
about material and geometric properties, which can lead to
model discrepancy. In addition, they can only model testing
processes, whose inputs are usually unknown functions of
manufacturing parameters. Therefore, additional modeling
effort is needed to further: (i) calibrate the physical model;
and (ii) bridge the end-to-end relationship between manu-
facturing parameters and final quality measure. For the first
point, data-driven methods are used. Gu et al. (2021) pre-
dicted the failure load of joints using a Deep Neural
Network (DNN) with geometric and material inputs to
obtain the optimal design of the structure. Freed et al.
(2022) utilized Gaussian Process Regression (GPR) to find
the optimal failure parameters trained by mixed mode bend-
ing samples simulated by CZM. These parameters were then
verified by resultant failure strength with different adhesive
thicknesses. However, models that attempt to link manufac-
turing parameters with final quality measures, have not been
fully explored. Preliminary efforts (Kang et al., 2021;
Sommer et al., 2022; Wang et al., 2023) have been made to
reveal the connection between the manufacturing parameters
and mechanical properties of the adhesive itself using
machine learning methods, rather than the whole manufac-
turing process. Rangaswamy et al. (2020) linked two manu-
facturing parameters, bonding length and adhesive
thickness, to the bonding strength using a DNN, which are
only a small subset of all manufacturing parameters.

Physics-Informed Machine Learning (PIML) has great
potential to simultaneously complete the two tasks, physical
model calibration and end-to-end modeling, by seamlessly
incorporating known or partially known mathematical phys-
ics models with data (Karniadakis et al., 2021). Adopting a
physics-informed loss function to incorporate the governing
PDE, Raissi et al. (2019) proposed a Physics-Informed Neural
Network (PINN) framework for forward and inverse prob-
lems. Chen, Liu, and Sun (2021) integrated sparse regression
with PINN to efficiently identify the key parameters from
scarce data for PDE discovery in nonlinear spatiotemporal
systems. Another important innovation of PIML is the
Neural ODE framework introduced by Chen et al. (2018),
which is designated to emulate the ODE dynamics end-to-
end with a continuous depth. Liu et al. (2022) preserved the
PDE form in a neural network by discretizing it on a finite
difference grid and representing it by a Convolutional Neural
Network (CNN) with fixed weights. In the autoregressive
stepping of the Neural ODE framework, preserving the math-
ematical form of the governing PDE, even partially, could
mitigate the issue of error accumulation, since it carries the
underlying physics information. Wang et al. (2022) extended
the Neural ODE framework with deterministic and stochastic
encoders (NP-ODE) to build a physics-informed data-driven
surrogate for FEA simulations with uncertainty quantifica-
tion. Sholokhov et al. (2023) proposed a Physics-Informed
Neural ODE (PINODE) model by adding an additional collo-
cation reconstruction loss term to the ordinary loss function
when building autoencoder-based Reduced-Order Models
(ROMs).

In terms of the application of PIML to the area of com-
posites, Tao et al. (2021) employed the Neural ODE frame-
work with a f-variational autoencoder for feature extraction
to learn the underlying dynamics of the damage accumula-
tion mechanism that describes the stiffness degradation of
composite laminates by an ODE. Sharma et al. (2021)
adopted PINNs to estimate the stresses in the tablets and
interphase of a single-lap joint based on mechanics with
pre-determined material properties. Akhare et al. (2023)
developed a physics-integrated neural differentiable
(PiNDiff) model where the system state is summed with a
known, or partially known, PDE and showed its efficacy in
an application to the curing process of composite prepregs.

However, these efforts did not include the end-to-end mod-
eling of the whole manufacturing process. In the scope of a
whole MMP with mechanical testing, the aforementioned
efforts only handled parameters in certain single stages, not
connecting the manufacturing process with the final quality
measure. To the best of the authors’ knowledge, the proposed
PINOHI is the first work for end-to-end modeling of the whole
adhesive joint manufacturing process that bridges heteroge-
neous manufacturing parameters and the final quality measure.

3. The PINOHI methodology

This section presents the development of PINOHI, which is
a generalized Neural ODE framework with heterogeneous
manufacturing controls and physical knowledge embeddings.
Section 3.1 provides a brief introduction to basic Neural
ODE. Section 3.2 introduces the formulations and details of
the PINOHI model structure. Finally, Section 3.3 describes
the loss function for learning.

3.1. Neural ODE introduction

Generally, Neural ODE (Chen et al., 2018) models a system
of spatio-temporal ODEs/PDEs with a governing equation,

Ou(x, t)
ot

and a boundary condition,

B(u, Vu, Vu,...) =0,

= F (0 V0 Vo i gy ), mEE€Q, (D)

x,t € 0Q 4, 2)

where u(x,t) € R" is the system state vector in the space
and time coordinates x,t, respectively, and Vu, V2u, ... are
its spatial derivatives; A, is the physical parameter vector/
set; Qg = Q x [0, Ty] is the spatial-temporal domain coupled
by a physical domain Q and a time span [0, Ty], and 9€; is
the corresponding boundary; F and B are the functions of
dynamics and boundary conditions, respectively.

Neural ODE learns the system dynamics F using a
neural network fp with the system state and its spatial deriv-
atives as input, which can be described as

Ou(x,t)
o

where f is a neural network with parameter 6.

fg(u, Yu, Viu, ...:x, t),x,t € Qs 3)




3.2. Model structure of PINOHI

There are two unique characteristics of the composite joint
manufacturing process: (i) partially known process: as a
MMP, the lap shear testing stage can be modeled as an
ODE, while the effects of the manufacturing stages remain
implicit; and (ii) additional control actions: manufacturing
parameters control the physical process. Considering these
two significant characteristics, we made a critical generaliza-
tion of the Neural ODE model. To incorporate the partially
known physical knowledge, we assume the following addi-
tive structure of the system dynamics function F, i.e,

F()=AC) +R() 4)

where A is the known physics from the analytical physics
model and R is the residual to be learned. This assumption
is based on the idea of residual modeling with R as the
model discrepancy for “bias correction” to correct or miti-
gate the gap caused by a potentially mis-specified analytical
physics model A due to partially known physics or oversim-
plified assumptions (Kennedy and O’Hagan, 2001; Cross
et al., 2022).

Considering control variables in the manufacturing pro-
cess, in addition to the physical parameters, we further
incorporate the manufacturing parameters as the input for
the residual part. Thus, the system becomes as follows:

Ou(x,t)
ot

= A(u, Vu,Vu, ..., /lphy)
(5)
+ R(u, Vu, Viu, ...,lphy,/lmfg>, xt€ Qo

where the analytical physics part A needs calibration for
unknown parameters, and the learnable residual part R can
be further parameterized by a neural network fs, with
parameter 0,. Then, the model will become as

Ou(x,t)
ot

= g0, (A V0, V2 Gy 28, )5,
~+fo, (u, Vu,Viu,..;xt, llghy, /lmfg), xt € Q4
(6)

where @y, is the calibration function learned by neural oper-
ators with parameter 6,, the physical parameter vector/set
Aphy 1= Plphy, lghy] ' is divided into two parts: (i) ;lphy is the
calibrated value of the part in Aphy that needs calibration,
e.g., material properties, environment-related parameters,
etc.; and (i) /lghy is the left part which is calibration-free,
e.g., geometric dimensions, physical constants, etc.
Specifically, in addition to the physics of first-order dynam-
ics learned by the Neural ODE structure, physics knowledge
is incorporated from three parts: (i) the first part is the ana-
lytical approximation function A to the underlying
unknown system dynamics F; (ii) the second part comes
from the manufacturing parameter vector/set 4, in the
calibration function ¢, of the analytical model; and (iii) the
last part is the calibration-free physical parameter vector
lghy
parts. The neural network fy, is designed to mitigate the

and manufacturing parameter vector/set 4,z in both
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gap between analytical function and the true dynamics.
Note that the manufacturing parameter vector/set 4, here
refers to those parameters not included in the analytical
function, but still related to the system state of interest
when modeling a complex manufacturing process. The phys-
ical parameter vector/set Ay, in general, is some unknown

function of 4,4, and its estimated value ;lphy is one of the
inputs in analytical physics model A.

As shown in Figure 2, the proposed PINOHI structure
follows the basic framework of Neural ODE that leverages
system dynamics by outputting the first derivative for for-
ward time-stepping and processes information in an autore-
gressive way. However, unlike conventional black-box
methods, it also: (i) incorporates physical knowledge by pre-
serving the mathematical formula of the analytical physics
model 4; and (ii) takes additional heterogeneous manufac-
turing parameters as control input of the Neural ODE net-
work. The network structure is designed as follows:

First, the predicted result from the last step, #ga; is fed
into non-trainable operators to compute the spatial deriva-
tives of the system state ;s at time point kAt, ie,
Vitgar, Vilgay, ... This can be implemented by a convolu-
tion operation using pre-defined kernels depending on the
data structure of the system state. Then, to solve the hetero-
geneity issue, a data fusion layer is used to fuse the extracted
features from the system state #1xs, with its spatial deriva-
tives Vitgas, V2itga, ..., the calibration-free physical param-
eter /lghy, and the heterogeneous manufacturing parameter

vector/set Ay

The neural operators marked in blue in Figure 2(b) and
the embedded residual network (ResNet) are trainable. The
selection of ResNet is because it can be regarded as a dis-
cretization of a continuous ODE, which is a natural choice
in this scenario. The extracted manufacturing feature z,5

and calibration-free physical parameter lghy are inputs for
the calibration of the physical parameter iphy. The analytical
approximation A then takes the calibrated ;lphy together
with calibration-free physical parameter lghy and system
states #txar, Vitkas, VZilgass -.. as inputs. The embedded neural
network is designed as stacked convolutional or linear
residual network (He et al., 2016) blocks depending on the
data format of the system state. Later, the results of the
neural network fs, and the calibrated analytical physics
model ¢, (A) are summed together as the first-order
derivative of the system state, which is for a forward time-
stepping, e.g., Euler or Runge-Kutta methods, with system
state, to yield the next time step result #y1)a;-

3.3. Loss function

The loss function £(0), similar as in Wang et al. (2021), is
defined as

L(0) = %Z [VﬁEMSE(O) +(1- Vﬁ)EMSPE(O)} (7)
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Figure 2. (a) Overview of the PINOHI structure, where “Calib. Ana.” and “NN" denote the calibrated analytical physics function ¢, (A) and the neural network fo,,

T
and Ay, = [Aphy, Aghy] . (b) Detailed structure of the iterative physics-informed unit in (a), which consists of @, (A) and fy, where neural operators represent linear

or convolutional layers.

where
Lyvse(0) = [Ju, — i (Aphy Ay, 0) 15, (8)

and

‘ [ui,t = ity ¢ (Aphy: A, 0)} 2

Luspe(0) => > P .

xeQ i=1
in which Lyse(0) computes the Mean Squared Error
(MSE) between the prediction i (4yhy, Amf, 0) using phys-
ical parameter vector/set lph},, manufacturing parameter

vector/set A, trainable parameter 6 = [01,02]T and the
label u; at time point t; Lyspr(0) measures the Mean
Squared  Percentage = Error  (MSPE).  Specifically,
ﬁ;)t(lphy, Amfg, @) is the ith element in the predicted system
state vector # at spatial coordinate x and time point ¢
using certain parameters (lphy, /lmfg,()), and u;)t is its cor-
responding label; |||, is the L-norm; y; € [0,1] is an
adjustable weight updated with the training epoch index
f, which is a hyper-parameter balancing MSE and the
MSPE. Generally, MSE can improve prediction on large
values, whereas MSPE works well on small values. A suit-
able y; helps the loss robust to both large and small val-
ues and ensures an overall optimal functional curve
prediction. Then the training process is implemented by
solving the optimization problem as follows,

0" = arg moin £(0), (10)

via gradient descent. Commonly used optimizers such as
stochastic gradient descent and Adam (Kingma and Ba,
2014) can be utilized. The implementation details are dis-
cussed in Section 4.3.

4. Quality prediction of composite adhesive joints

This section will present how to use the PINOHI model for
bonding quality prediction of adhesively bonded composite
joints. Section 4.1 will describe the analytical physics model
for lap shear load dynamics. Section 4.2 will introduce the
detailed trainable component of the PINOHI model. A com-
prehensive experimental study is conducted to validate the
performance of the proposed method, including the leave-
one-batch-out cross-validation in Section 4.3 and sensitivity
analysis of training data samples size in Section 4.4.

4.1. Analytical physics model for lap shear load
dynamics

The lap shear testing process of a quasi-static tensile load
under displacement control with a fixed rate is modeled
assuming the load as the system state and its evolution fol-
lowing an ODE,

dF(6)

T = f(F(é), lphy) = f(F(5>, }Hmata lgeo)a
where F(5) € R is the load of a displacement-control lap
shear process at displacement 0, the whole response is rec-
ognized as a functional curve but with various lengths the

(11)



. T
physical parameter vector Ay, = [/lphy, A ] is categorized

Phy
into material property vector iph), ‘= Amar and geometric
dimension vector /lghy := Ageo- The analytical physics model
(Zimmermann et al., 2022) is as follows:

P2
22(Uy + Us) + Uy’

A(F> j'mat, lgeo) = (12)

where
b B F\?
U =— J dx—i—lt(—) , (13)
' U2E |12(1-02) 0( ) bt
F%¢
- 14
> 3Ebt (14)
F’t,
¢ 4Gbe’ (15)
in which

1 3
|| () = £ a3 - B2) + (43 + BE)sinh (21
0

+ 2A;B;(cosh (2u,1) — 1)),

(16)

I+t
A =-——-ul+0B, (17)

t+ to fly t+t,

B =——7=C, CC SiS 18
I 2N+2N(ﬂ21+H11) (18)
N = 1,CS, + 1,8C. — i, (14 ©) (1, CCe 4+ 1, 81S.),  (19)

F
,u,»:,la for i =1,2, (20)
with C, = cosh (uy¢), C; = cosh (ii41), S = sinh (u,¢), S =

sinh (i,1), Dy = Et*b/12(1 — 2), and D, = 8D;.

In the analytical physics model A(F, Amats /lgeo), the

material property vector Aq := [E v, G,]" involves the elas-
tic modulus of adherend E [MPa], Poisson’s ratio of adher-
end v [-], and shear modulus of adhesive G, [MPa]; the
geometric dimension vector Ag, := [b.c 1,1, ta]T contains
joint width b [mm], half-length of bonded region ¢ [mm],
thickness of adherend t [mm], length of unbonded region !
[mm], and thickness of adhesive ¢, [mm]. Specifically, each
of the material properties is considered as some unknown
function of manufacturing parameter vector/set 4,y. Note
that these three material properties assume that both the
adhesive and adherend materials are isotropic. In conclu-
sion, the analytical physics model provides an ideal value of
the load dynamics in terms of displacement given a simpli-
fied assumption of isotropic material.
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4.2. Trainable neural operators and embedded residual
network in PINOHI

The geometric dimension vector Ag, = [b,c 1,1, tu]T here, as
one of the inputs, is a direct physical measurements of lap
joint samples. The manufacturing parameter vector/set 4,z
is divided into two parts: (i) manufacturing parameter vec-
tor/set for panel fabrication g, (stage II in Figure 1); and
(ii) manufacturing parameter vector/set for lap joining Ay,
(stage IV in Figure 1). Both of these manufacturing parame-
ters include controllable variables, process characterizations,
and environmental factors involved in the manufacturing
processes of composite adhesive lap joints. Namely, they are
dwelling temperature distribution averaged over time during
fabrication (superscript with F) and lap joining (superscript
with J) cure process Tm,g, avg € R?*? [°C], contact angle
distribution on the bonding area of both adherends
¥, ¥ € R?*? [°], total out-of-freezer time of adherend
(superscript with C) and adhesive (superscript with A)
t¢ .4, [s], minimum vacuum pressure during fabrication
and lap joining cure process pf.,p/ .~ [Pa], ramp-up rate
and dwelling time of lap joining cure process r/ [°C/s] and
¢/ [s], flashes along bonding edges Xr [-], ambient tempera-
ture TF, T/ [°C], and the environment’s relative humidity
H!,H/ [%]. Among them, the nominal value of the curing
parameters, i.e., ramp-up rate and dwelling time /¢,
dwelling temperature T, T/ and vacuum pressure pf,p/, are
controllable variables for the design of experiments, but
some of the corresponding measurements ng, Tﬁvg, P
pl. are considered as process characterizations for model
training and testing; contact angle distribution ¥4, ¥5 on
the bonding area of each adherend is surface characteriza-
tion; total out-of-freezer time of adherend and adhesive
t¢ . tA  are controllable variables; TF, T/, HY, H/ are environ-
mental factors that are typically uncontrollable; and lastly,
flashes along bonding edges Xy is a categorical variable rep-
resenting the state of flashes, i.e., no flashes, flashes on one
side, and flashes on both sides. Those parameters are sum-
marized in Table 1.

As shown in Figure 3(a), the neural operators following

the dwelling temperature distribution Tavg T

avg and contact

angle distribution W4, ¥ are defined as a convolutional
layer with a 2x2 kernel. The geometric parameter vector

T
Ageo = [b.c 11 t,]
T
C L F F pyF|T A
[tout’pmin’ Te ’He] [ r] t] pmll‘l Tg’Hg’XF ’

composed of ramp- up rate and dwelling time 7/,#, total

tA

and sub-manufacturing vectors &, =

and &y, =

out-of-freezer time ¢

oup> boy>  MiNIMumM  vacuum pressure
p min’P min’

flashes Xp, environmental temperature and
humidity TF, T/, HI, H/, are fed into a linear neural oper-
ator, respectively. Both the convolutional channel and out-
put size of linear layers are defined as a feature size of 16.
Thus, the output of each feature extraction neural operator
is a 16-dimensional vector, and they are stacked to form a
feature matrix z,;; € R*'°. To be consistent with the struc-
ture of analytical function, the non-trainable neural operator
for taking derivatives of the load F is not included in the
model for quality prediction of the composite adhesive lap
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Figure 3. (a) Detailed scheme of the iterative physics-informed unit for lap shear process. (b) Architecture of the embedded residual network.

joint. The displacement 0 is a scalar. A linear layer with out-
put size of 16 is used to transform Fyas into a feature vector
s5 € R'®. Then the feature matrix Zmfe and the feature vector
ss are multiplied for data fusion as the input into the
embedded residual network.

In the part of calibration for the analytical physics model,
every entry of material property vector Anq = [E v, G, is
set as the output of a linear layer with output size of one.
The calibrated values of E,,G, will be the inputs for the
analytical model together with current load Fyas and geo-
metric dimension vector e, of the analytical function.
Specifically, (i) the Young’s modulus E and Poisson’s ratio v
of the adherend are determined by the manufacturing par-
ameter vector/set in the curing process for panel fabrication
(Amp); and (ii) the shear modulus of the adhesive G, is
determined by the manufacturing parameter vector/set in
the curing process for lap joining (4i,). This is because that
the mechanical properties of the adherend (E,v) are only
dependent on the panel fabrication stage and will not be
influenced by the downstream joints curing. Note that the
geometric dimension vector A, is not used for calibration,
since they are not relevant to material properties. The out-
put linear layer after the analytical model is a one-to-one
transformation for scaling. This variable selection is engin-
eering-domain-knowledge-driven which efficiently reduced
the degree of freedom of the model, thus decreasing the
required training samples to mitigate the issue of data
scarcity.

The details of the embedded residual network are shown
in Figure 3(b), where it is modeled as five stacked residual
blocks. The output dimension is set the same as the input,
which equals five since z,5 -ss € R’. The neural operator
after this neural network is a five-to-one linear layer. All
the hidden size in the residual blocks is h =128. The

activation functions of linear layers for the calibration of
analytical function are softplus functions with a default
parameter value of one to ensure positivity. These layers
are further clamped within the range of 50% to 150% of
their nominal values. All the remaining activation functions
are leaky rectified linear units (Leaky ReLU) with negative
slope of 0.01.

4.3. Testing experiments and leave-one-batch-out
cross-validation

The testing experiments include a total of 15 batches of 77
lap joint samples that were made through the MMP
described in Figure 1. Specifically, 11-ply CFRP panels were
fabricated under the manufacturer’s recommended cure
cycle using an out-of-autoclave curing system. CFRP panels
were then cut into (I+2¢) x b= 101.6mm x 254mm
pieces for surface treatment and characterization. The sur-
face treatment consists in applying artificial contamination
on selected CFRP pieces. Lap joint samples were made of
two CFRP pieces with 2¢ x b = 254mm X 25.4mm over-
lapping area that are bonded by an adhesive film after a sec-
ondary curing. These dimensions are per ASTM D5868-01.
The adhesive film is with a nominal thickness of t, =
0.2413mm. The secondary curing is for joining. Lap shear
testing was later conducted on the cured lap joint samples
with a digital image correlation system measuring the rela-
tive displacement. The load-displacement curves were
exported afterwards.

In these 15 batches, the first six batches, which contain
20 pristine and six contaminated samples, are made per the
manufacturer’s recommended cure cycle of the secondary
curing. The remaining nine batches are manufactured
according to the design of experiment result with 25 pristine



and 26 contaminated samples in total. In detail, lap joining
cure parameters /,¢/,p/, T are considered as multilevel fac-
tors to formulate an orthogonal main-effect plan
(Addelman, 1962). To keep a balanced dataset for the leave-
one-batch-out cross-validation, from the set of manufac-
turer’s recommended cure cycle, batch 6 is randomly
selected. Thus, batches 6 to 15 were used in the leave-one-
batch-out cross-validation.

The quality measure of composite adhesive lap joints is
selected as the load-displacement curve F(J) for § from
zero to the break value. Compared with a single value of the
maximum load, the load-displacement curve contains
more information, such as the overall stiffness of the adhe-
sive joints at different strain levels and the total energy
required to cause failure. The boundary condition of this
specific case is

B(F(58)) = F(0) =0, (21)

which is also an initial condition. This is intuitive since
there will be no load exerted on the joints if it has no
displacement.

In the training process, the adjusting weight y; was set to
0.5, due to the similar magnitude of MSE and MSPE. The
Adam optimizer was used with the initial learning rate of
0.001 and the coefficient of weight decay of 0.0001. A
reduce-learning-rate-on-plateau scheduler was defined with
a reducing factor of 0.5 and a waiting patience of 20. Also,
five repetitions were carried out for each scenario and the
average error with corresponding standard deviation are
reported. The convergence is determined by an early stop
criterion |£[; - ﬁﬁ_1|/£[;_1 < 0.001 to avoid overfitting. All
the training and testing processes were implemented by
PyTorch in Python on a NVIDIA GeForce RTX 3060
Laptop GPU. The average training and inference time are
2831.93 s and 0.50387 s, respectively.

The Mean Absolute Relative Error (MARE) metric (Chen
et al., 2021) is selected as the error metric for each load-dis-
placement curve since it computes the relative error in terms
of the area under one curve, in this specific case of compos-
ite adhesive joints, naturally reflecting the total energy
needed to break one joint, which is a mechanical character-
ization of the overall joint property, defined as,
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[|F(8) — E(8)|do

MARE = [IGOIT

, (22)
where F(8) and F(d) are experimental and predicted loads
at displacement level 6. Since MARE is designed for a single
sample, the mean value over the testing set, i.e., mMARE,
is computed and its average value over five repetitions is
used for evaluation in each scenario in the cross-validation.
The results of leave-one-batch-out cross-validation are com-
pared among the following models, and summarized in
Table 2 and Figure 4:

1. PINOHI: The proposed model which combines analyt-
ical physics part ¢, (A) and neural network fp, with
heterogeneous manufacturing parameter vector/set Az
as control inputs.

2. Neural ODE + Mfg.: A generalization of Neural ODE
fo, by incorporating heterogeneous manufacturing par-
ameter vector/set A,p as control inputs, which is
equivalent to the proposed model PINOHI without the
analytical physics part ¢ (A).

3. Calib. Ana.. Only the calibrated analytical physics
model ¢ (A) using heterogeneous manufacturing par-
ameter vector/set A,p for calibration, but without
neural network fp, and feature extractor.

4. Neural ODE: Only the neural ODE structure fp, with-
out: (i) the analytical physics function ¢ (A); and (ii)
heterogeneous manufacturing parameter vector/set .

Based on the results listed in Table 2, the proposed
PINOHI model achieves the best average mMARE in each
scenario of the leave-one-batch-out cross-validation. We
provide a detailed analysis of the cross-validation study as
follows:

1. As illustrated in Figure 4, in terms of the overall per-
formance in the leave-one-batch-out cross-validation,
PINOHI obtains the minimum total mean, median, and
range of average mMARE, showing a superior perform-
ance over the other three ablated models.

2. The analytical model calibrated by heterogeneous manu-
facturing parameters (Calib. Ana.) is a common practice

Table 2. Results of leave-one-batch-out cross-validation of PINOHI vs. different ablated models.

MmMARE (Average *+ Std.) Over 5 Repetitions

Scenario Index

Models 1 2

4 5 6

PINOHI 0.2052 * 0.0082 0.1131 = 0.0051

0.1203 * 0.0094

0.0772 * 0.0188 0.0910 = 0.0010 0.0724 = 0.0050

Neural ODE + Mfg. 0.2238 + 0.0332 0.1289 *+ 0.0100 0.1495 *+ 0.0228 0.1151 + 0.0192 0.0950 =+ 0.0047 0.0986 + 0.0130
Calib. Ana. 0.2765 = 0.0006 0.1565 =+ 0.0033 0.1688 = 0.0012 0.1864 = 0.0032 0.1010 = 0.0001 0.0844 =+ 0.0003
Neural ODE 0.2517 = 0.0016 0.1269 *+ 0.0075 0.1349 *+ 0.0070 0.1581 + 0.0186 0.0955 *+ 0.0054 0.1056 *+ 0.0057
Scenario Index

Models 7 8 10 Total Mean

PINOHI 0.0627 =+ 0.0081 0.1069 = 0.0110 0.0840 = 0.0006 0.1091 =+ 0.0127 0.1042 = 0.0382

Neural ODE + Mfg. 0.0883 *= 0.0131 0.1654 = 0.0184 0.1471 = 0.0362 0.1660 = 0.0189 0.1378 = 0.0395

Calib. Ana. 0.0687 = 0.0004 0.1133 = 0.0108 0.0910 = 0.0009 0.1594 *= 0.0006 0.1406 £ 0.0592

Neural ODE 0.0751 = 0.0118 0.1433 =+ 0.0081 0.0899 = 0.0156 0.1468 = 0.0014 0.1328 = 0.0474

Notes: Bold text emphasizes the minimum average value of mMARE in each column.
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using physics-based models, which achieves the worst
overall performance (Figure 4). This reflects the com-
plexity of the system and the inadequacy of the simpli-
fied physical modeling assumptions.

3. On the other hand, PINOHI outperforms the data-
driven methods (Neural ODE and Neural ODE + Mfg.),
as shown in Figure 4, indicating that the inclusion of
physics knowledge can significantly improve predictive
accuracy in a complex system.

Overall, the proposed PINOHI method achieves the best
performance, which indicates that integration of heteroge-
neous manufacturing parameters and an analytical physics
equation can help the Neural ODE structure to a greater
prediction accuracy and a better generalization ability.

4.4. Sensitivity analysis of samples in training

In addition to the leave-one-batch-out cross-validation, a
sensitivity analysis of samples in training was performed to
explore the minimum amount of data in the training set
required to achieve an adequately accurate prediction of the
load-displacement curve in the lap shear testing process.
This is of great industrial interest and significance, as the
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Figure 4. Boxplots of average mMARE for all models in leave-one-batch-out
cross-validation.

training data is time-consuming and expensive to collect
due to its nature of the destructive testing methods.

In the sensitivity study, the testing set was randomly
selected as batch 7 that contains three pristine and two conta-
minated samples. The remaining 72 samples formed the
training set. In this sensitivity analysis, the amount of data in
the training set starts from a small sample setting that only
has 10 samples, and then increases with a step of 10 up to 60.
The training samples were randomly sampled from the whole
training set of 72 samples while keeping a balance between
pristine and contaminated samples. For each case, five repeti-
tions were conducted to mitigate the randomness of learning.
In addition, this whole process was repeated three times to
exploit the training space and to mitigate the randomness of
selecting training sets. In other words, with batch 7 as the
testing set, in total three rounds of sensitivity analysis of sam-
ples in training were carried out, in which five repetitions
were run for each of the cases with the number of training
samples varying from 10 to 72. The hyperparameters and
error metric were set to be identical to those in the leave-
one-batch-out cross-validation, and the average mMARE
with its standard deviation over three rounds of five repeti-
tions for each case is reported. The results of the sensitivity
analysis are summarized in Table 3, and Figures 5 and 6.

In each case in the sensitivity analysis, as shown in
Table 3 and Figure 5, the average mMARE over three
rounds of five repetitions achieved by PINOHI is consist-
ently smaller than those of the competing models, maintain-
ing a minimum variation across different training set sizes.
Furthermore, a significant gap can be observed when the
training set is small, ie., equal to 10, which shows the
advantage of PINOHI in the small sample scenario. This is
because of the incorporation of an analytical model into the
Neural ODE framework and the engineering-domain-know-
ledge-driven variable selection, which reduces the number of
degrees of freedom of the model. Moreover, the Calib. Ana.
has a worse performance compared with PINOHI, due to a
lack of flexibility and over-simplified assumptions. In add-
ition, the data-driven benchmark Neural ODE also retains a
small variation with respect to the training set size, but it is
significantly worse than PINOHI, indicating the naive
Neural ODE structure cannot capture the complex dynamics
without manufacturing parameters.

Table 3. Results of sensitivity analysis of PINOHI vs. different ablated models.

MMARE (Average * Std.) Over 15 Repetitions (3 Rounds of 5 Repetitions)

Samples in Training

Models 72 60

50

40

PINOHI 0.1003 = 0.0112 0.1087 = 0.0060

0.1092 = 0.0068

0.1078 = 0.0065

Neural ODE + Mfg. 0.1223 =+ 0.0201 0.1137 = 0.0089 0.1203 =+ 0.0102 0.1268 *+ 0.0247
Calib. Ana. 0.1147 = 0.0017 0.1153 *= 0.0019 0.1146 = 0.0035 0.1213 * 0.0045
Neural ODE 0.1339 =+ 0.0030 0.1370 * 0.0037 0.1384 =+ 0.0031 0.1387 =+ 0.0035
Samples in Training

Models 30 20 10

PINOHI 0.1119 = 0.0086 0.1115 = 0.0124 0.1123 = 0.0179

Neural ODE + Mfg. 0.1291 * 0.0187 0.1344 *+ 0.0253 0.1868 = 0.0613

Calib. Ana. 0.1265 *+ 0.0122 0.1725 *+ 0.0341 0.1780 = 0.0116

Neural ODE 0.1452 * 0.0045 0.1394 *+ 0.0038 0.1531 *= 0.0236

Notes: Bold text emphasizes the minimum average value of mMARE in each column.
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In addition to the average performance, a more detailed
comparison of the variability in different cases was explored
by showing the boxplot of mMARE for PINOHI and the
best competing model Neural ODE+ Mfg. in Figure 6.
Comparing with Neural ODE + Mfg., PINOHI has either a
smaller median mMARE or less variation or both in each
case, indicating the analytical structure in PINOHI improves
the robustness with respect to the number of samples in
training.

In summary, PINOHI outperformed the other three com-
peting modelling methods in each scenario of the sensitivity
analysis and maintained a minimum variation, which dem-
onstrates its superiority in predictive accuracy and robust-
ness to the training set size.

5. Conclusion

Despite various efforts in the development of physics-based
and data-driven models and methods for predicting the qual-
ity of composite adhesive joints, the complicated MMP
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hinders the accurate estimation of bonding quality. The bond-
ing quality contains not only bonding strength, but also other
important mechanical characterizations, e.g., stress—strain
curves, overall bonding stiffness at different strain levels, total
energy required to cause failure, etc.

In this study, the novel framework of PINOHI is proposed
for the quality prediction of composite adhesive joints.
Compared with existing models in the literature, PINOHI
outputs the load-displacement curve in an autoregressive way
from which the aforementioned mechanical characterizations
can be easily derived. PINOHI incorporates additional physics
knowledge and heterogeneous manufacturing parameters
with an engineering domain knowledge-driven variable selec-
tion structure. This mitigates the issue of data scarcity in the
case of composite adhesive joints and improves predictive per-
formance. Its superior performance in predicting load-
displacement curves of the lap shearing test is demonstrated
in the comparison of leave-one-batch-out cross-validation
with three ablated models, showing the benefits of adding the
manufacturing controls and analytical function. A sensitivity
analysis of samples in training is further explored to show the
robustness of PINOHI with respect to the number of samples
in training.

There is still room to improve the proposed PINOHI and
its applications in to composite joining processes. First, an
automatic stopping criterion can be added to the PINOHI
framework rather than a user-defined stopping point to
meet industrial demands in a one-stop fashion. Second, the
current analytical model in PINOHI for the lap shearing
process mainly focuses on the test stage, with an assumption
that material is isotropic. Incorporating more advanced
physics-based analytical or numerical models depicting the
physics of different stages is expected to improve the pre-
dictive performance. Moreover, the data fusion method and
embedded residual network in PINOHI can be substituted
for different application cases. In conclusion, PINOHI pro-
vides a valid prototype of incorporating an analytical model
into the neural ODE framework for the prediction of
dynamics of complex physical processes, which has the
potential for further extensions both methodologically and
practically.
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