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Foundation Models
Expectation vs Reality

Expectation vs Reality of Foundation Models

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Foundation Models
Segment Anything Model

Segment Anything Model (SAM) released by Meta on April 5, 2023 was trained on Segment Anything 1 Billion 
dataset with 1.1 billion high-quality segmentation masks from 11 million images

Kirillov, Alexander, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao et al. 

"Segment anything." arXiv preprint arXiv:2304.02643 (2023).

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Foundation Models
Segment Anything Model

Kirillov, Alexander, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao et al. 

"Segment anything." arXiv preprint arXiv:2304.02643 (2023).

Cityscapes dataset 

semantic segmentation 

annotation took ~90 

mins per image

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Goal: Given a promptable model with no operational knowledge, users employ a ‘trial and 
error’ strategy

Foundation Models
‘Trial and Error’ Interventions in Segment Anything Model

[1] Quesada, Jorge, et al. "PointPrompt: A Multi-modal Prompting Dataset for Segment Anything 

Model." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

The general conclusion from [1] 
is that annotators overprompt 
and utilize strategies that lead to 
worse performance 

~200,000 prompts on 6000 
images 

PointPrompt 

Dataset

Exclusion points

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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[1] Ghazal Kaviani, Yavuz Yarici, Mohit Prabhushankar, Ghassan AlRegib, Mashhour Solh, Ameya Patil, June 12, 2024, 
"DARai: Daily Activity Recordings for AI and ML applications", IEEE Dataport, doi: https://dx.doi.org/10.21227/ecnr-hy49.

Demo created at Inference on “LLaVA-v1.5-13B” model on Daily Activity 

Recognition (DARai) dataset [1] 

VLMs (and all other deep 

learning-based systems) are 

‘doomed to choose’ – no 

mechanism to understand if 

sufficient information is 

available at inference

Vision-Language Models are ‘Doomed to Choose’

DARai
 
Dataset

Goal: Given a long video sequence, vision language models (VLMs) can process, interpret, 
and answer questions  

Foundation Models

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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VLMs (encoder finetuned on dataset) fail when recognizing fine-grained hierarchical activities

Vision-Language Models are Sensitive to Granularity of Tasks

Foundation Models DARai Dataset

ActionActivity Procedure

Other

findings:

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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VLMs (encoder finetuned on dataset) fail when recognizing domain-shifted inputs

Vision-Language Models are sensitive to experimental setup

Foundation Models DARai Dataset

ActionActivity Procedure

Other

findings:

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]



10 of 195

Jung, Hoin, Taeuk Jang, and Xiaoqian Wang. “A Unified Debiasing Approach for Vision-Language Model across 

Modalities and Tasks”. In NeurIPS. 2024.

Vision-Language Models are Biased towards Societal Stereotypes 

Foundation Models
Debiasing VLMs

Uncurated training data 

invariably reflects 

biases present in 

society. Utilizing such 

models in downstream 

tasks perpetuates 

biases
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Foundation Models
Requirements and Challenges for Deep Learning

Novel data sources:

• Test distributions

• Anomalous data

• Out-Of-Distribution data

• Adversarial data

• Corrupted data

• Noisy data

• New classes

• …

Requirements: Foundation model-enabled systems must predict correctly and fairly on novel 
data and explain their outputs

Temel, Dogancan, et al. "Cure-tsd: Challenging unreal and real environments for traffic sign detection." IEEE 

Transactions on Intelligent Transportation Systems (2017). 

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Deep Learning at Training
Overcoming Challenges at Training: Part 1

The most novel/aberrant samples should not be used in early training

Novel samples = Most Informative

• The first instance of training must occur with 
less informative samples

• Ex: For autonomous vehicles, less informative 
means

• Highway scenarios

• Parking

• No accidents

• No aberrant events

Benkert, R., Prabushankar, M., AlRegib, G., Pacharmi, A., & Corona, E. (2023). Gaussian Switch Sampling: 

A Second Order Approach to Active Learning. IEEE Transactions on Artificial Intelligence.

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Deep Learning at Training
Overcoming Challenges at Training: Part 2

Subsequent training must not focus only on novel data

• The model performs well on the new 
scenarios, while forgetting the old 
scenarios

• Several techniques exist to overcome this 
trend

• However, they affect the overall performance 
in large-scale settings

• It is not always clear if and when to 
incorporate novel scenarios in training

Laborieux, Axel, et al. "Synaptic metaplasticity in binarized neural networks." Nature communications 12.1 

(2021): 2549.

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Deep Learning at Training
Overcoming Challenges at Training

Novel data packs a 1-2 punch!

Novel data may not 

be available during 

training

Even if 

available, 

novel data 

does not 

easily fit into 

either the 

earlier or 

later stages 

of training

A = Deep Neural Networks

B = Novel data

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Foundation Models at Inference
Overcoming Challenges at Inference

We must handle novel data at Inference!!

Novel data sources:

• Test distributions

• Anomalous data

• Out-Of-Distribution data

• Adversarial data

• Corrupted data

• Noisy data

• New classes

• …

Model Train At Inference

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Objective
Objective of the Tutorial

To discuss methodologies that promote robust and fair inference in neural networks

• Part 1: Inference in Neural Networks

• Part 2: Explainability at Inference

• Part 3: Uncertainty and Intervenability at Inference

• Part 4: Fairness Interventions

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]



Inferential Machine Learning

Part I: Inference in Neural Networks
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Objective
Objective of the Tutorial

To discuss methodologies that promote robust and fair inference in neural networks

• Part 1: Inference in Neural Networks

• Neural Network Basics

• Robustness in Deep Learning

• Information at Inference

• Challenges at Inference

• Gradients at Inference

• Part 2: Explainability at Inference

• Part 3: Uncertainty at Inference

• Part 4: Fairness Interventions

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Deep Learning
Overview

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]



20 of 195

Deep Learning
Neurons

Artificial neurons consist of:

• A single output

• Multiple inputs

• Input weights

• A bias input

• An activation function

The underlying computation unit is the Neuron

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Deep Learning
Artificial Neural Networks

Neurons are stacked and densely connected to construct ANNs

Typically, a neuron is part of a network organized in layers:

• An input layer (Layer 0)

• An output layer (Layer 𝐾)

• Zero or more hidden (middle) layers (Layers 1 … 𝐾 − 1)

Cat

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Deep Learning
Convolutional Neural Networks

Stationary property of images allow for a small number of convolution kernels

Cat

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Deep Deep Deep Deep Deep … Learning
Recent Advancements

Transformers, Large Language Models and Foundation Models

Cat

Primary reasons for advancements:

1. Expanded interests from the research community

2. Computational resources availability

3. Big data availability

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Foundation Models
Origin of the term Foundation Models

Bommasani, Rishi, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S. 

Bernstein et al. "On the opportunities and risks of foundation models." arXiv preprint arXiv:2108.07258 (2021).

• Foundation models are like any other deep network that have employed transfer learning, except at scale

• Scale brings about emergent properties that are common between tasks

• Before 2019: Base architectures that powered multiple neural networks were ResNets, VGG etc.

• Since 2019: BERT, DALL-E, GPT, Flamingo

• Changes since 2019: Transformer architectures and Self-Supervision 

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Foundation Models
Origin of the term Foundation Models

Bommasani, Rishi, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S. 

Bernstein et al. "On the opportunities and risks of foundation models." arXiv preprint arXiv:2108.07258 (2021).

‘By harnessing self-supervision at scale, 
foundation models for vision have the potential 
to distill raw, multimodal sensory information 
into visual knowledge, which may effectively 
support traditional perception tasks and 
possibly enable new progress on challenging 
higher-order skills like temporal and 
commonsense reasoning These inputs can come 
from a diverse range of data sources and 
application domains, suggesting promise for 
applications in healthcare and embodied, 
interactive perception settings’

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]



26 of 195

Deep Learning at Inference
What, Where, and When is Inference?

Ability of a system to predict correctly on novel data

Trained Model Cat

Novel data sources:

• Unexpected prompts

• Test distributions

• Anomalous data

• Out-Of-Distribution data

• Adversarial data

• Corrupted data

• Noisy data

• New classes

• …

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]



27 of 195

Deep Learning at Inference
What, Where, and When is Inference?

Neural networks are feed-forward systems; output layer logits are used for inference

Cat

All required information is passed to last layer

Outputs from last layer are termed Logits

Required information is learned at training; leads to inductive 

bias when encountering novel data at inference

Novel data sources:

• Unexpected prompts

• Test distributions

• Anomalous data

• Out-Of-Distribution data

• Adversarial data

• Corrupted data

• Noisy data

• New classes

• …

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Deep Learning at Inference
What, Where, and When is Inference?

Inference occurs at: (i) Testing, and (ii) Deployment

Trained Model at 

Deployment
Cat

Trained Model at Testing

Cat, 

Cat, 

Cat

Novel data sources:

• Unexpected prompts

• Test distributions

• Anomalous data

• Out-Of-Distribution data

• Adversarial data

• Corrupted data

• Noisy data

• New classes

• …

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Deep Learning at Inference
Application: Classification

Network 𝒇(𝜽)

Predicted 
Class Probability

Dog

Cat

Horse

Bird

Given : One network, One image. Required: Class Prediction

ො𝑦 = 𝑓 𝑥
𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖  ො𝑦
𝑝( ො𝑦) = 𝑇(𝑓 𝑥 )

ො𝑦 = Logits 

𝑦 = Predicted Class

𝑝( ො𝑦) = Probabilities

𝑓 ⋅  = Trained Network

𝜒 = Training data

89%

9%

If 𝑥 ∈  𝜒, the data is not 

novel

𝑥

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Deep Learning at Inference
Application: Robust Classification

Network 𝒇(𝜽)

Predicted 
Class Probability

Dog

Cat

Horse

Bird

Deep learning robustness: Correctly predict class even when data is novel

ො𝑦 = 𝑓 𝑥′ + 𝜖
𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑖  ො𝑦

𝑝( ො𝑦) = 𝑇(𝑓 𝑥′ + 𝜖 )

ො𝑦 = Logits 

𝑦 = Predicted Class

𝑝( ො𝑦) = Probabilities

𝑓 ⋅  = Trained Network

𝜒 = Training data

𝜖 = Noise

𝑥′

53%

39%

If 𝑥 ∉  𝜒, the data is 

novel

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Deep Learning at Inference
Application: Robust Classification

Network 𝒇(𝜽)

Predicted 
Class Probability

Dog

Cat

Horse

Bird

Deep learning robustness: Correctly predict class even when data is novel

𝑥′

53%

39%

To achieve robustness at Inference, we need the following:

• Information provided by the novel data as a function of training distribution

• Methodology to extract information from novel data

• Techniques that utilize the information from novel data 

Why is this Challenging?

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Challenges at Inference
A Quick note on Manifolds..

Manifolds are compact topological spaces that allow exact mathematical functions

𝑳(𝜽)

Toy visualizations generated using functions

(and thousands of generated data points)

Real data visualizations generated using 

dimensionality reduction algorithms (Isomap)

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Challenges at Inference
Manifold evaluation at Test-Time Inference without Labels

The change in singular values indicate ‘goodness’ of a self-supervised model for a given 
dataset

• Construct covariance matrix of the dataset of 

representations

• Take SVD and order all singular values. 

• The singular values in decreasing order are 

plotted on the left for different datasets 

• ‘Better suited-data’ for a trained model has no 

dimensional collapse

• Conclusion: The natural image trained self-

supervised learning model is ill-suited to be 

utilized for Breast, OCT, and derma datasets

Dimensional collapse

Kokilepersaud, Kiran, et al. "Taxes are All You Need: Integration Of Taxonomical Hierarchy 

Relationships Into the Contrastive Loss." 2024 IEEE International Conference on Image Processing 

(ICIP). IEEE, 2024.

Hierarchical 
Constrained 
Contrastive Learning

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Challenges at Inference
Manifold evaluation at Test-Time Inference without Labels

The similarity of concepts like shape, color, and textures between different self-supervised 
training regimens and the supervised version indicate ‘goodness’ of that regimen

• Column 1: Given the task of bird classification and 

the bird class, explanations can be constructed for 

specific perceptual components like color, shape, 

and texture

• Columns 2, 3, and 4: Given only a pre-text task 

and no true ground truth, we can construct visual 

explanations for the same concepts

• Construct correlation score between column 1 and 

each o the other columns. 

More correlation = better suited for downstream 

task 

Perceptual 
Components in Self-
Supervised Learning

Y. Yarici, K. Kokilepersaud, M. Prabhushankar, G. AlRegib, ”Explaining Representation Learning with Perceptual 
Components,” in 2024 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates 
(UAE), 2024. 

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Challenges at Inference
Deployment Inferential Evaluation

Both these methods work on ‘test-time’ inference; we need access to a large dataset to (i) 
construct SVD of dataset, (ii) correlation across image explanations 

Perceptual 
Components in Self-
Supervised Learning

Dimensional collapse

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Challenges at Inference
Deployment Inferential Evaluation

However, at deployment only the test data point is available, and the underlying structure of 
the manifold is unknown

𝑳(𝜽) 𝑳(𝜽)

At TrainingAt Inference

Trained network knowledge is 

not easily accessible

At training, we have access to all 

training data. 

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Information at Inference
Fisher Information

Network 𝒇(𝜽)

Predicted 
Class Probability

Dog

Cat

Horse

Bird

𝒍(𝜽|𝒙)

Likelihood function

Colloquially, Fisher Information is the “surprise” in a system that observes an event

𝐼 𝜃 = 𝑉𝑎𝑟(
𝜕

𝜕𝜃
𝑙 𝜃 𝑥 )

𝜃 = Statistic of distribution

ℓ(θ | x) = Likelihood function

Fisher Information

[1] A good blogpost about Fisher Information: https://towardsdatascience.com/an-intuitive-look-at-

fisher-information-2720c40867d8

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Information at Inference
Information at Inference

Network 𝒇(𝜽)

Predicted 
Class Probability

Dog

Cat

Horse

Bird

𝒍(𝜽|𝒙)

Likelihood function

𝐼 𝜃 = 𝑉𝑎𝑟(
𝜕

𝜕𝜃
𝑙 𝜃 𝑥 )

𝜃 = Statistic of distribution

ℓ(θ | x) = Likelihood function

Fisher Information

At inference, given a single image from a single 

class, we can extract information about other classes

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Gradients infer information about the statistics of underlying manifolds

Information at Inference
Gradients as Fisher Information

𝒍(𝜽|𝒙)

Likelihood function instead of loss manifold

Using variance decomposition, 𝐼 𝜃  reduces to: 

𝐼 𝜃 = 𝐸[𝑈𝜃𝑈𝜃
𝑇] where

𝐸[⋅] = Expectation
𝑈𝜃 = 𝛻𝜃𝑙 𝜃 𝑥 , Gradients w.r.t. the sample

 

From before, 𝐼 𝜃 = 𝑉𝑎𝑟(
𝜕

𝜕𝜃
𝑙 𝜃 𝑥 )

Kwon, Gukyeong, et al. "Backpropagated gradient representations for anomaly detection." Computer 

Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, 

Part XXI 16. Springer International Publishing, 2020.

Hence, gradients draw information from the 

underlying distribution as learned by the 

network weights! 

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Gradients infer information about the statistics of underlying manifolds

Information at Inference
Case Study: Gradients as Fisher Information in Explainability

[1] A good blogpost about Fisher Information: https://towardsdatascience.com/an-intuitive-look-at-

fisher-information-2720c40867d8

Network 𝒇(𝜽) Dog

Cat

Horse

Bird

𝒍(𝜽|𝒙)

𝑥

In this case, the image and its 

prediction extracts nose, mouth 

and jowl features. 
Local information (specific to 𝑥) is sufficient!

𝑥

Feature attribution via GradCAM

Hence, gradients draw information from the 

underlying distribution as learned by the 

network weights! 

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Gradients at Inference
Local Information 

𝑳(𝜽)

Gradients provide local information around the vicinity of 𝒙, even if 𝒙 is novel. This is 
because 𝒙 projects on the learned knowledge

𝑥
𝑳(𝜽)

Ideal

𝜶 𝛁𝜽 𝑳 𝜽  provides local information up to a small 
distance 𝜶 away from 𝒙

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Gradients at Inference
Direction of Steepest Descent

Gradients allow choosing the fastest direction of descent given a loss function 𝑳(𝜽) 

𝑳(𝜽)

𝑥

Negative of the gradient provides the descent 
direction towards the local minima, as measured 
by 𝐿(𝜃)

Path 1?

Path 2?

Path 3?

Which direction should we 

optimize towards (knowing 

only the local information)?

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Gradients at Inference
To Characterize the Novel Data at Inference

𝑳(𝜽)

At Inference

Representation 

Traversal using 

Interventions

𝑳(𝜽)

Trained network knowledge is 

not easily accessible

𝑳(𝜽)
𝑥

𝑥′

Counterfactual 

and Contrastive 

Representations 

using Gradients Part 3

Local editing for

fairness

interventions

𝑳(𝜽)

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Inferential Machine Learning

Part 2: Explainability at Inference
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Objective
Objective of the Tutorial

To discuss methodologies that promote robust and fair inference in neural networks

• Part 1: Inference in Neural Networks

• Part 2: Explainability at Inference

• Visual Explanations

• Gradient-based Explanations

• GradCAM

• CounterfactualCAM

• ContrastCAM

• Part 3: Uncertainty and Intervenability at Inference

• Part 4: Intervenability at Inference

• Part 5: Conclusions and Future Directions

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Explanatory Paradigms in Neural Networks: 
Towards Relevant and Contextual Explanations

Mohit Prabhushankar, PhD

Postdoc

Ghassan AlRegib, PhD

Professor
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

• Explanations are defined as a set of rationales used to understand the reasons behind a 
decision  

• If the decision is based on visual characteristics within the data, the decision-making 
reasons are visual explanations

Bullmastiff Why Bullmastiff?
What if Bullmastiff was not in 

the image?

Why Bullmastiff, rather than a 

Boxer?

Observed 

Correlations
Observed Counterfactual Observed 

Contrastive

AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and 

contextual explanations. IEEE Signal Processing Magazine, 39(4), 59-72.

Explanations
Visual Explanations

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and 

contextual explanations. IEEE Signal Processing Magazine, 39(4), 59-72.

Explanations
Role of Explanations – context and relevance 

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Intervention: Mask part of the image before feeding to CNN, check how much predicted 
probabilities change

A gray patch or patch of average pixel value of the dataset

Note: not a black patch because the input images are 

centered to zero in the preprocessing.

Zeiler and Fergus, “Visualizing and Understanding Convolutional  Networks”, ECCV 2014

P(elephant) = 0.95

Explanations
Input Saliency via Occlusions

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]



51 of 195

Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Intervention: Mask part of the image before feeding to CNN, check how much predicted 
probabilities change

Zeiler and Fergus, “Visualizing and Understanding Convolutional  Networks”, ECCV 2014

P(elephant) = 0.95

P(elephant) = 0.75These pixels 

affect decisions 

more

Explanations
Input Saliency via Occlusions

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]



52 of 195

Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

The network is trained with image- labels, but it is sensitive to the common visual regions in 
images 

Zeiler and Fergus, “Visualizing and Understanding Convolutional  Networks”, ECCV 2014

Explanations
Input Saliency via Occlusions

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Gradients provide a one-shot means of perturbing the input that changes the output; They 
provide pixel-level importance scores

Vanilla Gradients Deconvolution Gradients Guided Backpropagation

Input

Springenberg, Dosovitskiy, et al., Striving for Simplicity: The all convolutional net, 2015

However, localization remains an issue

Explanations
Gradient-based Explanations

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Grad-CAM uses the gradient information flowing into the last convolutional layer of the CNN 

to assign importance values to each activation for a particular decision of interest.

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-

based localization." Proceedings of the IEEE international conference on computer vision. 2017.

image

Grad-CAM (up-sampled to original image dimension)

Gradient and Activation-based Explanations
GradCAM
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-

based localization." Proceedings of the IEEE international conference on computer vision. 2017.

Grad-CAM generalizes to any task:

• Image classification

• Image captioning

• Visual question answering

• etc.

Rectified Conv 

Feature Maps

+

Backprop 

till conv

Grad-CAM

Gradient and Activation-based Explanations
GradCAM
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

GradCAM provides answers to ‘Why P?’ questions. But different stakeholders require relevant 
and contextual explanations

Bullmastiff Why Bullmastiff?
What if Bullmastiff was not in 

the image?

Why Bullmastiff, rather than a 

Boxer?

Observed 

Correlations
Observed Counterfactual Observed 

Contrastive

AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and 

contextual explanations. IEEE Signal Processing Magazine, 39(4), 59-72.

Gradient and Activation-based Explanations
Explanatory Paradigms

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

In GradCAM, global average pool the negative of gradients to obtain 𝛼𝑐 for each kernel 𝑘 

Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-

based localization." Proceedings of the IEEE international conference on computer vision. 2017.

𝜕𝑦𝑐

𝜕𝐴𝑘 

𝛼𝑘
𝑐

What if Bullmastiff was not in 

the image?

Negating the gradients effectively removes these regions from analysis

Gradient and Activation-based Explanations
CounterfactualCAM: What if this region were absent in the image?
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

In GradCAM, backward pass the loss between predicted class P and some contrast class Q to 
last conv layer

Backpropagating the loss highlights the differences between classes P and Q. 

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 

networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Contrast-CAM 

𝜕𝐽(𝑃,𝑄)

𝜕𝐴𝑘  

𝛼𝑘
𝑐

Why Bullmastiff, rather than a 

Boxer?

Gradient and Activation-based Explanations
ContrastCAM: Why P, rather than Q?
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 

networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input

Image Grad-CAM Contrast 1 Contrast 2

Contrastive 

Explanation 2

Contrastive 

Explanation 1

Gradient and Activation-based Explanations
Results from GradCAM, CounterfactualCAM, and ContrastCAM
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 

networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input

Image Grad-CAM Contrast 1 Contrast 2

Contrastive 

Explanation 2

Contrastive 

Explanation 1

Human 

Interpretable

Gradient and Activation-based Explanations
Results from GradCAM, CounterfactualCAM, and ContrastCAM
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 

networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input

Image Grad-CAM Contrast 1 Contrast 2

Contrastive 

Explanation 2

Contrastive 

Explanation 1

Human 

Interpretable

Same as Grad-

CAM

Gradient and Activation-based Explanations
Results from GradCAM, CounterfactualCAM, and ContrastCAM
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 

networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input

Image Grad-CAM Contrast 1 Contrast 2

Contrastive 

Explanation 2

Contrastive 

Explanation 1

Human 

Interpretable

Same as Grad-

CAM

Not Human 

Interpretable

Gradient and Activation-based Explanations
Results from GradCAM, CounterfactualCAM, and ContrastCAM
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 

networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input

Image Grad-CAM Contrast 1 Contrast 2

Contrastive 

Explanation 2

Contrastive 

Explanation 1

Human 

Interpretable

Same as Grad-

CAM

Not Human 

Interpretable

Gradient and Activation-based Explanations
Results from GradCAM, CounterfactualCAM, and ContrastCAM
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Explanatory Paradigms in Neural 
Networks: Towards Relevant and 
Contextual Explanations

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 

networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Input

Image Grad-CAM Contrast 1 Contrast 2

Contrastive 

Explanation 2

Contrastive 

Explanation 1

Human 

Interpretable

Same as Grad-

CAM

Not Human 

Interpretable

Only traffic sign with a straight

bottom-left edge – enough to 

say `Not STOP Sign’

Gradient and Activation-based Explanations
Results from GradCAM, CounterfactualCAM, and ContrastCAM
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A Callback…
Information at Inference

Network 𝒇(𝜽)

Predicted 
Class Probability

Dog

Cat

Horse

Bird

𝒍(𝜽|𝒙)

Likelihood function

𝐼 𝜃 = 𝑉𝑎𝑟(
𝜕

𝜕𝜃
𝑙 𝜃 𝑥 )

𝜃 = Statistic of distribution

ℓ(θ | x) = Likelihood function

Fisher Information

At inference, given a single image from a single 

class, we can extract information about other classes

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Information at Inference
Case Study: Explainability

𝓣 is the set of all features learned by a trained network

Beak

Neck

Legs

Feathers

Water

Grass

Teeth

.

.

Features 𝒯

Network 𝒇(𝜽) Why Spoonbill?

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Information at Inference
Case Study: Explainability

Given only an image of a spoonbill, we can extract information about a Flamingo

Beak

Neck

Legs

Feathers

Water

Grass

Teeth

.

.

Features 𝒯

Network 𝒇(𝜽) Why Spoonbill?Why Spoonbill, rather 

than Flamingo?

All the requisite Information is stored within 𝒇(𝜽) 

Goal: To extract and utilize this information – Inferential Machine Learning

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Trained Neural Networks have a wealth of implicit stored knowledge. Inferential Machine 
Learning aims to ‘transmute’ this knowledge for other tasks

Information at Inference

Implicit Knowledge in Neural Networks – Inferential Machine Learning

Traditional Why P?

Why P, rather than Q?

What if?

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Inferential Theory of Learning views learning as a goal-oriented process of modifying 
(transmuting) the learner's knowledge by exploring the learner's experience1

[1] Michalski, Ryszard S. "Inferential theory of learning as a conceptual basis for multistrategy 

learning." Machine learning11 (1993): 111-151.

Inferential Machine Learning
Theory Underlying Inferential Machine Learning

Learned Knowledge

Transmuted 

Knowledge

Inferential Theory of 

Learning (ITL) [1]

Input Information

+

Model Knowledge

Robust, Fair, Interpretable Decisions

What is the goal? Our view: Reduce Uncertainty. More on this in Part 3

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Inferential Machine Learning 

Part 3: Uncertainty and Intervenability 

at Inference
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Objective
Objective of the Tutorial

To discuss methodologies that promote robust and fair inference in neural networks

• Part 1: Inference in Neural Networks

• Part 2: Explainability at Inference

• Part 3: Uncertainty and Intervenability at Inference

• Uncertainty Basics

• Uncertainty Quantification (UQ) in Classification

• UQ Methods

• Case Study 1: Gradient-based UQ

• Case Study 2: Uncertainty in Explainability

• Case Study 3: Introspective Learning

• Inferential Machine Learning

• Part 4: Fairness Interventions

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Uncertainty is a model knowing that it does not know

http://krasserm.github.io/2020/09/25/reliable-uncertainty-estimates/

Uncertainty
What is Uncertainty?

White and Gold

Or

Blue and Black?

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Uncertainty is a model knowing that it does not know

Uncertainty
What is Uncertainty?

Input Image Neural Network Output Uncertainty Heatmap

Kendall, Gal “What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision." NIPS 

2017

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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In classification, Uncertainty Quantification (UQ) implies providing a classification label and 
its associated uncertainty

Uncertainty
Uncertainty Basics

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]

Class: Stop Sign

Confidence: 98%

Uncertainty: 0.1%

Consider a network 

trained on 14 signs 

from CURE-TSR

Identify STOP as the only sign with bottom-left corner

Class: Stop Sign

Confidence: 98%

Uncertainty: 0.1%

Network has not seen 

GO sign but is shown 

at inference

No inferential uncertainty 

estimation

No inferential uncertainty 

estimation
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In classification, Uncertainty Quantification (UQ) implies providing a classification label and 
its associated uncertainty

Uncertainty
Uncertainty Basics

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]

Identify that the letters and color are different

Class: Stop Sign

Confidence: 98%

Uncertainty: 98%

Network has not seen 

GO sign but is shown 

at inference

Inferential uncertainty 

estimation

Class: Stop Sign

Confidence: 98%

Uncertainty: 0.1%

Network has not seen 

GO sign but is shown 

at inference

No inferential uncertainty 

estimation
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Probability vs Confidence vs Likelihood vs Uncertainty vs Calibration

Uncertainty
Uncertainty Basics: Informal Definitions

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]

• Probability: Transform logits (final layer outputs) between 0 and 1, Ex: Softmax probability. The 

input has some probability of belonging to all the trained classes 

• Confidence: In non-conformal settings, confidence is a point estimate, Ex: the argmax of 

probabilities of softmax confidences. In the conformal setting (which we do not cover in this 

tutorial), confidence is an interval

• Likelihood: In Bayesian settings, likelihood refers to how likely the model fits the data or the 

‘goodness-of-fit’ of the model. It is related to probability via bayes theorem

• Uncertainty: A probability distribution, (ideally) formed from feature outputs that showcase ‘non-

goodness’ of fit of the underlying model or ‘non-goodness’ of training distribution compared to test 

distribution

• Calibration: A dataset estimate that shows the disparity between confidence of all point 

estimates in the dataset against their accuracy
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Primary purpose of neural networks (ex: classification) and Uncertainty Quantification do not 
always go hand-in-hand!

Uncertainty
Challenge in Uncertainty Quantification

R. Benkert, M. Prabhushankar, and G. AlRegib, “Transitional Uncertainty with Layered Intermediate Predictions,” 
in International Conference on Machine Learning (ICML), Vienna, Austria, 2024 

Dog

All required information is passed to last layer

Maximal logit is the class
Required information is task 

dependent! A well-trained 

classification network ignores the 

attributes of the dog

Dog asking for belly rub = Angry 

dog!

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]



78 of 195

Primary purpose of neural networks (ex: classification) and Uncertainty Quantification do not 
always go hand-in-hand!

Uncertainty
Challenge in Uncertainty Quantification

R. Benkert, M. Prabhushankar, and G. AlRegib, “Transitional Uncertainty with Layered Intermediate Predictions,” 
in International Conference on Machine Learning (ICML), Vienna, Austria, 2024 

Dog

Cat

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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In Bayesian settings, uncertainty is treated as inverse likelihood; consequently, lower the 
negative of likelihood, lower the uncertainty

Uncertainty
Simple Uncertainty Quantification 1: Negative Log Likelihood

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]

http://krasserm.github.io/2020/09/25/reliable-uncertainty-estimates/

• Recall that ‘In Bayesian settings, likelihood refers to how likely the model fits the data or the ‘goodness-

of-fit’ of the model’

• Central Thesis: Negative log-likelihood measures the ‘fit’ of a model by looking at all output logits

• Cons: Requires ground truth at inference to measure likelihood. Generally substituted with the 

prediction



80 of 195

Difference between probability (or logits) of the predicted class and next most-likely class1 

Uncertainty
Simple Uncertainty Quantification 2: Hypothesis Margin

[1] Bartlett, Peter, et al. "Boosting the margin: A new explanation for the effectiveness of voting 

methods." The annals of statistics 26.5 (1998): 1651-1686.

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]

Fig. from Tian, Yanjia, and Xiang Feng. "Large Margin Graph Embedding‐Based Discriminant 

Dimensionality Reduction." Scientific Programming 2021.1 (2021): 2934362.

Simple => No changes in network architecture while training

• Commonly used to rank the difficulty of unlabeled samples in Active 

Learning

• Central thesis: During training, networks implicitly learn the difference 

between classes and find features that maximize the difference (similar 

to contrastive explanations)

• Pros: No need for ground truth at inference

• Cons: Requires a complex network that can learn implicit differences
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[1] Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell. "Simple and scalable predictive 

uncertainty estimation using deep ensembles." Advances in neural information processing systems 30 

(2017). 

Dog

Cat

Horse

Bird

Network 𝒇𝟏(𝜽)

Network 𝒇𝟐(𝜽)

Network 𝒇𝑵(𝜽)

.

.

.

Dog

Cat

Horse

Bird

Dog

Cat

Horse

Bird

Via Ensembles1

Variation within outputs 

is the uncertainty. 

Commonly referred to 

as Prediction 

Uncertainty.

Requires multiple 

trained models – not 

exactly an inferential 

method

Uncertainty
Uncertainty Quantification in Neural Networks

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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[1Van Amersfoort, J., Smith, L., Teh, Y. W., & Gal, Y. (2020, November). Uncertainty estimation using a 

single deep deterministic neural network. In International conference on machine learning (pp. 9690-

9700). PMLR.

Dog

Cat

Horse

Bird

Network 𝒇𝟏(𝜽)

Via Single pass methods1

Uncertainty 

quantification using a 

single network and a 

single pass

𝑳(𝜽)

Calculate distance from some trained clusters

Does not require multiple networks!

However, requires training data/validation set/addition 

models at inference

Uncertainty
Uncertainty Quantification in Neural Networks

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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[1] Y Gal, Z Ghahramani, “Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep 

Learning”, ICML 2016

Uncertainty
Iterative Uncertainty Quantification

Via Monte-Carlo Dropout1: During inference repeated evaluations with the same input give 
different results

Final prediction is the 

mean of the outputs

Variation or entropy of 

logits is the uncertainty 

Different forward passes with dropout simulate 𝑓1 ⋅ , 𝑓2 ⋅ , 𝑓3 ⋅ .

𝑞 𝑾𝑵 ≈ 𝑝(𝑾𝑵|𝒙)

.

.

.

𝑁 Logits

Uncertainty

Score

𝑁 forward passes

Challenge: intractable denominator

 𝑝(𝑾|𝒙)  =
𝑝 𝒙|𝑾 𝑝 𝑾

׬ 𝑝 𝒙|𝑾 𝑝 𝑾 𝑑𝑾

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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[1] Y Gal, Z Ghahramani, “Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep 

Learning”, ICML 2016

Uncertainty
Iterative Uncertainty Quantification

Via Monte-Carlo Dropout1: During inference repeated evaluations with the same input give 
different results

𝑈𝑒𝑝𝑖𝑠𝑡𝑒𝑚𝑖𝑐 = 𝐻
1

𝑇
෍

𝑡=1

𝑇

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑓෢𝑾𝑡
𝒙 −

1

𝑇
෍

𝑡=1

𝑇

𝐻 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑓෢𝑾𝑡
𝒙

𝑈𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑈𝑎𝑙𝑒𝑎𝑡𝑜𝑟𝑖𝑐

Entropy of expectation of predictions Expectation of individual entropy of predictions

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Use gradients to characterize the novel data at Inference, without global information

Distance from unknown cluster 

𝒍(𝜽|𝒙)
Method: 

Extracting Gradient Information!

Uncertainty
Gradients as Single pass Uncertainty Quantification

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Uncertainty is a ‘catch-all’ term, used in multiple applications

Uncertainty 
Uncertainty and Inferential Machine Learning

• Explainability

• Out-of-distribution Detection

• Adversarial Detection

• Anomaly Detection

• Corruption Detection

• Misprediction Detection

• Causal Analysis

• Open-set Recognition

• Noise Robustness

• Uncertainty Visualization

• Image Quality Assessment

• Saliency Detection

Applications 

relevant during 

model inference

Relevant at Deployment:

Provide a specific ‘uncertainty measure’ that 

objectively allows users to trust neural 

network predictions

Unfortunately, each application has its 

own uncertainty quantification

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Uncertainty is a ‘catch-all’ term, used in multiple applications

Uncertainty 
Uncertainty and Inferential Machine Learning

• Explainability

• Out-of-distribution Detection

• Adversarial Detection

• Anomaly Detection

• Corruption Detection

• Misprediction Detection

• Causal Analysis

• Open-set Recognition

• Noise Robustness

• Uncertainty Visualization

• Image Quality Assessment

• Saliency Detection

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]

Learned Knowledge

Transmuted 

Knowledge

𝑳(𝜽)

Part 2

Case Study 1

Case Study 2

Case Study 3
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Case Study 1:

Counterfactual Gradients-based Quantification of 
Prediction Trust in Neural Networks 

Mohit Prabhushankar, PhD

Postdoc

Ghassan AlRegib, PhD

Professor
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Principle: Gradients provide a ‘distance measure’ between the learned representations space 
and its prediction (for discriminative tasks) or some new data (for generative tasks)

Probing the Purview of Neural Networks 
via Gradient Analysis

During training, a loss function ℒ is used to quantify this 

measure.

However, what is ℒ at inference?

Data distribution of new 

batch

𝑥𝑜𝑢𝑡

𝜕ℒ

𝜕𝜃
ቤ

𝜕ℒ

𝜕𝜙
𝑥=𝑥𝑜𝑢𝑡

,

Backpropagated

Gradients

ො𝑥𝑜𝑢𝑡

𝑔𝜙(𝑓𝜃 ⋅ )

Learned Representation

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 

Access 11 (2023): 32716-32732.

Case Study 1: Misprediction Detection
Principle

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Principle: Gradients provide an uncertainty measure between the learned representations 
space and novel data

Probing the Purview of Neural Networks 
via Gradient Analysis

𝑄1
𝜕ℒ(𝑃, 𝑄1)

𝜕𝜃

Backpropagated

Gradients

𝑃

Learned Representation

However, what is ℒ at inference?

• We backpropagate all contrast classes - 

𝑸𝟏, 𝑸𝟐 … 𝑸𝑵 by backpropagating N one-hot 

vectors 

• Higher the distance, higher the uncertainty 

score

𝑃 = Predicted class

𝑄1 = Contrast class 1

𝑄2 = Contrast class 2

𝑄2

𝜕ℒ(𝑃, 𝑄2)

𝜕𝜃

Backpropagated

Gradients

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 

Access 11 (2023): 32716-32732.

Case Study 1: Misprediction Detection
Principle

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Probing the Purview of Neural Networks 
via Gradient Analysis

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 

Access 11 (2023): 32716-32732.

Toy Manifold Example
Why uncertainty?

𝒍(𝜽|𝒙)

𝑥

𝒍(𝜽|𝒙)
𝑥

𝑥′
Contrast class 1

𝒍(𝜽|𝒙)
𝑥

𝑥′
Contrast class N

.

.

.

Gradients represent the local required change in manifold • Gradients 

provide the 

necessary 

change in 

manifold that 

would predict 

the novel data 

‘correctly’.

• Correctly means 

contrastively (or 

incorrectly)! 

• Less data in the 

new region, 

higher is the 

fisher 

information and 

uncertainty

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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How much change is required within the data to predict an incorrect class? Larger the 
required change, larger the trust 

 

 

Case Study 1: Misprediction Detection
Intuition for counterfactual gradients-based Trust

Network 𝒇(𝜽) Why Spoonbill?

Spoonbill

Why Spoonbill, rather 

than Flamingo?

Larger the required 

change, larger the 

trust placed in the 

prediction 

‘Spoonbill’

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural 

networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

Physical 

meaning of 

‘incorrect’ class 

backpropagation

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Step 1: Measure the loss between the prediction P and a vector of all ones and backpropagate 
to obtain the introspective features

Normalized and vectorized 

gradients are introspective 

features. 

Why vector of all 1s? The theory is 

presented in [1]

Probing the Purview of Neural Networks 
via Gradient Analysis

[1] M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Case Study 1: Misprediction Detection
Deriving Gradient Features

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Step 2: Quantify the variance of network parameters (of the last layer) when backpropagating 
contrast classes

 

Case Study 1: Misprediction Detection
Intuition for gradients-based Trust

𝐺𝑟𝑎𝑑𝑇𝑟𝑢𝑠𝑡 =
𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝑙𝑎𝑠𝑠

𝑀𝑒𝑎𝑛 𝑜𝑓 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠 𝑜𝑓 𝑡𝑜𝑝 − 𝑘 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑡𝑢𝑎𝑙 𝐶𝑙𝑎𝑠𝑠𝑒𝑠

• Top-k counterfactuals are based on predictions

• For image classification, top-k contrast classes are top-k predictions

• Gradients are obtained by backpropagating loss between the predicted class 

and itself in the numerator and between the predicted class and contrast classes 

in denominator

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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How do we measure required change? Quantify the variance of network parameters when 
backpropagating counterfactual classes

 

GradTrust
Methodology

0.31

0.47

0.67

0.21

.

.

𝑧 = 𝑓 𝐿−1 (𝑥)

Input Image

𝑥

෤𝑦 = 𝑓 𝐿 𝑧

[1000 × 1]

Gradients

0
0
0
.
.
1

Top 𝑘 counterfactuals

−2 × 10−5

−7 × 10−3

11.03
.
.
.
.

𝟓 × 𝟏𝟎−𝟒

𝐽(𝑦, 𝑦𝐶)

Step 1: Forward Pass Step 2: Obtain Counterfactual Gradients Step 3: GradTrust Computation

𝑔
2

𝑉𝑎𝑟( 𝑔
2

)

Max MeanNormalize

𝑔

GradTrust

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]



96 of 195

For ImageNet dataset (with 50,000 validation set 
images):

1. Run inference on all 50,000 images and obtain 
GradTrust along with comparison trust scores

• We compare against 8 other methods

2. For each TrustScore, order images in ascending order 

3. For a given 𝒙 percentile, calculate the Accuracy and F1 
scores of all images above that percentile

4. Plot Area Under Accuracy Curve (AUAC) and Area Under 
F1 Curve (AUFC)

5. Repeat for multiple networks

• We perform analysis on 14 ImageNet trained Classification 
networks and 5 Video Classification networks

 

Evaluation
Methodology

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Evaluation
Quantitative Results for Image Classification

GradTrust is in Top 2 performing metrics in all but 1 network

 

• Negative Log Likelihood (NLL) works well on smaller networks with less accuracy while Margin classifier works better with high 

accuracy networks 

• GradTrust performs well on all networks

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Evaluation
Qualitative Results for Image Classification

• Results on ResNet-18. Each point is an image from ImageNet validation set

• Each image is plot based on its GradTrust on x-axis and Softmax Confidence on y-axis. Green color indicates image is correctly predicted 

while red color indicates incorrect prediction

• Several incorrect predictions exist having low GradTrust but high softmax confidence (top-left quadrant)

• In contrast, no incorrect predictions, with low Softmax confidence and High GradTrust (bottom-right quadrant)

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Evaluation
Qualitative Results for Image Classification

On AlexNet: Low GradTrust is due to co-occurring classes 

On MaxViT: Low GradTrust is due to ambiguity in class resolution

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Probing the Purview of Neural Networks 
via Gradient Analysis

Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE 

Access 11 (2023): 32716-32732.

Same evaluation setup as before, with inputs being corrupted by noise

Evaluation
Qualitative Results for Image Classification under Corruption

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]

Data Characteristics:

• 3.75 million images

• 15 different challenges including 
decolorization, codec error, lens 
blur etc. for testing

• 4 different challenges for 
validation and training

• 5 progressively increasingly 
levels in each challenge

• Goal: Recognize 1000 classes 
from ImageNet using pretrained 
networks
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Evaluation
Qualitative Results for Image Classification under Corruption

GradTrust is the Top performing metric in all but two setups (in red)

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Evaluation
Qualitative Results for Image Classification under Natural Adversaries

OOD evaluation setup, with inputs being either natural adversaries or validation images

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]

Data Characteristics:

• Curated set of 7500 natural adversarial images

• ‘Natural’ly occurring images as opposed to 
artificially generated adversarial images

• Experimental setup similar to OOD detection; 
given a total of 15,000 images (7500 from 
ImageNet-A and 7500 randomly chosen from 
ImageNet validation set), we find AUDC (Area 
under Detection curve)
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Evaluation
Qualitative Results for Image Classification under Natural Adversaries

GradTrust is the top performing metric

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Uncertainty is a ‘catch-all’ term, used in multiple applications

Uncertainty 
Uncertainty and Inferential Machine Learning

• Explainability

• Out-of-distribution Detection

• Adversarial Detection

• Anomaly Detection

• Corruption Detection

• Misprediction Detection

• Causal Analysis

• Open-set Recognition

• Noise Robustness

• Uncertainty Visualization

• Image Quality Assessment

• Saliency Detection

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]

Learned Knowledge

Transmuted 

Knowledge

𝑳(𝜽)

Part 2

Case Study 1

Case Study 2

Case Study 3
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Case Study 2:

VOICE: Variance of Induced Contrastive 
Explanations for Quantifying Uncertainty in 
Interpretability

Mohit Prabhushankar, PhD

Postdoc

Ghassan AlRegib, PhD

Professor
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Explanatory techniques have predictive uncertainty

Why Bullmastiff? Uncertainty in answering 

Why Bullmastiff?

Predictive Uncertainty in Explanations

Uncertainty in Explainability

M. Prabhushankar and G. AlRegib, ”VOICE: Variance of Induced Contrastive Explanations to Quantify Uncertainty in 
Neural Network Interpretability,” Journal of Selected Topics in Signal Processing (J-STSP) Special Series on AI in 
Signal & Data Science, May 23, 2024.

VOICE: Variance of Contrastive 
Explanations for Quantifying Uncertainty 
in Interpretability

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Common evaluation technique is masking the image and checking for prediction correctness

Uncertainty in Explainability
Explanation Evaluation via Masking

Chattopadhay, Aditya, et al. "Grad-cam++: Generalized gradient-based visual explanations for deep 

convolutional networks." 2018 IEEE winter conference on applications of computer vision (WACV). IEEE, 

2018.

Sx1

Sx2

Trained Model Crane

Trained Model Spoonbill

Sx1

Sx2

If across N images, 

𝐄(𝐘|𝑺𝐱𝟐) > 𝐄(𝐘|𝑺𝐱𝟏), 

explanation technique 2 

is better than explanation 

technique 1

𝑦 = Prediction

Sx = Explanation masked data 

E(Y|Sx) = Expectation of class given Sx 

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Uncertainty due to variance in prediction when model is kept constant 

𝑦 = Prediction

𝑉[𝑦] = Variance of prediction (Predictive Uncertainty)

Sx = Subset of data (Some intervention)

E(Y|Sx) = Expectation of class given a subset

V(Y|Sx) = Variance of class given all other residuals

𝑆𝑥1
𝑆𝑥2𝑥

𝑉 𝑦|𝑆𝑥 = 𝑉 𝐸 𝑦 𝑆𝑥 + 𝐸(𝑉[𝑦|𝑆𝑥])

Uncertainty in Explainability
Predictive Uncertainty

VOICE: Variance of Contrastive 
Explanations for Quantifying Uncertainty 
in Interpretability

M. Prabhushankar and G. AlRegib, ”VOICE: Variance of Induced Contrastive Explanations to Quantify Uncertainty in 
Neural Network Interpretability,” Journal of Selected Topics in Signal Processing (J-STSP) Special Series on AI in 
Signal & Data Science, May 23, 2024.

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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A ‘good’ explanatory technique is evaluated to have zero 𝑽[𝑬 𝒚|𝑺𝒙 ]

𝑦 = Prediction

𝑉[𝑦] = Variance of prediction (Predictive Uncertainty)

Sx = Subset of data (Some intervention)

E(Y|Sx) = Expectation of class given a subset

V(Y|Sx) = Variance of class given all other residuals

𝑆𝑥1
𝑆𝑥2𝑥

zero

Uncertainty in Explainability
Visual Explanations (partially) reduce Predictive Uncertainty

𝑉 𝑦|𝑆𝑥 = 𝑉 𝐸 𝑦 𝑆𝑥 + 𝐸(𝑉[𝑦|𝑆𝑥])

Key Observation 1: Visual Explanations are 

evaluated to partially reduce the predictive 

uncertainty in a neural network

Network evaluations have nothing to do with human 

Explainability!

M. Prabhushankar and G. AlRegib, ”VOICE: Variance of Induced Contrastive Explanations to Quantify Uncertainty in 
Neural Network Interpretability,” Journal of Selected Topics in Signal Processing (J-STSP) Special Series on AI in 
Signal & Data Science, May 23, 2024.

VOICE: Variance of Contrastive 
Explanations for Quantifying Uncertainty 
in Interpretability

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]



110 of 195

All other subsets ‘not’ chosen by the explanatory technique contributes to uncertainty

𝑦 = Prediction

𝑉[𝑦] = Variance of prediction (Predictive Uncertainty)

Sx = Subset of data (Some intervention)

E(Y|Sx) = Expectation of class given a subset

V(Y|Sx) = Variance of class given all other residuals

𝑆𝑥1
𝑆𝑥2𝑥

Uncertainty in Explainability
Predictive Uncertainty in Explanations is the Residual

𝑉 𝑦|𝑆𝑥 = 𝑉 𝐸 𝑦 𝑆𝑥 + 𝐸(𝑉[𝑦|𝑆𝑥])

Key Observation 2: Uncertainty in Explainability occurs 

due to all combinations of features that the explanation 

did not attribute to the network’s decision

M. Prabhushankar and G. AlRegib, ”VOICE: Variance of Induced Contrastive Explanations to Quantify Uncertainty in 
Neural Network Interpretability,” Journal of Selected Topics in Signal Processing (J-STSP) Special Series on AI in 
Signal & Data Science, May 23, 2024.

VOICE: Variance of Contrastive 
Explanations for Quantifying Uncertainty 
in Interpretability

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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All other subsets ‘not’ chosen by the explanatory technique contributes to uncertainty

𝑦 = Prediction

𝑉[𝑦] = Variance of prediction (Predictive Uncertainty)

Sx = Subset of data (Some intervention)

E(Y|Sx) = Expectation of class given a subset

V(Y|Sx) = Variance of class given all other residuals

𝑆𝑥1
𝑆𝑥2𝑥

Uncertainty in Explainability
Predictive Uncertainty in Explanations is the Residual

𝑉 𝑦|𝑆𝑥 = 𝑉 𝐸 𝑦 𝑆𝑥 + 𝐸(𝑉[𝑦|𝑆𝑥])

Key Observation 2: Uncertainty in Explainability occurs 

due to all combinations of features that the explanation 

did not attribute to the network’s decision

The effect of a chosen Intervention can be measured 

based on all the Interventions that were not chosen

Interventions = explanations in this context. However, they can also refer to human prompting at inference 

M. Prabhushankar and G. AlRegib, ”VOICE: Variance of Induced Contrastive Explanations to Quantify Uncertainty in 
Neural Network Interpretability,” Journal of Selected Topics in Signal Processing (J-STSP) Special Series on AI in 
Signal & Data Science, May 23, 2024.

VOICE: Variance of Contrastive 
Explanations for Quantifying Uncertainty 
in Interpretability

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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All other subsets ‘not’ chosen by the explanatory technique contribute to uncertainty

Snout is not as 

highlighted as the jowls 

in explanation (not as 

important for decision)

However, snout is an important 

characteristic that is used to 

differentiate against other 

dogs. Hence, there is 

uncertainty on why this feature 

is not included in the attribution

Uncertainty in Explainability
Predictive Uncertainty in Explanations is the Residual

Key Observation 2: Uncertainty in Explainability occurs 

due to all combinations of features that the explanation 

did not attribute to the network’s decision

M. Prabhushankar and G. AlRegib, ”VOICE: Variance of Induced Contrastive Explanations to Quantify Uncertainty in 
Neural Network Interpretability,” Journal of Selected Topics in Signal Processing (J-STSP) Special Series on AI in 
Signal & Data Science, May 23, 2024.

VOICE: Variance of Contrastive 
Explanations for Quantifying Uncertainty 
in Interpretability

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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All other subsets ‘not’ chosen by the explanatory technique contributes to uncertainty

Snout is not as 

highlighted as the jowls 

in explanation (not as 

important for decision)

However, snout is an important 

characteristic that is used to 

differentiate against other 

dogs. Hence, there is 

uncertainty on why this feature 

is not included in the attribution

Not chosen features are intractable!

Uncertainty in Explainability
Predictive Uncertainty in Explanations is the Residual

M. Prabhushankar and G. AlRegib, ”VOICE: Variance of Induced Contrastive Explanations to Quantify Uncertainty in 
Neural Network Interpretability,” Journal of Selected Topics in Signal Processing (J-STSP) Special Series on AI in 
Signal & Data Science, May 23, 2024.

VOICE: Variance of Contrastive 
Explanations for Quantifying Uncertainty 
in Interpretability

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Contrastive explanations are an intelligent way of obtaining other subsets 

Make it finite by only considering the subsets that 

change y
Y1|Sx1

Y2|Sx2

Y3|Sx3

Y4|Sx4

Y5|Sx5

.

.

YN|Sx𝑁

Variance

……..

𝑆𝑥1
𝑆𝑥2

𝑆𝑥𝑁

Uncertainty in Explainability
Quantifying Interventions in Explainability

𝑉 𝑦|𝑆𝑥 = 𝑉 𝐸 𝑦 𝑆𝑥 + 𝐸(𝑉[𝑦|𝑆𝑥])

M. Prabhushankar and G. AlRegib, ”VOICE: Variance of Induced Contrastive Explanations to Quantify Uncertainty in 
Neural Network Interpretability,” Journal of Selected Topics in Signal Processing (J-STSP) Special Series on AI in 
Signal & Data Science, May 23, 2024.

VOICE: Variance of Contrastive 
Explanations for Quantifying Uncertainty 
in Interpretability

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]



115 of 195

Uncertainty in explainability exists in all architectures, including latest transformers

Uncertainty in Explainability
VGG vs Swin Transformer

M. Prabhushankar and G. AlRegib, ”VOICE: Variance of Induced Contrastive Explanations to Quantify Uncertainty in 
Neural Network Interpretability,” Journal of Selected Topics in Signal Processing (J-STSP) Special Series on AI in 
Signal & Data Science, May 23, 2024.

VOICE: Variance of Contrastive 
Explanations for Quantifying Uncertainty 
in Interpretability

VGG-16 Swin Transformer

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Inferential Machine Learning
Our View: Goal is tied to Uncertainty Quantification 

At Inference, the goal of human interventions is to reduce uncertainty  

Dark blue regions: Low uncertainty

Green/Yellow regions: High Uncertainty

Inexplicable performance deterioration!

The uncertainty visualization is (variance) of (gradients-based visual explanations) – Part 3

Uncertainty Visualization Uncertainty Visualization

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Uncertainty in Explainability can be used to analyze Explanatory methods and Networks

• Is GradCAM better than GradCAM++?

• Is a SWIN transformer more reliable than VGG-16?

Need objective quantification of Intervention Residuals

Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability

M. Prabhushankar and G. AlRegib, ”VOICE: Variance of Induced Contrastive Explanations to Quantify Uncertainty in 
Neural Network Interpretability,” Journal of Selected Topics in Signal Processing (J-STSP) Special Series on AI in 
Signal & Data Science, May 23, 2024.

VOICE: Variance of Contrastive 
Explanations for Quantifying Uncertainty 
in Interpretability

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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On incorrect predictions, the overlap of explanations and uncertainty is higher 

Objective Metric 1: 

Intersection over 

Union (IoU) 

between 

explanation and 

Uncertainty

Higher the IoU, higher the 

uncertainty in explanation (or 

less trustworthy is the 

prediction)

Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability: mIOU

M. Prabhushankar and G. AlRegib, ”VOICE: Variance of Induced Contrastive Explanations to Quantify Uncertainty in 
Neural Network Interpretability,” Journal of Selected Topics in Signal Processing (J-STSP) Special Series on AI in 
Signal & Data Science, May 23, 2024.

VOICE: Variance of Contrastive 
Explanations for Quantifying Uncertainty 
in Interpretability

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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On incorrect predictions, the overlap of explanations and uncertainty is higher 

Objective Metric 1: 

Intersection over 

Union (IoU) 

between 

explanation and 

Uncertainty

Higher the IoU, higher the 

uncertainty in explanation (or 

less trustworthy is the 

prediction)

Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability: mIOU

M. Prabhushankar and G. AlRegib, ”VOICE: Variance of Induced Contrastive Explanations to Quantify Uncertainty in 
Neural Network Interpretability,” Journal of Selected Topics in Signal Processing (J-STSP) Special Series on AI in 
Signal & Data Science, May 23, 2024.

VOICE: Variance of Contrastive 
Explanations for Quantifying Uncertainty 
in Interpretability
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120 of 195

On incorrect predictions, the overlap of explanations and uncertainty is higher 

Objective Metric 1: 

Intersection over 

Union (IoU) 

between 

explanation and 

Uncertainty

Higher the IoU, higher the 

uncertainty in explanation (or 

less trustworthy is the 

prediction)

Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability: mIOU

M. Prabhushankar and G. AlRegib, ”VOICE: Variance of Induced Contrastive Explanations to Quantify Uncertainty in 
Neural Network Interpretability,” Journal of Selected Topics in Signal Processing (J-STSP) Special Series on AI in 
Signal & Data Science, May 23, 2024.

VOICE: Variance of Contrastive 
Explanations for Quantifying Uncertainty 
in Interpretability
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Explanation and uncertainty are dispersed under noise (under low prediction confidence)

Objective Metric 2: 

Signal to Noise 

Ratio of the 

Uncertainty map

Higher the SNR of 

uncertainty, more is the 

dispersal (or less trustworthy 

is the prediction) 

Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability: SNR

M. Prabhushankar and G. AlRegib, ”VOICE: Variance of Induced Contrastive Explanations to Quantify Uncertainty in 
Neural Network Interpretability,” Journal of Selected Topics in Signal Processing (J-STSP) Special Series on AI in 
Signal & Data Science, May 23, 2024.

VOICE: Variance of Contrastive 
Explanations for Quantifying Uncertainty 
in Interpretability
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122 of 195

Uncertainty is a ‘catch-all’ term, used in multiple applications

Uncertainty 
Uncertainty and Inferential Machine Learning

• Explainability

• Out-of-distribution Detection

• Adversarial Detection

• Anomaly Detection

• Corruption Detection

• Misprediction Detection

• Causal Analysis

• Open-set Recognition

• Noise Robustness

• Uncertainty Visualization

• Image Quality Assessment

• Saliency Detection

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]

Learned Knowledge

Transmuted 

Knowledge

𝑳(𝜽)

Part 2

Case Study 1

Case Study 2

Case Study 3
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Case Study 3:

Introspective Learning: A Two-Stage 
Approach for Inference in Neural Networks

Mohit Prabhushankar, PhD

Postdoc

Ghassan AlRegib, PhD

Professor
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

How would humans resolve this challenge? 

We Introspect!

• Why am I being shown this slide?

• Why images of muffins rather than 

pastries?

• What if the dog was a bullmastiff?

Robustness in Neural Networks
Why Robustness?

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

Spoonbill

ො𝑦

Visual Sensing

Feed-Forward 

Sensing

Sense pink feathers, 

straight beak
Why Spoonbill, rather than Flamingo?

𝑥 does not have an S-shaped neck

Why Spoonbill, rather than Crane?

𝑥 does not have white feathers

Why Spoonbill, rather than Pig?

𝑥′𝑠 leg and neck shapes are 

different

Reflection

Spoonbill

෤𝑦

Introspection

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Introspection Learning is a two-stage approach for Inference that combines visual sensing 
and reflection

Introspection
What is Introspection?

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]



126 of 195

Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Introspection Learning is a two-stage approach for Inference that combines visual sensing 
and reflection

Goal : To simulate Introspection in Neural Networks

Definition : We define introspections as answers to logical and targeted 

questions.   

What are the possible targeted questions?

Introspection
Introspection in Neural Networks

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]



127 of 195

Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Introspection Learning is a two-stage approach for Inference that combines visual sensing 
and reflection

What are the possible targeted questions?

Bullmastiff Why Bullmastiff?
What if Bullmastiff was not in 

the image?

Why Bullmastiff, rather than a 

Boxer?

Observed 

Correlations
Observed Counterfactual Observed 

Contrastive

Introspection
Introspection in Neural Networks

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Introspection Learning is a two-stage approach for Inference that combines visual sensing 
and reflection

Goal : To simulate Introspection in Neural Networks

Technical Definition : Given a network  𝑓 𝑥 , a datum 𝑥, and the network’s prediction

 𝑓 𝑥 = ො𝑦, introspection in 𝑓 ⋅  is the measurement of change induced in the network 

parameters

when a label 𝑄 is introduced as the label for 𝑥..   

Contrastive Definition : Introspection answers questions of the form 

`Why P, rather than Q?’ where P is a network prediction and Q is the 

introspective class.   

Introspection
Introspection in Neural Networks

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

For a well-trained network, the gradients are sparse and informative

Introspection
Gradients as Features

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

For a well-trained network, the gradients are sparse and informative

Informative sparse features

Introspection
Gradients as Features

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

For a well-trained network, the gradients are robust

Introspection
Gradients as Features

Lemma1:

Any change in class requires change in 

relationship between 𝑦𝐼 and ො𝑦

1

0

0

0

0

0

.

.

.

.

0

1

0

0

0

0

.

.

.

.

0

0

0

0

0

1

.

.

.

.

…

𝑦𝐼

ො𝑦 = Prediction

𝐽 = Loss function

𝛻𝑊 = Gradients w.r.t. weights
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Measure the loss between the prediction P and a vector of all ones and backpropagate to 
obtain the introspective features

Normalized and vectorized 

gradients are introspective 

features

Vector of all ones: A confounding label!

Introspection
Deriving Gradient Features

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Measure the loss between the prediction P and a vector of all ones and backpropagate to 
obtain the introspective features

Introspective Features

Introspection
Utilizing Gradient Features

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

We define robustness as being generalizable and 

calibrated to new testing data

Generalizable: Increased accuracy on OOD data

Calibrated: Reduces the difference between prediction accuracy and confidence

Introspection provides robustness when the train and test distributions are different  

Introspection
When is Introspection Useful?

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Calibration occurs when there is mismatch between a network’s confidence and its accuracy 

Calibration
A note on Calibration..

• Larger the model, more misplaced is a network’s 

confidence

• On ResNet, the gap between prediction accuracy 

and its corresponding confidence is significantly 

high

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Ideal: Top-left 

corner

Y-Axis: 

Generalization

X-Axis: 

Calibration

Introspection in Neural Networks
Generalization and Calibration results

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Introspection is a plug-in 

approach that works on all 

networks and on any 

downstream task!

Introspection is a light-weight option to resolve robustness issues

Introspection in Neural Networks
Plug-in nature of Introspection

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Introspective Learning: A Two-stage 
Approach for Inference in Neural 
Networks

M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural 

Networks," in Advances in Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 

2022.

Plug-in nature of Introspection benefits downstream tasks like OOD detection, Active 
Learning, and Image Quality Assessment!

Introspection in Neural Networks
Plug-in nature of Introspection

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Cannot depend on training to construct 
robust models

Memes to Wrap Up Part 3

Robustness at Inference

Robustness

Deep Learning

Adversarial 

Images

Deep Learning

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Explanatory Evaluation reduces Uncertainty

Memes to Wrap Up Part 3

Explainability Research is Just Uncertainty Research

Explanation

Uncertainty

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Key Takeaways

Role of Gradients

• Robustness under distributional shift in domains, environments, and adversaries are challenges for neural 
networks

• Gradients at Inference provide a holistic solution to the above challenges

• Gradients can help traverse through a trained and unknown manifold

• They approximate Fisher Information on the projection

• They can be manipulated by providing contrast classes

• They can be used to construct localized contrastive manifolds

• They provide implicit knowledge about all classes, when only one data point is available at inference

• Gradients are useful in a number of Image Understanding applications

• Highlighting features of the current prediction as well as counterfactual data and contrastive classes

• Providing directional information in anomaly detection

• Quantifying uncertainty for out-of-distribution, corruption, and adversarial detection

• Providing expectancy mismatch for human vision related applications

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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References
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Inferential Machine Learning

Part 4: Fairness Interventions
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Gradients at Inference
To Characterize the Novel Data at Inference

𝑳(𝜽)

At Inference

Representation 

Traversal using 

Interventions

𝑳(𝜽)

Trained network knowledge is 

not easily accessible

𝑳(𝜽)
𝑥

𝑥′

Counterfactual 

and Contrastive 

Representations 

using Gradients Part 3

Local editing for

fairness

interventions

𝑳(𝜽)
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Objective
Objective of the Tutorial

To discuss methodologies that promote robustness in neural networks at inference

• Part 1: Inference in Neural Networks

• Part 2: Explainability at Inference

• Part 3: Uncertainty and Intervenability at Inference

• Part 4: Fairness Intervention

• Definitions of Fairness 

• Mathematical frameworks to study fairness intervention

• Data impact

• A unified intervention framework

• Intervention in vision language models

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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• Real-world examples of unfairness:

• Healthcare – Computer-Aided Diagnosis (CAD) returned lower accuracy on black patients.

• Criminal justice – COMPAS predicted high likelihood of re-offending crime to black people [1].

• Advertising – Facebook's algorithm shows gender bias when promoting ads in several countries 
[2].

• Recruiting – Amazon's hiring algorithm was favoring men's resume than women's [3].

• Search engine - Google's image search results reflect gender bias [4].

Prevalent Concerns in Algorithmic Fairness
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• Text completion by GPT-3 (religion-violence bias)

Abubakar Abid et al. Persistent Anti-Muslim Bias in Large Language Models. In AIES, 2021

Effect in Large Foundation Models
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Effect in Large Foundation Models

• Text-to-image generation (gender-occupation bias)
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Effect in Large Foundation Models

• Zero-shot object detection (gender-occupation bias)
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How is fairness defined?

• Individual Fairness

• Semantically similar instances need to be treated similarly:

• 𝑑𝑦(𝑥𝑖 , 𝑥𝑗) ≤ 𝐿 ⋅ 𝑑𝑥(𝑓𝜃(𝑥𝑖), 𝑓𝜃(𝑥𝑗))

• However, subjective, unscalable, legal issues, etc.

• Group Fairness (Statistical Fairness)

• Consistent performance across sensitive groups (A), such as race, gender, 
background, etc:

• Demographic parity (DP): 𝑓𝜃(𝑋) ⊥ 𝐴

• Equalized odds (EOD): 𝑓𝜃(𝑋) ⊥ 𝐴|𝑌

• Min-max fairness: worst group accuracy

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Data bias is one major resource

Where does unfairness come from?

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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• Empirical risk minimization (ERM):

𝑚𝑖𝑛
𝜃

1

𝑛
∑

𝑖=1

𝑛

ℒ(𝑥𝑖; 𝜃) = 𝑚𝑖𝑛
𝜃

1

𝑛
[ ∑

𝑖∈𝑆𝑚𝑎𝑗

ℒ(𝑥𝑖; 𝜃) + ∑
𝑗∈𝑆𝑚𝑖𝑛

ℒ(𝑥𝑗; 𝜃)]

majority group with 

more samples

minority group with 

fewer samples

Training with Biased Data



155 of 195

Alzheimer's disease prediction 

using data from Alzheimer's 

Disease Neuroimaging Initiative:

• majority groups: European 

population and non-Hispanic group

• minority groups: 11.5% Black, 5.6% 

Latino, 2.7% Asian.

Virus detection dataset from Google

• Empirical risk minimization (ERM):

Examples:

𝑚𝑖𝑛
𝜃

1

𝑛
∑

𝑖=1

𝑛

ℒ(𝑥𝑖; 𝜃) = 𝑚𝑖𝑛
𝜃

1

𝑛
[ ∑

𝑖∈𝑆𝑚𝑎𝑗

ℒ(𝑥𝑖; 𝜃) + ∑
𝑗∈𝑆𝑚𝑖𝑛

ℒ(𝑥𝑗; 𝜃)]

majority group with 

more samples

minority group with 

fewer samples

Sentiment classification - example 

from [Wang et al., NAACL 2022]

Training with Biased Data

https://developers.google.com/machine-learning/crash-course/overfitting/imbalanced-datasets
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Such bias not only compromise generalization ability but also raise 

concerns regarding safety and fairness in real-world applications.

• Empirical risk minimization (ERM):

𝑚𝑖𝑛
𝜃

1

𝑛
∑

𝑖=1

𝑛

ℒ(𝑥𝑖; 𝜃) = 𝑚𝑖𝑛
𝜃

1

𝑛
[ ∑

𝑖∈𝑆𝑚𝑎𝑗

ℒ(𝑥𝑖; 𝜃) + ∑
𝑗∈𝑆𝑚𝑖𝑛

ℒ(𝑥𝑗; 𝜃)]

majority group with 

more samples

minority group with 

fewer samples

Training with Biased Data



157 of 195

Bias ratio 𝜁 =
𝑁majority

𝑁total
∈ [0.5,1]

Addressing Bias via Balancing Data



158 of 195

Bias ratio 𝜁 =
𝑁majority

𝑁total
∈ [0.5,1]

Addressing Bias via Balancing Data

• Statistical aspect: adjusting the bias ratio

• Collect more data/data generation/data augmentation [Xu et al. 
(2018); Jang et al. (2021); Chuang et al. (2021); Du et al. (2021); 
Chan et al. (2024)]

• Resampling/reweighting in training [Buda et al. (2018); Sagawa et 
al. (2019); Nam et al. (2020); Liu et al. (2021); Idrissi et al. (2022)]
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• Statistical aspect: adjusting the bias ratio

• Collect more data/data generation/data augmentation [Xu et al. 
(2018); Jang et al. (2021); Chuang et al. (2021); Du et al. (2021); 
Chan et al. (2024)]

• Resampling/reweighting in training [Buda et al. (2018); Sagawa et 
al. (2019); Nam et al. (2020); Liu et al. (2021); Idrissi et al. (2022)]

Bias ratio 𝜁 =
𝑁majority

𝑁total
∈ [0.5,1]

How balanced is enough? 

Addressing Bias via Balancing Data
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Wang, Yipei, and Xiaoqian Wang. "On the Effect of Key Factors in Spurious Correlation: A theoretical 

Perspective." In AISTATS, pp. 3745-3753. PMLR, 2024.

Theoretical Estimation of Test Accuracy under Varying Training Bias Ratio

• Test accuracy on balanced data, 𝜁𝑡𝑒𝑠𝑡 = 0.5
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• Assume the latent representation z are Gaussian mixtures and orthogonal 
[Nagarajan et al. (2020); Sagawa et al. (2020); Yao et al. (2022); Idrissi et al. 
(2022); Ming et al. (2022)]:

• Binary label

• Latent representation

Theoretical Estimation of Test Accuracy under Varying Training Bias Ratio
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• Bayesian optimal classifier

Theoretical Estimation of Test Accuracy under Varying Training Bias Ratio
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• Training and testing accuracy under the optimal classifier

Theoretical Estimation of Test Accuracy under Varying Training Bias Ratio
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• The effect of changing training bias ratio 𝜁𝑡𝑟𝑎𝑖𝑛:

• On real data:

• 𝑚
̂

𝑖𝑛𝑣, 𝑚
̂

𝑠𝑝𝑢𝑟 are estimated at two 

cases with 𝜁𝑡𝑟𝑎𝑖𝑛 → 1

Theoretical Estimation of Test Accuracy under Varying Training Bias Ratio
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• Existing models are inevitably trained with imbalanced data

• Balancing data does not address model bias

• Model structure and design, e.g., CNN exhibit texture bias [Geirhos et al. (2019)]

However, balancing data size is not always effective…

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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In the era of large foundation models

• Unique challenges in intervention in foundation models
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CLIP [Radford et al. (2021)] Latent diffusion model [Rombach et al. (2022)]

Local editing of the latent representation for fairness intervention

Debiasing large foundation models
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A unified framework to debias VLM 

Jung, Hoin, Taeuk Jang, and Xiaoqian Wang. “A Unified Debiasing Approach for Vision-Language Model across 

Modalities and Tasks”. In NeurIPS. 2024.
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Identify bias-relevant latent features

Intervention based on explanation

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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• Identify bias-relevant latent features

• Intervention via local editing of latent features

Selective Feature Imputation for Debiasing (SFID):

Jung, Hoin, Taeuk Jang, and Xiaoqian Wang. “A Unified Debiasing Approach for Vision-Language Model across 

Modalities and Tasks”. In NeurIPS. 2024.
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• A unified framework to reduces biases across 
various downstream tasks and modalities.

• Cost-efficient: does not require costly 
retraining or expensive hyperparameter tuning.

• Do not require annotated downstream 
datasets:

• FairFace for image inputs and Bias-in-
Bios for text inputs as our debiasing 
datasets

• Transferability and zero-shot capability 
maintained after debiasing.

Selective Feature Imputation for Debiasing (SFID)

• Text-to-image generation: “a photo of a plumber”

CoDi CoDi+SFID

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]
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Experimental results: zero-shot classification
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Experimental results: zero-shot cross-modal retrieval
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Experimental results: image captioning
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Experimental results: text-to-image generation



176 of 195

Experimental results: computational efficiency
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Figure from [Radford et al. (2021)]

• Zero-shot (ZS) classification:

Debiasing Foundation Models in Zero-Shot Classification

• Spurious correlation in ZS classification:
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• Projection determined by 

text modality;

• Alignment between image 

and text modality

• To address spurious correlation in zero-shot classification, we aim to update image 
embeddings 𝐡𝑔𝑦,𝑎

in each subgroup 𝑔𝑦,𝑎 to maximize group-wise utility:

Debiasing Foundation Models in Zero-Shot Classification

• Existing method: ROBOSHOT [Adila et al. (2024)]
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99.8%

99.8% 48.2%

51.7%

Existing method changes Σ , 

which changes the distribution of 

the image embeddings in the 

latent space.

• Derivation of Accuracy

Debiasing Foundation Models in Zero-Shot Classification
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Insights: The optimal translation operator for 

image embeddings aligns in the opposite 

direction of the spurious vectors. 

Conceptually, this can be interpreted as neutralizing 

the influence of spurious features.

where

Shenyu Lu, Junyi Chai, and Xiaoqian Wang. “Mitigating Spurious Correlations in Zero-Shot 

Multimodal Models”. In the 13th International Conference on Learning Representations(ICLR 2025).

• Our method: updating image embeddings 𝐡𝑔𝑦,𝑎
by preserving Σ𝑔𝑦,𝑎

:

Debiasing Foundation Models in Zero-Shot Classification
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• Analytic worst-group accuracy:

Debiasing Foundation Models in Zero-Shot Classification

• A smaller 𝛼 indicates more accurate spurious decision boundary

• A larger 𝛽 indicates a more accurate task boundary
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• Analytic worst-group accuracy:

• A smaller 𝛼 indicates more accurate spurious decision boundary

• A larger 𝛽 indicates a more accurate task boundary

Debiasing Foundation Models in Zero-Shot Classification
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• 𝛼 and 𝛽 in practice

Debiasing Foundation Models in Zero-Shot Classification
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Average Worst-Group accuracy 

gain across four datasets:

ROBOSHOT (SOTA): 3.96%

TIE (Ours):  18.26%

• Experiments

Debiasing Foundation Models in Zero-Shot Classification

• Multiclass Classification with Multi-Spurious Attributes
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Benign Malignant

ZS

zs TIE

TIE

Waterbird Landbird

ZS

zs TIE

TIE

ZS

zs TIE

TIE

ZS

zs TIE

TIE

Debiasing Foundation Models in Zero-Shot Classification
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Gradient representations for Robustness, OOD, Anomaly, Novelty, and Adversarial Detection 

• Gradients for robustness against noise: M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural Networks," in Advances in 
Neural Information Processing Systems (NeurIPS), New Orleans, LA, Nov. 29 - Dec. 1 2022

• Gradients for adversarial, OOD, corruption detection: J. Lee, M. Prabhushankar, and G. AlRegib, "Gradient-Based Adversarial and Out-of-Distribution Detection," 
in International Conference on Machine Learning (ICML) Workshop on New Frontiers in Adversarial Machine Learning, Baltimore, MD, Jul. 2022.

• Gradients for Open set recognition: Lee, Jinsol, and Ghassan AlRegib. "Open-Set Recognition With Gradient-Based Representations." 2021 IEEE International Conference on Image 
Processing (ICIP). IEEE, 2021.

• GradCon for Anomaly Detection: Kwon, G., Prabhushankar, M., Temel, D., & AlRegib, G. (2020, August). Backpropagated gradient representations for anomaly detection. 
In European Conference on Computer Vision (pp. 206-226). Springer, Cham.

• Gradients for adversarial, OOD, corruption detection : J. Lee, C. Lehman, M. Prabhushankar, and G. AlRegib, "Probing the Purview of Neural Networks via Gradient Analysis," 
in IEEE Access, Mar. 21 2023.

• Gradients for Novelty Detection: Kwon, G., Prabhushankar, M., Temel, D., & AlRegib, G. (2020, October). Novelty detection through model-based characterization of neural 
networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3179-3183). IEEE.

• Gradient-based Image Quality Assessment: G. Kwon*, M. Prabhushankar*, D. Temel, and G. AlRegib, "Distorted Representation Space Characterization Through Backpropagated 
Gradients," in IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, Sep. 2019.

Explainability in Neural Networks

• Explanatory paradigms: AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and contextual explanations. IEEE Signal 
Processing Magazine, 39(4), 59-72.

• Contrastive Explanations: Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural networks. In 2020 IEEE International Conference 
on Image Processing (ICIP) (pp. 3289-3293). IEEE.

• Explainabilty in Limited Label Settings: M. Prabhushankar, and G. AlRegib, ”Extracting Causal Visual Features for Limited Label Classification,” in IEEE International Conference on 
Image Processing (ICIP), Sept. 2021.

• Explainabilty through Expectancy-Mismatch: M. Prabhushankar and G. AlRegib, "Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural Networks," in Frontiers 
in Neuroscience, Perception Science, Volume 17, Feb. 09 2023.

References
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Self Supervised Learning

• Weakly supervised Contrastive Learning: K. Kokilepersaud, S. Trejo Corona, M. Prabhushankar, G. AlRegib, C. Wykoff, "Clinically Labeled Contrastive Learning for OCT Biomarker 
Classification," in IEEE Journal of Biomedical and Health Informatics, 2023, May. 15 2023. 

• Contrastive Learning for Fisheye Images: K. Kokilepersaud, M. Prabhushankar, Y. Yarici, G. AlRegib, and A. Parchami, "Exploiting the Distortion-Semantic Interaction in Fisheye 
Data," in Open Journal of Signals Processing, Apr. 28 2023.

• Contrastive Learning for Severity Detection: K. Kokilepersaud, M. Prabhushankar, G. AlRegib, S. Trejo Corona, C. Wykoff, "Gradient Based Labeling for Biomarker Classification in 
OCT," in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022

• Contrastive Learning for Seismic Images: K. Kokilepersaud, M. Prabhushankar, and G. AlRegib, "Volumetric Supervised Contrastive Learning for Seismic Semantic Segmentation," 
in International Meeting for Applied Geoscience & Energy (IMAGE), Houston, TX, , Aug. 28-Sept. 1 2022

Human Vision and Behavior Prediction 

• Pedestrian Trajectory Prediction: C. Zhou, G. AlRegib, A. Parchami, and K. Singh, "TrajPRed: Trajectory Prediction With Region-Based Relation Learning," IEEE Transactions on 
Intelligent Transportation Systems, submitted on Dec. 28 2022.

• Human Visual Saliency in trained Neural Nets: Y. Sun, M. Prabhushankar, and G. AlRegib, "Implicit Saliency in Deep Neural Networks," in IEEE International Conference on Image 
Processing (ICIP), Abu Dhabi, United Arab Emirates, Oct. 2020.

• Human Image Quality Assessment: D. Temel, M. Prabhushankar and G. AlRegib, ”UNIQUE: Unsupervised Image Quality Estimation,” in IEEE Signal Processing Letters, vol. 23, no. 
10, pp. 1414-1418, Oct. 2016.

Open-source Datasets to assess Robustness

• CURE-TSD: D. Temel, M-H. Chen, and G. AlRegib, "Traffic Sign Detection Under Challenging Conditions: A Deeper Look Into Performance Variations and Spectral Characteristics," 
in IEEE Transactions on Intelligent Transportation Systems, Jul. 2019

• CURE-TSR: D. Temel, G. Kwon*, M. Prabhushankar*, and G. AlRegib, "CURE-TSR: Challenging Unreal and Real Environments for Traffic Sign Recognition," in Advances in Neural 
Information Processing Systems (NIPS) Workshop on Machine Learning for Intelligent Transportation Systems, Long Beach, CA, Dec. 2017

• CURE-OR: D. Temel*, J. Lee*, and G. AlRegib, "CURE-OR: Challenging Unreal and Real Environments for Object Recognition," in IEEE International Conference on Machine Learning 
and Applications (ICMLA), Orlando, FL, Dec. 2018 
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Active Learning

• Active Learning and Training with High Information Content: R. Benkert, M. Prabhushankar, G. AlRegib, A. Parchami, and E. Corona, "Gaussian Switch Sampling: A 
Second Order Approach to Active Learning," in IEEE Transactions on Artificial Intelligence (TAI), Feb. 05 2023

• Active Learning Dataset on vision and LIDAR data: Y. Logan, R. Benkert, C. Zhou, K. Kokilepersaud, M. Prabhushankar, G. AlRegib, K. Singh, E. Corona and A. 
Parchami, "FOCAL: A Cost-Aware Video Dataset for Active Learning," IEEE Transactions on Circuits and Systems for Video Technology, submitted on Apr. 29 2023

• Active Learning on OOD data: R. Benkert, M. Prabhushankar, and G. AlRegib, "Forgetful Active Learning With Switch Events: Efficient Sampling for Out-of-
Distribution Data," in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022

• Active Learning for Biomedical Images: Y. Logan, R. Benkert, A. Mustafa, G. Kwon, G. AlRegib, "Patient Aware Active Learning for Fine-Grained OCT Classification," 
in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022

Uncertainty Estimation

• Gradient-based Uncertainty: J. Lee and G. AlRegib, "Gradients as a Measure of Uncertainty in Neural Networks," in IEEE International Conference on Image 
Processing (ICIP), Abu Dhabi, United Arab Emirates, Oct. 2020

• Gradient-based Visual Uncertainty: M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify Uncertainty in Neural 
Network Interpretability," Journal of Selected Topics in Signal Processing, submitted on Aug. 27, 2023.

• Uncertainty Visualization in Seismic Images: R. Benkert, M. Prabhushankar, and G. AlRegib, "Reliable Uncertainty Estimation for Seismic Interpretation With 
Prediction Switches," in International Meeting for Applied Geoscience & Energy (IMAGE), Houston, TX, , Aug. 28-Sept. 1 2022.

• Uncertainty and Disagreements in Label Annotations: C. Zhou, M. Prabhushankar, and G. AlRegib, "On the Ramifications of Human Label Uncertainty," in NeurIPS 
2022 Workshop on Human in the Loop Learning, Oct. 27 2022

• Uncertainty in Saliency Estimation: T. Alshawi, Z. Long, and G. AlRegib, "Unsupervised Uncertainty Estimation Using Spatiotemporal Cues in Video Saliency 
Detection," in IEEE Transactions on Image Processing, vol. 27, pp. 2818-2827, Jun. 2018.

References

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]



189 of 195

1. Wang, Tianlu, Rohit Sridhar, Diyi Yang, and Xuezhi Wang. "Identifying and Mitigating Spurious Correlations for Improving Robustness in NLP Models." In Findings of 
the Association for Computational Linguistics: NAACL 2022, pp. 1719-1729. 2022.

2. Xu, Depeng, Shuhan Yuan, Lu Zhang, and Xintao Wu. "Fairgan: Fairness-aware generative adversarial networks." In 2018 IEEE international conference on big data 
(big data), pp. 570-575. IEEE, 2018.

3. Jang, Taeuk, Feng Zheng, and Xiaoqian Wang. "Constructing a fair classifier with generated fair data." In Proceedings of the AAAI Conference on Artificial 
Intelligence, vol. 35, no. 9, pp. 7908-7916. 2021.

4. Chuang, Ching-Yao, and Youssef Mroueh. "Fair Mixup: Fairness via Interpolation." In International Conference on Learning Representations. 2021.
5. Du, Mengnan, Subhabrata Mukherjee, Guanchu Wang, Ruixiang Tang, Ahmed Awadallah, and Xia Hu. "Fairness via representation neutralization." Advances in 

Neural Information Processing Systems 34 (2021): 12091-12103.
6. Chan, Eunice, Zhining Liu, Ruizhong Qiu, Yuheng Zhang, Ross Maciejewski, and Hanghang Tong. "Group Fairness via Group Consensus." In The 2024 ACM 

Conference on Fairness, Accountability, and Transparency, pp. 1788-1808. 2024.
7. Buda, Mateusz, Atsuto Maki, and Maciej A. Mazurowski. "A systematic study of the class imbalance problem in convolutional neural networks." Neural networks 

106 (2018): 249-259.
8. Sagawa, Shiori, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. "Distributionally Robust Neural Networks." In International Conference on Learning 

Representations. 2020.
9. Nam, Junhyun, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and Jinwoo Shin. "Learning from failure: De-biasing classifier from biased classifier." Advances in Neural 

Information Processing Systems 33 (2020): 20673-20684.
10.Liu, Evan Z., Behzad Haghgoo, Annie S. Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa, Percy Liang, and Chelsea Finn. "Just train twice: Improving group 

robustness without training group information." In International Conference on Machine Learning, pp. 6781-6792. PMLR, 2021.
11.Idrissi, Badr Youbi, Martin Arjovsky, Mohammad Pezeshki, and David Lopez-Paz. "Simple data balancing achieves competitive worst-group-accuracy." In Conference 

on Causal Learning and Reasoning, pp. 336-351. PMLR, 2022.

12.Nagarajan, Vaishnavh, Anders Andreassen, and Behnam Neyshabur. "Understanding the failure modes of out-of-distribution generalization." In International 
Conference on Learning Representations. 2021.

13.Sagawa, Shiori, Aditi Raghunathan, Pang Wei Koh, and Percy Liang. "An investigation of why overparameterization exacerbates spurious correlations." In 
International Conference on Machine Learning, pp. 8346-8356. PMLR, 2020.

14.Yao, Huaxiu, Yu Wang, Sai Li, Linjun Zhang, Weixin Liang, James Zou, and Chelsea Finn. "Improving out-of-distribution robustness via selective 
augmentation." In International Conference on Machine Learning, pp. 25407-25437. PMLR, 2022.

15.Ming, Yifei, Hang Yin, and Yixuan Li. "On the impact of spurious correlation for out-of-distribution detection." In Proceedings of the AAAI conference on 
artificial intelligence, vol. 36, no. 9, pp. 10051-10059. 2022.

References



190 of 195

16. Geirhos, Robert, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann, and Wieland Brendel. "ImageNet-trained CNNs are biased 
towards texture; increasing shape bias improves accuracy and robustness." In International Conference on Learning Representations. 2019.

17. Shah, Harshay, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Netrapalli. "The pitfalls of simplicity bias in neural networks." Advances 
in Neural Information Processing Systems 33 (2020): 9573-9585.

18. Shi, Yuge, Imant Daunhawer, Julia E. Vogt, Philip Torr, and Amartya Sanyal. "How robust is unsupervised representation learning to distribution shift?." 
In The Eleventh International Conference on Learning Representations.. 2023.

19. Papyan, Vardan, X. Y. Han, and David L. Donoho. "Prevalence of neural collapse during the terminal phase of deep learning training." Proceedings of 
the National Academy of Sciences 117, no. 40 (2020): 24652-24663.

20. Radford, Alec, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry et al. "Learning transferable visual models 
from natural language supervision." In International conference on machine learning, pp. 8748-8763. PMLR, 2021.

21. Rombach, Robin, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. "High-resolution image synthesis with latent diffusion models." 
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 10684-10695. 2022.

22. Adila, Dyah, Changho Shin, Linrong Cai, and Frederic Sala. "Zero-Shot Robustification of Zero-Shot Models." In The Twelfth International Conference on 
Learning Representations. 2024.

References


	Slide 1
	Slide 2: Tutorial Materials
	Slide 3: Foundation Models
	Slide 4: Foundation Models
	Slide 5: Foundation Models
	Slide 6: Foundation Models
	Slide 7: Foundation Models
	Slide 8: Foundation Models
	Slide 9: Foundation Models
	Slide 10
	Slide 11: Foundation Models
	Slide 12: Deep Learning at Training
	Slide 13: Deep Learning at Training
	Slide 14: Deep Learning at Training
	Slide 15: Foundation Models at Inference
	Slide 16: Objective
	Slide 17
	Slide 18: Objective
	Slide 19: Deep Learning
	Slide 20: Deep Learning
	Slide 21: Deep Learning
	Slide 22: Deep Learning
	Slide 23: Deep Deep Deep Deep Deep … Learning
	Slide 24: Foundation Models
	Slide 25: Foundation Models
	Slide 26: Deep Learning at Inference
	Slide 27: Deep Learning at Inference
	Slide 28: Deep Learning at Inference
	Slide 29: Deep Learning at Inference
	Slide 30: Deep Learning at Inference
	Slide 31: Deep Learning at Inference
	Slide 32: Challenges at Inference
	Slide 33: Challenges at Inference
	Slide 34: Challenges at Inference
	Slide 35: Challenges at Inference
	Slide 36: Challenges at Inference
	Slide 37: Information at Inference
	Slide 38: Information at Inference
	Slide 39: Information at Inference
	Slide 40: Information at Inference
	Slide 41: Gradients at Inference
	Slide 42: Gradients at Inference
	Slide 43: Gradients at Inference
	Slide 44
	Slide 45: Objective
	Slide 46: Explanatory Paradigms in Neural Networks: Towards Relevant and Contextual Explanations
	Slide 47: Explanations
	Slide 49: Explanations
	Slide 50: Explanations
	Slide 51: Explanations
	Slide 52: Explanations
	Slide 53: Explanations
	Slide 54: Gradient and Activation-based Explanations
	Slide 55: Gradient and Activation-based Explanations
	Slide 56: Gradient and Activation-based Explanations
	Slide 57: Gradient and Activation-based Explanations
	Slide 58: Gradient and Activation-based Explanations
	Slide 59: Gradient and Activation-based Explanations
	Slide 60: Gradient and Activation-based Explanations
	Slide 61: Gradient and Activation-based Explanations
	Slide 62: Gradient and Activation-based Explanations
	Slide 63: Gradient and Activation-based Explanations
	Slide 64: Gradient and Activation-based Explanations
	Slide 65: A Callback…
	Slide 66: Information at Inference
	Slide 67: Information at Inference
	Slide 68: Information at Inference
	Slide 69: Inferential Machine Learning
	Slide 70
	Slide 71: Objective
	Slide 72: Uncertainty
	Slide 73: Uncertainty
	Slide 74: Uncertainty
	Slide 75: Uncertainty
	Slide 76: Uncertainty
	Slide 77: Uncertainty
	Slide 78: Uncertainty
	Slide 79: Uncertainty
	Slide 80: Uncertainty
	Slide 81: Uncertainty
	Slide 82: Uncertainty
	Slide 83: Uncertainty
	Slide 84: Uncertainty
	Slide 85: Uncertainty
	Slide 86: Uncertainty 
	Slide 87: Uncertainty 
	Slide 88: Case Study 1:  Counterfactual Gradients-based Quantification of Prediction Trust in Neural Networks 
	Slide 89: Case Study 1: Misprediction Detection
	Slide 90: Case Study 1: Misprediction Detection
	Slide 91: Toy Manifold Example
	Slide 92: Case Study 1: Misprediction Detection
	Slide 93: Case Study 1: Misprediction Detection
	Slide 94: Case Study 1: Misprediction Detection
	Slide 95: GradTrust
	Slide 96: Evaluation
	Slide 97: Evaluation
	Slide 98: Evaluation
	Slide 99: Evaluation
	Slide 100: Evaluation
	Slide 101: Evaluation
	Slide 102: Evaluation
	Slide 103: Evaluation
	Slide 104: Uncertainty 
	Slide 105: Case Study 2:  VOICE: Variance of Induced Contrastive Explanations for Quantifying Uncertainty in Interpretability
	Slide 106: Uncertainty in Explainability
	Slide 107: Uncertainty in Explainability
	Slide 108: Uncertainty in Explainability
	Slide 109: Uncertainty in Explainability
	Slide 110: Uncertainty in Explainability
	Slide 111: Uncertainty in Explainability
	Slide 112: Uncertainty in Explainability
	Slide 113: Uncertainty in Explainability
	Slide 114: Uncertainty in Explainability
	Slide 115: Uncertainty in Explainability
	Slide 116: Inferential Machine Learning
	Slide 117: Case Study: Intervenability in Interpretability
	Slide 118: Case Study: Intervenability in Interpretability
	Slide 119: Case Study: Intervenability in Interpretability
	Slide 120: Case Study: Intervenability in Interpretability
	Slide 121: Case Study: Intervenability in Interpretability
	Slide 122: Uncertainty 
	Slide 123:  Case Study 3:  Introspective Learning: A Two-Stage Approach for Inference in Neural Networks
	Slide 124: Robustness in Neural Networks
	Slide 125: Introspection
	Slide 126: Introspection
	Slide 127: Introspection
	Slide 128: Introspection
	Slide 129: Introspection
	Slide 130: Introspection
	Slide 131: Introspection
	Slide 132: Introspection
	Slide 133: Introspection
	Slide 134: Introspection
	Slide 135: Calibration
	Slide 137: Introspection in Neural Networks
	Slide 138: Introspection in Neural Networks
	Slide 139: Introspection in Neural Networks
	Slide 140: Memes to Wrap Up Part 3
	Slide 141: Memes to Wrap Up Part 3
	Slide 142: Key Takeaways
	Slide 144: References
	Slide 145
	Slide 146: Gradients at Inference
	Slide 147: Objective
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152: How is fairness defined?
	Slide 153: Where does unfairness come from?
	Slide 154: Training with Biased Data
	Slide 155: Training with Biased Data
	Slide 156: Training with Biased Data
	Slide 157: Addressing Bias via Balancing Data
	Slide 158: Addressing Bias via Balancing Data
	Slide 159: Addressing Bias via Balancing Data
	Slide 160
	Slide 161: Theoretical Estimation of Test Accuracy under Varying Training Bias Ratio
	Slide 162
	Slide 163
	Slide 164
	Slide 165: However, balancing data size is not always effective…
	Slide 166
	Slide 167
	Slide 168
	Slide 169: Intervention based on explanation
	Slide 170: Selective Feature Imputation for Debiasing (SFID): 
	Slide 171: Selective Feature Imputation for Debiasing (SFID)
	Slide 172: Experimental results: zero-shot classification
	Slide 173: Experimental results: zero-shot cross-modal retrieval
	Slide 174: Experimental results: image captioning
	Slide 175: Experimental results: text-to-image generation
	Slide 176: Experimental results: computational efficiency
	Slide 177: Debiasing Foundation Models in Zero-Shot Classification
	Slide 178: Debiasing Foundation Models in Zero-Shot Classification
	Slide 179: Debiasing Foundation Models in Zero-Shot Classification
	Slide 180: Debiasing Foundation Models in Zero-Shot Classification
	Slide 181: Debiasing Foundation Models in Zero-Shot Classification
	Slide 182: Debiasing Foundation Models in Zero-Shot Classification
	Slide 183: Debiasing Foundation Models in Zero-Shot Classification
	Slide 184: Debiasing Foundation Models in Zero-Shot Classification
	Slide 185
	Slide 186: References
	Slide 187: References
	Slide 188: References
	Slide 189: References
	Slide 190: References

