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Foundation Models
Expectation vs Reality

Expectatlon VS Reallty of Foundatlon Models
.
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Foundation Models
Segment Anything Model

Segment Anything Model (SAM) released by Meta on April 5, 2023 was trained on Segment Anything 1 Billion
dataset with 1.1 billion high-quality segmentation masks from 11 million images

"Segment anything." arXiv preprint arXiv:2304.02643 (2023).
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Cityscapes dataset
semantic segmentation
annotation took ~90
mins per image

P Tech.
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Foundation Models PointPrompt

“Trial and Error’ Interventions in Segment Anything Model Hh Dataset
SCAN ME

Goal: Given a promptable model with no operational knowledge, users employ a ‘trial and

. . error’ strate
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The general conclusion from [1]
is that annotators overprompt
and utilize strategies that lead to
worse performance

~200,000 prompts on 6000
images

(c) (d)
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Foundation Models

Vision-Language Models are ‘Doomed to Choose scm:ﬁé Dataset

Goal: Given a long video sequence, vision language models (VLMs) can process, interpret,
and answer questions

USER:
What is the person doing? VLMs (and all other deep
ASSISTANT: learning-based systems) are

‘doomed to choose’ — no
mechanism to understand if
sufficient information is
available at inference

Demo created at Inference on “LLaVA-v1.5-13B” model on Daily Activity
Recognition (DARai) dataset [1]
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Other

Hierarchical Activity Recognition findings:
Ground Truth Prediction

]
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Foundation Models
Vision-Language Models are sensitive to experimental setup

Other
findings:
SCAN ME
E :
{
i
Activity  Action Procedure
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Vision-Language Models are Biased towards Societal Stereotypes

SCAN ME

CLIP-CAP CLIP-CAP
A woman in a wetsuit surfing on a wave. A man riding skis down a
snow covered slope.

Modalities and Tasks”. In NeurlPS. 2024. N
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Foundation Models
Requirements and Challenges for Deep Learning

Requirements: Foundation model-enabled systems must predict correctly and fairly on novel
data and explain their outputs

T R
Novel data sources: \‘ | >

» Test distributions

« Anomalous data
e Qut-Of-Distribution data
e Adversarial data

« Corrupted data

* Noisy data

 New classes

o i ' i i y) -
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Deep Learning at Training
Overcoming Challenges at Training: Part 1

The most novel/aberrant samples should not be used in early training

+  Model Representation

®
Low Information ® o 08| -« The firstinstance of training must occur with
} 0, o ® less informative samples
& re 2 « Ex: For autonomous vehicles, less informative
= means
*§ « Highway scenarios
& « Parking

 No accidents
 No aberrant events

High Information

A4

Samples ®Class1 @ Class 2
O Dtrgin == Boundary

Novel samples = Most Informative

; , , . : ) .
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Deep Learning at Training
Overcoming Challenges at Training: Part 2

Subsequent training must not focus only on novel data

« The model performs well on the new

g (1 1] anamens e scenarios, while forgetting the old

s° K0 Calastro?tlucg | scenarios

k' Forgetting | . . )

8 GOF Wy — mNisT - » Several techniques exist to overcome this

g ol ) | — FMNIST | trend

< \

35 ) i « However, they affect the overall performance
in large-scale settings

Oo—=""35""%0 7% 1 _ _
Epochs * Itis not always clear if and when to

incorporate novel scenarios in training

Laborieux, Axel, et al. "Synaptic metaplasticity in binarized neural networks." Nature communications 12.1 oY J%
(2021): 2549.
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Deep Learning at Training
Overcoming Challenges at Training

Novel data packs a 1-2 punch!

Even if
available,
novel data
does not
easily fit into
either the
earlier or
later stages
of training

Novel data may not
be available during
training

B = Novel data

2 . , . . \ ) .
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Foundation Models at Inference
Overcoming Challenges at Inference

We must handle novel data at Inference!!

Model Train At Inference

Novel data sources:

» Test distributions
 Anomalous data

« Out-Of-Distribution data
* Adversarial data

» Corrupted data

* Noisy data

* New classes

. i ' i i ) i
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To discuss methodologies that promote robust and fair inference in neural networks

Part 1: Inference in Neural Networks

Part 2: Explainability at Inference

Part 3: Uncertainty and Intervenability at Inference

Part 4: Fairness Interventions

16 of 195 // L [Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025] ‘ OLIVES Gr Georgia
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Inferential Machine Learning
Part I: Inference in Neural Networks
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Objective
Obijective of the Tutorial

To discuss methodologies that promote robust and fair inference in neural networks

Part 1: Inference in Neural Networks

* Neural Network Basics
Robustness in Deep Learning
Information at Inference
Challenges at Inference
Gradients at Inference

Part 2: Explainability at Inference

Part 3: Uncertainty at Inference

Part 4: Fairness Interventions

2 . , . . \ ) .
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Deep Learning
Overview

Low-Level
Feature

Ex. LeCun, 2015
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Deep Learning
Neurons

The underlying computation unit is the Neuron

o Artificial Neuron
Artificial neurons consist of: & &%
* A single output Q:"*"féii’g{n N . .
. M Itl |e in uts g e, -~ summation activation
JHip _p = output
* Input weights ) Z >
A bias input £
« An activation function 7 L
\ﬂé,‘?é\zf‘?‘
@ @ bias

: . . . . | ) .
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Neurons are stacked and densely connected to construct ANNs

. O, S— o

output layer

hidden layers (optional)

Typically, a neuron is part of a network organized in layers:
* An input layer (Layer 0)
* An output layer (Layer K)
» Zero or more hidden (middle) layers (Layers 1...K — 1)

21 of 195 // . [Tutorial @AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025] ‘.QLIVES‘; Gr Georgia
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Deep Learning
Convolutional Neural Networks

Stationary property of images allow for a small number of convolution kernels

Cat

) || Low-Level - Mid-Level __HIgh-Level__’ Trainable
Feature Feature Feature Classifier
A

Ex. LeCun, 2015

: . , . : } .
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Transformers, Large Language Models and Foundation Models

15,000x increase in 5 years

GPT-317
1 trillion

Megatron-Turing

), Cat

15 Turing-NLG
178

@
N
v
it
@
°
=)
=

Transformers BERT GPT-2 GPT-28B
65M 340M 1.58 8.3B 118

MID 2018 2019 MID LATE 2020 MID LATE
2017 2019 2019 2020 2021

Time

Primary reasons for advancements:

1. Expanded interests from the research community
2. Computational resources availability

3. Big data availability

\OLIVES
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Foundation models are like any other deep network that have employed transfer learning, except at scale
Scale brings about emergent properties that are common between tasks

Before 2019: Base architectures that powered multiple neural networks were ResNets, VGG etc.

Since 2019: BERT, DALL-E, GPT, Flamingo

Changes since 2019: Transformer architectures and Self-Supervision

Bernstein et al. "On the opportunities and risks of foundation models." arXiv preprint arXiv:2108.07258 (2021).
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Ty o o By harzfzessin g self-supe;rytsmn at scale, |
foundation models for vision have the potential

@ rocitional vision Tesis to distill raw, multimodal sensory information

into visual knowledge, which may effectively

Perceptual Sources

O R o _
- oa — ‘IB o, 0 °
‘Y7 T ] i support traditional perception tasks and
mera onomo mbien Model . .
TDakar | | agids” | Seios e - possibly enable new progress on challenging
Training v Adaptation . . .
- &w‘ @ Hioher-ordr st higher-order skills like temporal and
ta . .
e — Sl commonsense reasoning These inputs can come
ept! erma Dynamics Mind .
ﬁ”\‘ ‘ from a diverse range of data sources and
”” application domains, suggesting promise for
Commonsense Temporalit . . . °
Resionng & Cousality applications in healthcare and embodied,
D : & interactive perception settings’
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Deep Learning at Inference
What, Where, and When is Inference?

Ability of a system to predict correctly on novel data

Novel data sources:

» Unexpected prompts
» Test distributions

* Anomalous data PRy 3

+ Out-Of-Distribution data s R Trained Model Cat

 Adversarial data

» Corrupted data
* Noisy data
* New classes
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Neural networks are feed-forward systems; output layer logits are used for inference

Novel data sources: All required information is passed to last layer

Outputs from last layer are termed Logits

Unexpected prompts
Test distributions
Anomalous data
Out-Of-Distribution data
Adversarial data

Cat

Corrupted data

Noisy data L _ o : :
Required information is learned at training; leads to inductive

New classes bias when encountering novel data at inference

Tech.
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Deep Learning at Inference
What, Where, and When is Inference?

Inference occurs at: (i) Testing, and (ii) Deployment

Novel data sources: Cat,
Trained Model at Testing Cat,

» Unexpected prompts Cat

 Test distributions

 Anomalous data

» Out-Of-Distribution data

* Adversarial data Nl B2

. Corrupted data SSE Trained Model at Cat

Noisy data S o) Deployment

New classes
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Deep Learning at Inference
Application: Classification

Given : One network, One image. Required: Class Prediction

Predicted
Class Probability
Dog 9%
Cat 89%
Horse
Bird

If x € y, the data Is not
y = y = Logits
y =yargfr$:;)xi y § = Predicted Class n OVEI

p(y) =T(f(x)) p(y) = Probabilities
f(-) = Trained Network

x = Training data

: - . - : Y .
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Deep Learning at Inference
Application: Robust Classification

Deep learning robustness: Correctly predict class even when data is novel

Predicted
Class Probability
: Network f(8) Dog 20,
i : Cat 53%
’ ’ ] 1 ' 1 ‘ - Horse
._~*- | 4 | 4 \_ A ird
xl — -

If x € y, the data is
y=f(x"+¢€ y = Logits
yy= aj;fqmaxl.)y y = Predicted Class novel
p(®) = T(f(x' + €)) p(¥) = Probabilities
f(-) = Trained Network
x = Training data
e = Noise

30 of 195 // o [Tutorial @AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025] Uz\lOLIVES’ Gr Georgia

[/
ol
= 4 "irfk "" T h
A N 7285 ech.
L



Deep Learning at Inference
Application: Robust Classification

Deep learning robustness: Correctly predict class even when data is novel

Predicted
Class Probability
- Network f(0) Dog .
’ ’ 1 1 ' " ‘ - Horse
: ..-‘ . ’ 4 \_ A = Bird
Y i

To achieve robustness at Inference, we need the following:

* Information provided by the novel data as a function of training distribution
« Methodology to extract information from novel data
» Techniques that utilize the information from novel data

Why is this Challenging?
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Challenges at Inference
A Quick note on Manifolds..

Manifolds are compact topological spaces that allow exact mathematical functions

Toy visualizations generated using functions Real data visualizations generated using
(and thousands of generated data points) dimensionality reduction algorithms (Isomap)

2 . [] H H ,* =
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Challenges at Inference Hierarchical
) ) ) ) Constralped _
Manifold evaluation at Test-Time Inference without Labels rvvere Contrastive Learning
AN ME
The change in singular values indicate ‘goodness’ of a self-supervised model for a given
dataset
SVD Spectrum of Dataset Representations - Construct covariance matrix of the dataset of
representations
o « Take SVD and order all singular values.
E * The singular values in decreasing order are
> BT T | | | plotted on the left for different datasets
:g ——— ImageNet
2201 e T | | « ‘Better suited-data’ for a trained model has no
e (T o dimensional collapse
5 | — — ’ \ | | |
- | n |  Conclusion: The natural image trained self-
% \ | supervised learning model is ill-suited to be

! ' . . utilized for Breast, OCT, and derma datasets
500 1000 1500 2000
Singular Value Rank Index \

—> Dimensional collapse
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Challenges at Inference % o st
Manifold evaluation at Test-Time Inference without Labels R f Supervised Learning

SCAM ME

The similarity of concepts like shape, color, and textures between different self-supervised
training regimens and the supervised version indicate ‘goodness’ of that regimen

Supervised SimCLR

VicREG

Barlow Twins

 Column 1: Given the task of bird classification and
the bird class, explanations can be constructed for
specific perceptual components like color, shape,
and texture

« Columns 2, 3, and 4: Given only a pre-text task
and no true ground truth, we can construct visual
explanations for the same concepts

Importance

Input Image

Color
Importance

Shape
Importance

 (Construct correlation score between column 1 and
each o the other columns.

s . .
g5 3 c) More correlation = better suited for downstream
>
=4
- task
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Challenges at Inference

EI%EI
4 | Perceptual

_ _ @, Compo_nents in Se_lf-
Deployment Inferential Evaluation (= Supervised Learning

SCAM ME

Both these methods work on ‘test-time’ inference; we need access to a large dataset to (i)
construct SVD of dataset, (ii) correlation across image explanations

; i i R | i i
SVD Spectrum of Dataset Representations . %’,‘“”d SHticL RAPCU TWhe Yanee
@ -
o
N » .
g L
01 e - : : - _é '}‘k)i‘\ I'-I\'
(2] = | ‘ ' :
Q - ol B
E \
© _10 {4 — Cifarlo
2 —— Cifarl00 S
© —— ImageNet inputimage & § A7 Q.,
CD:D 20 4 — Blood ‘ . . \ S8
o 2 .
£ Derma — X
(¥p] — OCT
‘S | Breast | | ‘
g ¥ @ §
— | = v g e
‘ »a
-40 : - E

/
o
2
o
Texture

Importance

Dimensional collapse

v [ ' . | ) ’
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Challenges at Inference
Deployment Inferential Evaluation

However, at deployment only the test data point is available, and the underlying structure of

Trained network knowledge is

L(O) .
| not easily accessible

\ 1 ! 1 ! 1 J

36 of 195 // flidin

At Inference

[Tutorial @AAAI'25] | [Ghassan AlRegib,

the manifold is unknown

L(O)

\ 1 1 1 1 1 J

At training, we have access to all
training data.

Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025] AOLIVES ),
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Information at Inference
Fisher Information

Colloquially, Fisher Information is the “surprise” in a system that observes an event

Predicted
Class Probability

Network f(0) Dog
—
Horse
Bird
Fisher Information
d
1(0) = Var(=1(0]x))
| 00
e 6 = Statistic of distribution
Likelihood function 0, £(6 | x) = Likelihood function
0o
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Information at Inference
Information at Inference

At inference, given a single image from a single
class, we can extract information about other classes

: : : : ) .
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Information at Inference
Gradients as Fisher Information

Gradients infer information about the statistics of underlying manifolds

From before, 1(0) = Var(%l(@lx))
Using variance decomposition, I1(6) reduces to:

1(0]x) ‘ 1(0) = E[UyUj] where

Pe E[-] = Expectation
oz - Ug = Vpl(0]x), Gradients w.r.t. the sample

SRR YR V) WU — (-
\. z
\\
!

Hence, gradients draw information from the
underlying distribution as learned by the

Likelihood function instead of loss manifold network weights!
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Part XXI 16. Springer International Publishing, 2020.



Information at Inference
Case Study: Gradients as Fisher Information in Explainability

Gradients infer information about the statistics of underlying manifolds

In this case, the image and its
prediction extracts nose, mouth
and jowl features.

Hence, gradients draw information from the
" underlying distribution as learned by the
S \//e | network weights!

8o

Feature attribution via GradCAM

2 ; ' ; ; 1 .
40 of 195 // o [Tutorial @AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025] “E\(?LNE,S/ Gr Georgia
g S\ 77 Tech.
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Gradients at Inference
Local Information

Gradients provide local information around the vicinity of x, even if x is novel. This is
because x projects on the learned knowledge

|deal

L(O)QL\W o

L(e) 14
e sk, a Vg L(0) provides local information up to a small
e d
- £ istance a away from x
- m’?, o8 01
90 “ o o 1

: : , . . \ ) )
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Gradients at Inference
Direction of Steepest Descent

Gradients allow choosing the fastest direction of descent given a loss function L(9)

==l Path 17?
Which direction should we
===p Path 2? oOptimize towards (knowing

X only the local information)?
N /3‘ ===l  Path 37
. Okt Ta®
L) O
c - Negative of the gradient provides the descent
i > racti ini
e St direction towards the local minima, as measured
08 .7 057‘%.\'\ J_f/ﬁoe by L(H)
8" oa 03/’?}\>>\/“oe 61
90 Sl o !

. . . . | ) .
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Gradients at Inference
To Characterize the Novel Data at Inference

At Inference

| Trained network knowledge is

L(e), not easily accessible
Counterfactual
and Contrastive _ Local editing for
Representations Representation fairness
using Gradients Part 3 Traversal using interventions
/ Interventions
X
g o |
. -, 1 e Lo
( )f: 1 L(O) ‘*f ©) :
" e, e e

6,
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Inferential Machine Learning
Part 2: Explainability at Inference
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Objective
Obijective of the Tutorial

To discuss methodologies that promote robust and fair inference in neural networks

 Part 1: Inference in Neural Networks

« Part 2: Explainability at Inference
* Visual Explanations
« Gradient-based Explanations
« GradCAM
« Counterfactual CAM
« ContrastCAM

« Part 3: Uncertainty and Intervenability at Inference
« Part 4: Intervenability at Inference
» Part 5: Conclusions and Future Directions

3 . ' . . \ | .
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THE MULTI-FACETED. ,
NATURE.OF: N
EXPLAINABILITY %
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)

Mohit Prabhushankar, PhD Ghassan AlRegib, PhD
Postdoc Professor SCAN ME
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Explanatory Paradigms in Neural

Explanatlons Networks: Towards Relevant and
Visual EX Ianations - Contextual Explanations
p SCAN ME

 Explanations are defined as a set of rationales used to understand the reasons behind a
decision

« If the decision is based on visual characteristics within the data, the decision-making
reasons are visual explanations

Observed Observed Counterfactual Observed
Corrdlations Contras i.\_/e

¥

. . What if Bullmastiff was not in | Why Bullmastiff, rather than a
Bullmastiff Why Bullmastiff? the image? Boxor?

: . , . . \ ) .
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A AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and S\ay 7 )’ Tech.

OSSR\ YO
contextual explanations. IEEE Signal Processing Magazine, 39(4), 59-72. =



SCAN ME

v

> It is a Spoonbill Explainability
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AlRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and
contextual explanations. IEEE Signal Processing Magazine, 39(4), 59-72.
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- ° straight = : decision

& = beak about spoonbills
7 -?; The network
Y Why Spoonbill, z Lack of S- does not know
9 ratherthana — @ shaped about the Assess f(°)
= Flamingo? > neck difference in
S < ~ legs

; Neck, beak,
§ n wthhy S;:ﬁonblll, ) body, legs n | trust the Garners
o S, ratherthana | are all & network trust in f(+)
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Explanations
Input Saliency via Occlusions

SCAN ME

Intervention: Mask part of the image before feeding to CNN, check how much predicted
probabilities change

: s N — “\“!-l ‘ [l".‘. 1 I".\‘ l 10 \ [
\ . 53 14 A = I l N f i ]
H S M W T Pelephant) =0.95
E o B3\ \J':‘ . :» :.:(":\.:3 =~ t 13 = 5 AT ‘

TS
l

bl

|

“
\ | Dense Danse
| I \
\\ E - L
opamal | 1 28 M o o om
o N v Max Pooling
& Pooling Pooling
Local Response 0C 25 PO
Normalizaty o Normalizaty o

A gray patch or patch of average pixel value of the dataset
Note: not a black patch because the input images are
centered to zero in the preprocessing.

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014 e

: , . : | ) .
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Explanations
Input Saliency via Occlusions

SCAN ME

Intervention: Mask part of the image before feeding to CNN, check how much predicted
probabilities change

P(elephant) =0.95

These pixels :
affect decisions |
more B

P(elephant) =0.75
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Explanations 23 [ St Perscione e
' ' ' Contextual Explanati
Input Saliency via Occlusions e ontextual Explanations

The network is trained with image- labels, but it is sensitive to the common visual regions in
images

African elephant, Loxodonta africana

(‘)} ’/
rol? Tech.
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Explanations
Gradient-based Explanations

SCAN ME

Gradients provide a one-shot means of perturbing the input that changes the output; They
provide pixel-level importance scores

Vanilla Gradients Deconvolution Gradients Guided Backpropagation

However, localization remains an issue

53 of 195 A , [Tutorial @AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025] J 9LIVE§/, Gr Georgia
A é Q\L o/jo Tec:h.

Springenberg, Dosovitskiy, et al., Striving for Simplicity: The all convolutional net, 2015



SCAN ME

Grad-CAM uses the gradient information flowing into the last convolutional layer of the CNN
to assign importance values to each activation for a particular decision of interest.

A ’:,5 @ @ 3 Boaar }lmage Classification

y

Rectified Conv

Feature Maps global average pooling
N\
e N
A 8 1 3 dy“
—* Ta spec:ﬁc Q. — — »
____________________ Network k Z - - 8145‘
|  €—— Gradients ! ¢ J J
——> Activations . ;
: ' gradients via backprop
c _ c Ak
Backprop tll conv LGrad-C AM — ReLU E x k:A
NN >y
Grad-CAM (up-sampled to orlglnal image dimension) ~~
linear combination
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations Ve
GradCAM rrveRY™
Grad-CAM generalizes to any task:

* Image classification
* Image captioning
* Visual question answering

* efc. “
’:5 ﬁ : @ % ey Image Classification
y
Rectified Conv ]
Feature Maps
T T {on)
AV -
Ta ecific i | A cat lying on Image Captioning

-------------------- Netawork P the ground
:' <«—— Gradients E
E —> Activations E e |°‘;~' |
N ecesiciesaaaaa ' ; (or)

'( Visual

1 Is there a cat? £C Layar sual

: Backprop | uest ANNLST Question Answering

: till conv

Grad-CAM v
3 . ' . . \ | .
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
Explanatory Paradigms

SCAN ME

GradCAM provides answers to ‘Why P?’ questions. But different stakeholders require relevant
and contextual explanations

Observed Observed Cotinterfactual Observed
Corrgfations Contrastive

¥

Bullmastiff Why Bullmastiff? What if Bullmastiff was not in [ Why Bullmastiff, rather than a

the image? Boxer?

. ' ' [ ' N A .
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
Counterfactual CAM: What if this region were absent in the image?

SCAN ME

In GradCAM, global average pool the negative of gradients to obtain a¢ for each kernel k

1€ = @ @ % o }-Imago Classification
y

Rectified Conv -
Feature Maps global average pooling
7 e N

A | 1 y°
— - TaN;tsvieﬁ(iﬁc @4 E Z Z — aj fj

R |

0
|

--------------------

:' «—— Gradients :
——> Activations E

....................

v
gradients via backprop

c c Ak

Backprap fl cony LGrag.cam = ReLU E apA

ay° 2

What if Bullmastiff was not in Y 9ak - i
the image? y Mo

linear combination

Negating the gradients effectively removes these regions from analysis

: . , . . | ) .
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
ContrastCAM: Why P, rather than Q?

SCAN ME

In GradCAM, backward pass the loss between predicted class P and some contrast class Q to
last conv layer

y

< = @ !@ % Woar }-lmago Classification

Rectified Conv
Feature Maps global average pooling
N\

7 N
A c— =YY 24BQ)
—Ta spec:ﬁc Ny = —_ NV
.................... Network Z - 3Ai."j
| €—— Gradients ! % J
neone | |°ﬂ|ak gradients via backprop

....................

§ : k
Backprap til conv Lg}rad-C AM — ReLU OlecA
9J(P,Q)

Why Bullmastiff, rather than a 9Ak \ >
Boxer? y Vb' .
Inear combination
Contrast-CAM

Backpropagating the loss highlights the differences between classes P and Q.

‘ . ' . . ‘ ) .
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
Results from GradCAM, Counterfactual CAM, and ContrastCAM

Input Contrastive Contrastive
Image Grad-CAM  Contrast1 Explanation 1 Contrast 2 Explanation 2

SCAN ME

E =
L

ImageNet dataset : ’ Grad-CAM : Why Representanve Why not Spoonbill,
Spoonblll Spoonbill? Flamingo image with 100% confidence?
@\ \

."
- L

ImageNet dataset : | Grad-CAM : Why : Bull Represe i Why Bull Mastiff, Representative Blue jay Why Bull Mastiff, Why not Bull Mastiff,
Bu|| Mastiff Mastiff? imag rather than Boxer image rather than Blue jay? [ with 100% confidence?

‘*’v e; . /
CURE-TSR dataset : Grad-CAM : Why No- Representative No- Why No-Left, rather Represen!anve Stop Why No-Left, rather | Why not No-Left with
No-Left Image Left? Right image than No-Right? _Sign than Stop? 100% confidence?

-
— -

Stanford Cars Dataset: Grad-CAM: Why Representative Bugatti Why Convertible, Representative Audi A6 | Why Bugatti, rather Why not Bugatti with
Bugatti Convertible Bugatti Convertible? Coupe image rather than Coupe? image than Audi A6? 100% confidence?
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Gradient and Activation-based Explanations
Results from GradCAM, Counterfactual CAM, and ContrastCAM

60 of 195

SCAN ME

Input Contrastive Contrastive
Image Grad-CAM Contrast1 Explanation 1 Contrast2 Explanation 2

Grad-CAM : Why Representative Why Spoonbill, rather Represent:; ve Plg Why Spoonbill, rather Why not Spoonbill,
Spoonbill? Flamingo image _than Flamingo? image than Pig? with 100% confidence?

r

Why Bull Mastiff, Representative Bluejay Why Bull Mastiff, Why not Bull Mastiff,
rather than Boxer image rather than Blue jay? [ with 100% confidence?

.

_ VL /
CURE-TSR dataset : Grad-CAM : Why No- Represematwe No Why No-Left, rather Representauve Stop Why No-Left, rather | Why not No-Left with
No-Left Image Left? Rrgh than No-Right? Sign than Stop? 100% confidence?

Stanford Cars Dataset: Grad-CAM: Why Representative Bugatti Why Convertible,

Representative Audi A6 | Why Bugatti, rather Why not Bugatti with
Bugatti Convertible Bugatti Convertible? Coupe image rather than Coupe?

image than Audi A6? 100% confidence?

[Tutorial @AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025] AOLIVES )

Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural oSN /';’(f
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
Results from GradCAM, Counterfactual CAM, and ContrastCAM

Input Contrastive Contrastive
Image Grad-CAM  Contrast1 Explanation 1 Contrast 2 Explanation 2

SCAN ME

Human
Interpretable

Grad-CAM : Why Representative Why Spoonbill, rather Representatlve Plg ’ Why Spoonbill, rather Why not Spoonbill,
Spoonbill? Flamingo image than Flamingo? image than Pig? with 100% confidence? Same as G rad_

= ) -
Why Bull Mastiff,  [Representative Blue jay [ Why Bull Mastiff,
rather than Boxer rather than Blue jay?

(2
| /
CURE-TSR dataset : | Grad-CAM : Why No- Representative No Why No-Left, rather Representauve Stop Why No-Left, rather | Why not No-Left with
No-Left Image Left? Rrght image than No-Right? Sign than Stop? 100% confidence?

Stanford Cars Dataset: Grad-CAM: Why Representative Bugatti Why Convertible, |Representative Audi A6 | Why Bugatti, rather Why not Bugatti with
Bugatti Convertible Bugatti Convertible? Coupe image rather than Coupe? image than Audi A6? 100% confidence?
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Explanatory Paradigms in Neural
Networks: Towards Relevant and
Contextual Explanations

Gradient and Activation-based Explanations
Results from GradCAM, Counterfactual CAM, and ContrastCAM

Input Contrastive Contrastive
Image  Grad-CAM Contrast1 Explanation 1 Contrast2 Explanation 2

SCAN ME

Human
Interpretable

: 7 -
Grad-CAM : Why Representative Why Spoonbill, rather |  Representative Pig ’ Why Spoonbill, rather | Why not Spoonbill,
Spoonbill? Flamingo image than Flamingo? image than Pig? with 100% confidence? Same as G rad_
: 3 o by
D f CAM
Loa |

‘. j " l '@ ] bl
o A 7;'. -
Why Bull Mastiff, Representative Blue jay [ Why Bull Mastiff, Why not Bull Mastiff,
rather than Boxer image rather than Blue jay? | with 100% confidence?

Stanford Cars Dataset: Grad-CAM: Why Representative Bugatti Why Convertible, |Representative Audi A6 | Why Bugatti, rather Why not Bugatti with
Bugatti Convertible Bugatti Convertible? Coupe image rather than Coupe? image than Audi A6? 100% confidence?
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SCAN ME

Only traffic sign with a straight
bottom-left edge — enough to
say Not STOP Sign’

Jopcg I | JARS| o[- |ViP
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A Callback...

Information at Inference

At inference, given a single image from a single
class, we can extract information about other classes
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Information at Inference
Case Study: Explainability

T is the set of all features learned by a trained network

Beak

Neck _

Network f(0) Legs Why Spoonbill?

2 A Feathers .
S84 4 - »Water — Features T
ﬂ’ ’ | ‘ ' Grass
P e Teeth

: . , . . | ) .
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Information at Inference
Case Study: Explainability

Given only an image of a spoonbill, we can extract information about a Flamingo

Beak

Neck Why S bill, rath
y Spoonbill, rather
Network f(0) Legs than Flamingo?

Feathers

»Water — Features T
' ‘ Grass

Teeth

All the requisite Information is stored within f(0)

Goal: To extract and utilize this information — Inferential Machine Learning

z . ' . . ‘ 4 .
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Information at Inference
Implicit Knowledge in Neural Networks — Inferential Machine Learning

Trained Neural Networks have a wealth of implicit stored knowledge. Inferential Machine
Learning aims to ‘transmute’ this knowledge for other tasks

Traditional Why P?

<

Why P, rather than Q?

: .
’.\ .
-~
B r
L »
.

W

'

\

What if?

: . , . . | ) .
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Inferential Machine Learning
Theory Underlying Inferential Machine Learning

Inferential Theory of Learning views learning as a goal-oriented process of modifying
(transmuting) the learner's knowledge by exploring the learner's experience

Learned Knowledge

Input Information

+
Inferential Theory of
Learning (ITL) [1] Model Knowledge

Robust, Fair, Interpretable Decisions

Transmuted
Knowledge

What is the goal? Our view: Reduce Uncertainty. More on this in Part 3
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Inferential Machine Learning
Part 3: Uncertainty and Intervenability
at Inference
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To discuss methodologies that promote robust and fair inference in neural networks

 Part 1: Inference in Neural Networks
« Part 2: Explainability at Inference

« Part 3: Uncertainty and Intervenability at Inference
» Uncertainty Basics
» Uncertainty Quantification (UQ) in Classification
 UQ Methods
« Case Study 1: Gradient-based UQ
« Case Study 2: Uncertainty in Explainability
« Case Study 3: Introspective Learning
 Inferential Machine Learning

* Part 4: Fairness Interventions

2 . , . : \ / .
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Uncertainty
What is Uncertainty?

Uncertainty is a model knowing that it does not know
|

White and Gold
Or
Blue and Black?

Tech.

>\ V&

: . , . . \ ) .
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Uncertainty is a model knowing that it does not know

Input Image Neural Network Output Uncertainty Heatmap

2 . , . . \ ! .
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Uncertainty
Uncertainty Basics

In classification, Uncertainty Quantification (UQ) implies providing a classification label and
its associated uncertainty

Identify STOP as the only sign with bottom-left corner

Consider a network

SO A Class: Stop Sign
trained on 14 signs O Interential uncertainty - ] 0
from CURE-TSR estimation Confidence: 98%

Uncertainty: 0.1%

Network has not seen ] _ : Class: StOp Slgn
GO sign but is shown No inferential uncertainty

at inference estimation Confidence: 98%
Uncertainty: 0.1%

. 1 i i \ J :
o //‘: Adidin [Tutorial @AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025] OLIVES Gr Toon
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Uncertainty
Uncertainty Basics

In classification, Uncertainty Quantification (UQ) implies providing a classification label and
its associated uncertainty

Network has not seen ] _ : Class: StOp Slgn
GO sign but is shown No inferential uncertainty

at inference estimation Confidence: 98%
Uncertainty: 0.1%

|dentify that the letters and color are different

Network has not seen hfekential uhdertairity Class: StOp Slgn
GO sign but is shown . : - : 0
at inference estlma'uon COnfldence 98 /0

Uncertainty: 98%
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Probability vs Confidence vs Likelihood vs Uncertainty vs Calibration

Probability: Transform logits (final layer outputs) between 0 and 1, Ex: Softmax probability. The
input has some probability of belonging to all the trained classes

Confidence: In non-conformal settings, confidence is a point estimate, Ex: the argmax of
probabilities of softmax confidences. In the conformal setting (which we do not cover in this
tutorial), confidence is an interval

Likelihood: In Bayesian settings, likelihood refers to how likely the model fits the data or the
‘goodness-of-fit’ of the model. It is related to probability via bayes theorem

Uncertainty: A probability distribution, (ideally) formed from feature outputs that showcase ‘non-
goodness’ of fit of the underlying model or ‘non-goodness’ of training distribution compared to test
distribution

Calibration: A dataset estimate that shows the disparity between confidence of all point
estimates in the dataset against their accuracy
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Uncertainty
Challenge in Uncertainty Quantification

Primary purpose of neural networks (ex: classification) and Uncertainty Quantification do not
always go hand-in-hand!

All required information is passed to last layer

Maximal logit is the class
Required information is task

dependent! A well-trained
classification network ignores the
attributes of the dog N _.
> Do
f:// ' g

output layer

Dog asking for belly rub = Angry
dog!

hidden layers (optional)

e
"

> i : i i \ ) .
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Uncertainty
Challenge in Uncertainty Quantification

Primary purpose of neural networks (ex: classification) and Uncertainty Quantification do not
always go hand-in-hand!

No Preservation Feature Preservation in
the Output

hl?

Performance Decline!
A (© (A}

A A
-»%A Q@ AéA

=
N vy
),
~- l>
D (
- °

2
A Dog
© Cat
; . . : - 1 .
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In Bayesian settings, uncertainty is treated as inverse likelihood; consequently, lower the
negative of likelihood, lower the uncertainty

« Recall that ‘In Bayesian settings, likelihood refers to how likely the model fits the data or the ‘goodness-
of-fit’ of the modef

« Central Thesis: Negative log-likelihood measures the ‘fit' of a model by looking at all output logits

 Cons: Requires ground truth at inference to measure likelihood. Generally substituted with the
prediction
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Uncertainty
Simple Uncertainty Quantification 2: Hypothesis Margin

Difference between probability (or logits) of the predicted class and next most-likely class’

Simple => No changes in network architecture while training

« Commonly used to rank the difficulty of unlabeled samples in Active
Learning

« Central thesis: During training, networks implicitly learn the difference
between classes and find features that maximize the difference (similar
to contrastive explanations)

* Pros: No need for ground truth at inference
« Cons: Requires a complex network that can learn implicit differences

Fig. from Tian, Yanjia, and Xiang Feng. "Large Margin Graph Embedding-Based Discriminant
Dimensionality Reduction.” Scientific Programming 2021.1 (2021): 2934362.

: . , . . \ ) .
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Uncertainty

Uncertainty Quantification in Neural Networks

Via Ensembles'

81 of 195 // hddin

~ Network f1(6)

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025]

[1] Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell. "Simple and scalable predictive
uncertainty estimation using deep ensembles." Advances in neural information processing systems 30
(2017).

—

Dog
Cat
Horse
Bird

Dog
Cat
Horse
Bird

Dog
Cat
Horse
Bird

Variation within outputs

IS the uncertainty.

Commonly referred to

as Prediction
Uncertainty.

Requires multiple

trained models — not
exactly an inferential

method
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Uncertainty
Uncertainty Quantification in Neural Networks

Via Single pass methods?

_ Network f,(0) Dog Uncertainty
a4 ' 7 a qyantlflcatlon using a
wy  PLFE Horse single network and a

Does not require multiple networks!
L(6)

: However, requires training data/validation set/addition
P models at inference

B
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Via Monte-Carlo Dropout!: During inference repeated evaluations with the same input give
different results

Different forward passes with dropout simulate f;(-), > (), f3(-).

Challenge: intractable denominator

_ pxW)p(Ww)
p(Wlx) = [ p(x|W)p(W)dw

N forward passes
N Logits Final prediction is the

v * G J\ — | Uncertainty mean of the outputs
= , - . Score

q Wy) = p(Wy|x)

[Tutorial @AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025] \OLIVES | Gr Georgia
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Variation or entropy of
logits is the uncertainty




Via Monte-Carlo Dropout': During inference repeated evaluations with the same input give
different results

T T
1
Ue'pistemic =H TZ Softmax (th (x)) — z (Softmax (fw (x)))
t=1 t=1
UPredictive Ualeatoric
Entropy of expectation of predictions Expectation of individual entropy of predictions

[11Y Gal, Z Ghahramani, “Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Tech.
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Uncertainty
Gradients as Single pass Uncertainty Quantification

Use gradients to characterize the novel data at Inference, without global information

Distance from unknown cluster

Method: 1(0]x)
Extracting Gradient Information! L] //
V7 09 > //0‘ :
M’m)\/é({os 91
00 02" 7 >

N g
= 1 el
OO =0

. i ' i i ) i
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Uncertainty
Uncertainty and Inferential Machine Learning

Uncertainty is a ‘catch-all’ term, used in multiple applications

« Explainability

« Qut-of-distribution Detection
* Adversarial Detection Relevant at Deployment:
* Anomaly Detection

» Corruption Detection

« Misprediction Detection
« Causal Analysis

* Open-set Recognition

* Noise Robustness Unfortunately, each application has its
« Uncertainty Visualization own uncertainty quantification

* Image Quality Assessment
» Saliency Detection

Provide a specific ‘uncertainty measure’ that
objectively allows users to trust neural
network predictions

Applications
= relevant during
model inference

- et — -
A e

‘ | | . . \ I ‘ ’ 1 .
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Uncertainty
Uncertainty and Inferential Machine Learning

Uncertainty is a ‘catch-all’ term, used in multiple applications

Learned Knowledge Part 2

»+ Explainability
« Qut-of-distribution Detection
» Adversarial Detection
« Anomaly Detection
- 7| Case study 1 ° Cc_)rrupti.on. Detection.
»e Misprediction Detection
« Causal Analysis
* Open-set Recognition
Transmuted case S .. Noise Robustnegss
Knowledge oo Uncertainty Visualization
r Image Quality Assessment
« Saliency Detection

; : , . . \ ) ]
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Case Study 1:

COMPUTER
SOCIETY

Mohit Prabhushankar, PhD  Ghassan AlRegib, PhD SCAN ME
Postdoc Professor
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Probing the Purview of Neural Networks
via Gradient Analysis

Case Study 1. Misprediction Detection
Principle

SCAN ME

Principle: Gradients provide a ‘distance measure’ between the learned representations space
and its prediction (for discriminative tasks) or some new data (for generative tasks)

Data distribution of new
batch

During training, a loss function £ is used to quantify this
measure.

Backpropagated
Gradients

9¢ (fo ())

However, what is £ at inference?

Learned Representation

89 of 195 o [Tutorial @AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025] o OLIVES@V, Gr Georgia
8 ()}
A Lee, Jinsol, et al. "Probing the Purview of Neural Networks via Gradient Analysis." IEEE Q‘\}Q‘/}.@’ Tech.
Access 11 (2023): 32716-32732.



Probing the Purview of Neural Networks
via Gradient Analysis

Case Study 1: Misprediction Detection
Principle

SCAN ME

Principle: Gradients provide an uncertainty measure between the learned representations

space and novel data
P = Predicted class

Q,; = Contrast class 1

, = Contrast class 2 However, what is £ at inference?
Backpropagated  We backpropagate all contrast classes -
Gradients

Q1,Q, ...Qy by backpropagating N one-hot
0L(P, Q1) vectors

20 « Higher the distance, higher the uncertainty
score

Backpropagated
Gradients

0L(P, Q)
a0
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Toy Manifold Example
Why uncertainty?

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Gradients represent the local required change in manifold X . Gradients
Contrast class 1 ® provide the
; A necessary
‘ 1(0]x) X change in
- § manifold that
N would predict

! . TR ESSs oot the novel data
By = ¢ ’
A correctly’.
N o x!  Correctly means
1(O]x) Contrast class N o contrastively (or

v incorrectly)!
o o + Less data in the

6 Teae j P 0. new region,
1(6]x). hlgher IS the
- fisher
o information and
. 9 0, uncertainty
i, %
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Case Study 1: Misprediction Detection

Intuition for counterfactual gradients-based Trust

How much change is required within the data to predict an incorrect class? Larger the
required change, larger the trust

Network £(0) Why Spoqnbill?
44 - » Spoonbill »
' Physical
: meaning of
Larger the required incorrect’ class
change, larger the backpropagation @"ﬁ

trust placed in the <
prediction \ Why Spoonbill, rather
than Flamingo?

‘Spoonbill’

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025] _}.\OLIVES,f:_ Gr Georgia
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Case Study 1:

Deriving Gradient

Step 1: Measure

Misprediction Detection
Features

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

the loss between the prediction P and a vector of all ones and backpropagate
to obtain the introspective features

o\ VY<&o
e W S
»

Networks," in Advances in Neural Information Processing Systems (NeurlPS), New Orleans, LA, Nov. 29 - Dec. 1

—— a ) /’ \
Weights, W, i .
i /O, y1) . Normalized and vectorized
oW, =1 gradients are introspective
I features.
X -+ :::;‘:fk Vwl(3.y1)
fC) ; " :
! §=3 Why vector of all 1s? The theory is
fri-1)(x - presented in [1]
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Step 2: Quantify the variance of network parameters (of the last layer) when backpropagating
contrast classes

Variance of Gradients of Predicted Class

GradTrust =
raciTus Mean of Variance of Gradients of top — k Counterfactual Classes

» Top-k counterfactuals are based on predictions
« For image classification, top-k contrast classes are top-k predictions
» Gradients are obtained by backpropagating loss between the predicted class

and itself in the numerator and between the predicted class and contrast classes
in denominator

Georgia
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How do we measure required change? Quantify the variance of network parameters when
backpropagating counterfactual classes

|
H s s - - - - i
Gradients i ;‘ g Top k counterfactuals
: N )
I [~
: N>“,V.i'. !

A 4

lgl|”

N 11.03

f
\ K—Z X 10_?

\
N M| —7x103

/7 - 5x107%)
o

Max =P Normalize [€= Mean

Input Image | ]

y = f{L}(Z)
[1000 x 1]

'

GradTrust

Z = f{L—l}(x)

|
I
'
' ! var(|lgl*)
o= \—

: ANV Py ;
| S AN ’ |

. >\\\ : . . 1 1
| ) 1 |
I : I
I I
I I
I I

I

Step 1: Forward Pass Step 2: Obtain Counterfactual Gradients: Step 3: GradTrust Computation
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For ImageNet dataset (with 50,000 validation set

Images):
J )_ _ _ ResNet-18, Accuracy = 65.81%
1. Run inference on all 50,000 images and obtain 100 { — Gradtrust, AuC = 9178 |
GradTrust along with comparison trust scores e RS S
- We compare against 8 other methods D T Nl Abe = e |
—— Entropy, AUC = 73.49 |
For each TrustScore, order images in ascending order T OO, AL =B104 i

0.85 4~ —— GradNorm, AUC = 71.93

3. Fora given x percentile, calculate the Accuracy and F1
scores of all images above that-percentile —

4. Plot Area Under Accuracy Curve (AUAC) and Area Under —
F1 Curve (AUFC)

5. Repeat for multiple networks

«  We perform analysis on 14 ImageNet trained Classification & 5 50 Jb 3 B 6 & 9 b
networks and 5 Video Classification networks Percentile

Accuracy

0.70

0.65 -

96 of 195 // . [Tutorial @AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025] ‘ OLIVES Gr Georgia

A NN fobs Tech.



Evaluation
Quantitative Results for Image Classification

GradTrust is in Top 2 performing metrics in all but 1 network

AUAC / AUFC
Architecture Softmax Entropy NLL Margin [ ] ODIN[ ] MCD|[ ] GradNorm [ | Purview [ ] GradTrust
AlexNet [ ] 72.86/68.43 65.02/62.14 83.21/79.37 79.04/73.3  79.22/75.89  54.2/51.59 58.85/55.28 50.14/48.92 92.09/89.5
MobileNet [ ] 7791/7496  71.72/699 84.02/81.37 83.13/79.1 75.95/72.81 61.1/59.46 70.3/67.28 61.85/61.32 93.37/90.58
ResNet-18 [ ] 79.01/76.13 73.49/71.71 85.38/82.73 83.88/79.87 81.64/79.26 62.91/614 71.93/69.29 64.9/64.01 91.78/88.65
VGG-11 [ 1] 79.95/77.02 74.33/72.52 90.55/88.42 84.85/80.77 85.08/83.33 63.19/61.62 73.16/70.06 65/63.84 91.79/89.18
ResNet-50 [ ] 81.63/79.69 77.47/76.32 89.23/86.47 85.7/82.83  84.13/82.21 66.35/65.37 77.37/75.64 71.68/71.01 92.24/90.09
ResNeXt-32 [ ] 81.56/7997 78.11/77.15 89.83/87.37 85.16/82.81 82.77/80.43 66.9/66.09 78.61/77.28 74.06/73.05 91.55/89.18
WideResNet [ '] 82.25/80.79 78.96/78.1 90.84/88.42 85.76/83.57 84.5/82.26 67.72/66.89 78.62/77.5 74.55/73.85 91.36/89.12
Efficient-v2 [ ] 91.49/87.84 80.12/76.69 71.44/66.03 85.13/81.59 54.16/51.53  81.8/79.38 61.43/57.53 77.79/77.48 93.57/89.61
ConvNeXt-t [ '] 88.17/86.21 85.56/83.88 79.19/76.85 90.68/88.26 62.51/60.74 85.43/83.82 70.86/66.25 79.16/78.91 89.08/87.23
ResNeXt-64 [ '] 88.95/84.69 85.9/80.71  90.04/87.06 91/86.62 76.61/72.94  75.3/70.86 73.5/71.64 80.2/79.96 89.15/87.41
Swin-v2-t [ ] 86.05/84.27 83.79/82.43 86.33/83.14 88.75/86.29 79.85/77.09 84.64/83.17 82.23/80.29 77.76/77.39 87.45/85.23
VIT-b-16 [ ] 85.97/84.38 84.5/82.9 82.94/80.3 88.67/86.5 62.74/61,03 84.33/82.81 78.53/74.6 78.02/77.73 87.77/85.85
Swin-b [ ] 86.18/84.49 84.77/83.14 79.18/75.52 88.5/86.21 68.07/64.59 84.69/83.17 83.09/81.52 80.71/80.45 88.44/86.51
MaxViT-t [ ] 84.08/82.66 79.23/78.21 80.6/78.85 85.84/84.02 47.6/46.27 80.07/79.08 70.35/68.12 80.99/80.7 90.19/88.48

* Negative Log Likelihood (NLL) works well on smaller networks with less accuracy while Margin classifier works better with high
accuracy networks
* GradTrust performs well on all networks

Georgia
Gl" Tech.
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Evaluation
Qualitative Results for Image Classification

Softmax vs GradTrust

101

08

0.6 1

0.4 4 Limousine Picket Fence Horn

Dogsled
Green: Correct Predictions v Naviaim
Red: Incorrect Predictions 2

oftmax Confidence

800

*—In contrast, no incorrect predictions, with low Softmax confidence and High GradTrust (bottom-right quadrant)

2 - ' : : \ 1 .
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On AlexNet: Low GradTrust is due to co-occurring classes
On MaxViT. Low GradTrust is due to ambiguity in class resolution

Mispredictions: High SoftMax Confidence, Low GradTrust
Horn Stage Spniel ghthouse Spiral Backpack Postbag

¢

AlexNet

Notebook computer Goblet Red wine Parallel bars Handrails Whiskey jug ~ Water jug

MaxViT-t

B
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Evaluation
Qualitative Results for Image Classification under Corruption

Probing the Purview of Neural Networks
via Gradient Analysis

SCAN ME

Same evaluation setup as before, with inputs being corrupted by noise

Gaussian Noise  Shot Noise Impulse Noise  Defocus Blur Frosted Glass Blur

Data Characteristics:
« 3.75 million images

15 different challenges including . ‘
decolorization. codec error. lens Motion Blur Zoom Blur Snow Frost Fog
blur etc. for testing ‘

- 4 different challenges for
validation and training

« 5 progressively increasingly
levels in each challenge

» Goal: Recognize 1000 classes
from ImageNet using pretrained

networks
v . , . . ) ]
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Evaluation
Qualitative Results for Image Classification under Corruption

GradTrust is the Top performing metric in all but two setups (in red)

AUAC for MSP / NLL / Margin / ODIN / GradTrust

Level Brightness Snow Fog Frost Defocus Blur
1 80.36/85.72/85.1/82.5/91.75  69.44/78.13/75.49/74.47/88.35  73.62/78.13/79.66/66.86/89.89  73.97/77.93/79.87/77.56/90.04  73.41/78.56/79.44/67.96/89.25
2 79.52/85.41/84.5/81.25/91.62  52.48/62.7/58.67/55.37/82.91  69.97/76.65/76.32/63.63/88.71  63.56/70.72/70.32/59.69/86.4  69.98/76.37/76.41/65.76/87.66
3 78.32/84.45/83.51/76.76/91.37  54.35/66.66/60.09/51.92/82.53  63.07/73.9/69.63/59.1/85.63  54.05/63.19/60.08/56.15/81.73  62.96/67.12/69.64/58.12/84.52
4 76.26/81.76/81.86/73.55/90.81  44.38/51.84/49.45/43.17/77.13  55.28/70.07/61.66/65.2/80.45 51.46/63.2/57.97/54.94/80.61  56.38/55.17/62.99/44.59/79.66
5 73.34/79.49/79.32/68.06/89.81  18.02/35.1/18.71/22.74/40.09  34.25/55.59/39.19/42.26/63.68  44.42/52.69/50.43/44.46/76.76 = 45.4/43.53/50.98/31.59/72.26
Level Glass Blur Motion Blur Zoom Blur Contrast Elastic Transform
1 72.14/79.43/78.33/71.32/89.41  76.57/82.4/82.21/71.96/90.73  69.74/79.26/76.25/66.08/88.55  76.25/78.98/81.9/68.19/90.44 77.99/82.6/83.4/76.4/91.11
2 65.83/73.39/72.55/62.13/87.17  71.53/79.02/77.87/63.53/88.58  62.51/75.37/69.37/62.87/85.84  73.17/78.8/79.3/66.03/89.47 66.76/72.86/73.34/62.6/86.8
3 46.36/52.7/52.14/44.67/77.74 62.6/69.49/69.39/61.78/84.2 56.6/75.33/63.07/62.23/83.35  66.27/74.74/72.8/63.34/86.39 73.88/81.63/79.78/68.5/89.38
4 42.12/43.71/47.4/38.97/74.65  51.57/56.64/58.02/50.17/76.15  50.61/72.16/56.69/57.59/80.46 45.65/63.9/50.33/55.1/72 65.91/70.85/72.4/62.77/85.75
5 38.26/45.59/42.91/38.95/67.47  44.36/48.6/50.25/36.59/64.47  44.85/70.93/50.38/57.18/77.35  28.07/39.05/30.26/30.56/25.49  32.84/53.11/36.47/43.75/65.95
Level JPEG Compression Pixelate Gaussian Noise Shot Noise Impulse Noise
1 76.2/78.96/81.7/67.99/90.67  76.18/79.23/81.65/78.09/90.36  71.38/78.02/77.42/76.54/89.48 69.49/80.14/75.57/79.93/88.68 62.43/72.55/68.64/59.08/85.21
2 74.5/78.07/80.25/78.13/89.94  76.16/79.97/81.7/80.79/90.64  64.03/71.02/70.28/58.82/86.17 60.17/72.03/66.28/62/85.46 52.87/67.81/58.25/61.6/52.87
3 73.12/79.59/79.09/69.9/89.64  66.02/75.91/72.48/67.55/86.9  47.57/61.95/52.71/51.33/75.67 45.47/63.62/50.55/55.54/76.18  42.23/55.17/46.42/47.92/71.8
4 68.4/77.46/74.86/67.72/88.06  55.44/66.16/61.74/51.81/82.66  22.74/51.28/25.16/39.85/56.15  21.23/35.34/23.61/26.87/54.01  16.82/44.52/18.05/43.63/46.08
5 60.38/75.37/66.91/71.8/85.55  52.45/66.11/58.4/52.56/79.22 5.8/25.39/6.31/20.17/25.93 9.71/41.42/10.69/37.7/51.15 3.86/31.79/4.05/26.57/27.11
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Evaluation
Qualitative Results for Image Classification under Natural Adversaries

OOD evaluation setup, with inputs being either natural adversaries or validation images

Fox Squirrel Sea Lion (99/) Draonfl M)nhole(iover (99%)

Data Characteristics:

» Curated set of 7500 natural adversarial images

* ‘Natural’ly occurring images as opposed to
artificially generated adversarial images

ImageNet-A

« Experimental setup similar to OOD detection;
given a total of 15,000 images (7500 from
ImageNet-A and 7500 randomly chosen from
ImageNet validation set), we find AUDC (Area
under Detection curve)

Photosphere

ImageNet-O

2 . , . . \ ) .
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Evaluation
Qualitative Results for Image Classification under Natural Adversaries

GradTrust is the top performing metric

Architecture MSP [48] NLL Margin [8] ODIN [49] GradTrust
AlexNet [51] 359 76.24 62.68 70.43 86.06
MobileNet-v3 [52] 57.54 73.87 64.28 62.81 85.9
ResNet-18 [53] 57.56 75.22 64.01 70.54 84.4
VIT-b-32 [60] 61.96 58.18 67.03 40.11 69.0
ResNet-101 [53] 33.3) 75.99 61.09 13.21 82.12
ResNeXt-32 [55] 54.26 78.98 59.73 77.14 81.44
VIT-b-16 [60] 59.75 50.44 64.84 31.32 68.14
ResNeXt-64 [55] 53.02 36.2 56.67 27.9 67.53
MaxVIT-t [62] 54.2 41.42 593 22.26 70.55

. : . . \ ) .
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Uncertainty
Uncertainty and Inferential Machine Learning

Uncertainty is a ‘catch-all’ term, used in multiple applications

Learned Knowledge Part 2 o
»+ Explainability
« Qut-of-distribution Detection
» Adversarial Detection
PRRE « Anomaly Detection
| ‘ Ny -  Corruption Detection
L(O) v O Case Study 1
® w = - —. Misprediction Detection
1  Causal Analysis
* Open-set Recognition
Case Study 3
Transmuted 2% Noise Robustness
Knowledge >+ Uncertainty Visualization

Case Study 2 )
* Image Quality Assessment

« Saliency Detection

: . , . . \ ) .
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Case Study 2:

' IEEE

g:r%'gg!ssnﬁg VOICE: Variance of Induced Contrastive
Society Explanations for Quantifying Uncertainty in

N CELEBRATING 75 YEARS

Interpretability

Mohit Prabhushankar, PhD Ghassan AlRegib, PhD
Postdoc Professor
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Uncertainty in Explainability S [

Icti ' ' ' B | in Interpretabilit
Predictive Uncertainty in Explanations AN i in Interpretability

Explanatory techniques have predictive uncertainty

Explanation of Prediction Uncertainty of Explanation

Uncertainty in answering
Why Bullmastiff?

Why Bullmastiff?
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Common evaluation technique is masking the image and checking for prediction correctness

[ | Crane

y = Prediction
Sy = Explanation masked data

E(Y|Sy) = Expectation of class given S,

If across N images,
E(Y|Sx2) > E(Y|Sx1),
explanation technique 2

is better than explanation [ } . .
poonbill
technique 1
// hbidin ‘OLIVES Georgia
A Chattopadhay, Aditya, et al. "Grad-cam++: Generalized gradient-based visual explanations for deep 1% Tech
convolutional networks." 2018 IEEE winter conference on applications of computer vision (WACYV). IEEE, > o

2018.
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SCAN ME

Uncertainty due to variance in prediction when model is kept constant

VIyISxl = VIEIS)] + EV[yISk]D)

y = Prediction

V[y] = Variance of prediction (Predictive Uncertainty)
S« = Subset of data (Some intervention)

E(Y|Sy) = Expectation of class given a subset
V(Y|Sy) = Variance of class given all other residuals
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SCAN ME

A ‘good’ explanatory technique is evaluated to have zero V[E(y|S,)]

VIyISxl = VIEIS)] + EV[yISk]D)

y = Prediction

V[y] = Variance of prediction (Predictive Uncertainty)
S« = Subset of data (Some intervention)

2ero E(Y|Sy) = Expectation of class given a subset
V(Y|Sy) = Variance of class given all other residuals

Key Observation 1: Visual Explanations are

_ 2 Network evaluations have nothing to do with human
evaluated to partially reduce the predictive

_ _ Explainability!
uncertainty in a neural network
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SCAN ME

All other subsets ‘not’ chosen by the explanatory technique contributes to uncertainty

VIyISxl = VIEIS)] + EV[yISk]D)

y = Prediction

V[y] = Variance of prediction (Predictive Uncertainty)
S« = Subset of data (Some intervention)

E(Y|Sy) = Expectation of class given a subset
V(Y|Sy) = Variance of class given all other residuals

Key Observation 2: Uncertainty in Explainability occurs
due to all combinations of features that the explanation
did not attribute to the network’s decision
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Uncertainty in Explainability B | Lo e o
Predictive Uncertainty in Explanations is the Residual [k | 0 [nierpretability

SCAN ME

All other subsets ‘not’ chosen by the explanatory technique contributes to uncertainty

The effect of a chosen Intervention can be measured
based on all the Interventions that were not chosen

Interventions = explanations in this context. However, they can also refer to human prompting at inference

[Tutorial@AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025] U\\OLIVES/‘,{.,
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Predictive Uncertainty in Explanations is the Residual AN i ey

All other subsets ‘not’ chosen by the explanatory technique contribute to uncertainty

Explanation of Prediction Uncertainty of Explanation

However, snout is an important
characteristic that is used to
differentiate against other
dogs. Hence, there is
uncertainty on why this feature
is not included in the attribution

Snout is not as
highlighted as the jowls
in explanation (not as
important for decision)

Key Observation 2: Uncertainty in Explainability occurs
due to all combinations of features that the explanation
did not attribute to the network’s decision
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ICtI ' ' ' i ' & | in Interpretabilit
Predictive Uncertainty in Explanations is the Residual AN i " interpretabiity

All other subsets ‘not’ chosen by the explanatory technique contributes to uncertainty

Explanation of Prediction Uncertainty of Explanation

However, snout is an important
characteristic that is used to
differentiate against other
dogs. Hence, there is
uncertainty on why this feature
is not included in the attribution

Snout is not as
highlighted as the jowls
in explanation (not as
important for decision)

Not chosen features are intractable!

113 of 195 5 [Tutorial @AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025] AOLIVES ), Georgia
M. Prabhushankar and G. AlRegib, ”"VOICE: Variance of Induced Contrastive Explanations to Quantify Uncertainty in _— ‘,” &' Tech.
Neural Network Interpretability,” Journal of Selected Topics in Signal Processing (J-STSP) Special Series on Al in e, AT

Signal & Data Science, May 23, 2024.



. . . . (=] g7 =] e ;
Uncertainty in Explainability S |0

Ifyi ' ' j il B | in Interpretabilit
Quantifying Interventions in Explainability AN i in Interpretability

Contrastive explanations are an intelligent way of obtaining other subsets

VIyISxl = VIEIS)] + EV YISk

JE—
Make it finite by only considering the subsets that

change y Y, 1S,

YZ |Sx2
Y3 |Sx3
Y4 | Sx4
YS |SX5

— \ariance

YN | SXN

e W

Neural Network Interpretability,” Journal of Selected Topics in Signal Processing (J-STSP) Special Series on Al in b
Signal & Data Science, May 23, 2024.

: . , . . | ) .
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Uncertainty in Explainability S [

' R | in Interpretabilit
VGG vs Swin Transformer AN - in Interpretability

Uncertainty in explainability exists in all architectures, including latest transformers

VGG-16 Swin Transformer

Explanation of Prediction Uncertainty of Explanation Explanation of Prediction Uncertainty of Explanation

e Lt

Neural Network Interpretability,” Journal of Selected Topics in Signal Processing (J-STSP) Special Series on Al in b
Signal & Data Science, May 23, 2024.
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Inferential Machine Learning
Our View: Goal is tied to Uncertainty Quantification

At Inference, the goal of human interventions is to reduce uncertainty

X . =
. = A . \ 5 - . o .“ .
Uncertainty Visualization = X Uncertain \gijaHZatlon

Inexplicable performance deterioration! _ \ _
Dark blue regions: Low uncertainty

Green/Yellow regions: High Uncertainty

The uncertainty visualization is (variance) of (gradients-based visual explanations) — Part 3

\ o i ! i i y) .
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Case Study: Intervenability in Interpretability S s S

L . . L 2| o
Quantifying Interventions in Explainability AN i in Interpretability

Uncertainty in Explainability can be used to analyze Explanatory methods and Networks

e |s GradCAM better than GradCAM++7?
e |[s a SWIN transformer more reliable than VGG-167?

Need objective guantification of Intervention Residuals
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235 | VOICE: Variance of Contrastive
Explanations for Quantifying Uncertainty
in Interpretability

Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability: mIOU

SCAN ME

On incorrect predictions, the overlap of explanations and uncertainty is higher

- “2122?21?62::?cﬁ;e222’1§2:' “2122?2;:;0\”“;5.%22‘.1:’ S‘t‘;;;%e?;‘.’;j:kp“r:‘:::‘t::? E*?li%?i?iz:nzfth‘;gmﬁ‘ O bJ ective Metric 1:
¥ Intersection over
Union (loU)
between
explanation and
Uncertainty

Higher the loU, higher the
uncertainty in explanation (or

e a;:nmi less trustworthy is the

| prediction)
Incorrect Predictions
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Explanations for Quantifying Uncertainty
O e | in Interpretability

SCAN ME

Case Study: Intervenability in Interpretability

Quantifying Interventions in Explainability: mIOU

On incorrect predictions, the overlap of explanations and uncertainty is higher

Image GradCAM GradCAM++ Guided Backpropagation SmoothGrad b - . . .
Explanation of  Uncertainty of  Explanation of  Uncertainty of Explanation of  Uncertainty of  Explanation of  Uncertainty of O J e Ct I Ve M etrl C 1 "

Prediction Explanation Prediction Explanation Prediction

Prediction Explanation

Intersection over
Union (loU)
between
explanation and
Uncertainty

Correct Predictions

- 8 i"ﬂ )

Higher the loU, higher the
uncertainty in explanation (or

" spcing., ool less trustworthy is the
i /] - e prediction)
Incorrect Predlctlons
. . - - \OLIVES -
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235 | VOICE: Variance of Contrastive
Explanations for Quantifying Uncertainty
in Interpretability

Case Study: Intervenability in Interpretability
Quantifying Interventions in Explainability: mIOU

SCAN ME

On incorrect predictions, the overlap of explanations and uncertainty is higher

Image GradCAM GradCAM++ Guided Backpropagation SmoothGrad b - . . .
Explanation of  Uncertainty of  Explanation of  Uncertainty of Explanation of  Uncertainty of  Explanation of  Uncertainty of O J e Ct I Ve M etrl C 1 "

Prediction Explanation Prediction Explanation

Prediction Explanation

Prediction

Intersection over
Union (loU)
between
explanation and
Uncertainty

Higher the loU, higher the
uncertainty in explanation (or

e '%““3 less trustworthy is the

| prediction)
Incorrect Predictions
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Case Study: Intervenability in Interpretability S s S

Quantifying Interventions in Explainability: SNR AN i In Interpretability

Explanation and uncertainty are dispersed under noise (under low prediction confidence)

Correct Predictions Incorrect Predictions

Explanation of Prediction Uncertainty of Explanation | Explanation of Prediction  Uncertainty of Explanation

Objective Metric 2:
Signal to Noise
Ratio of the
Uncertainty map

VGG-16

(a) (b) (c) (d)
ah) P . B |
£ Higher the SNR of
(o} . .
"g uncertalnty, more is the
= dispersal (or less trustworthy
c . .
s IS the prediction)
(e) (f) (g) (h)
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Uncertainty
Uncertainty and Inferential Machine Learning

Uncertainty is a ‘catch-all’ term, used in multiple applications

Learned Knowledge Part 2

»+ Explainability
« Out-of-distribution Detection
* Adversarial Detection
« Anomaly Detection
- | case study 1 ° Cc_)rrupti.on. Detection.
»e Misprediction Detection
« Causal Analysis
* Open-set Recognition
Transmuted e o .+ Noise Robustness
Knowledge o siay e Uncertainty Visualization
Ye. Image Quality Assessment
« Saliency Detection

: . , . . | ) .
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Case Study 3:

‘T‘NEURAL,NFORMAT,ON Introspective Learning: A Two-Stage
3., PROCESSING SYSTEMS — Approach for Inference in Neural Networks

Monhit Prabhushankar, PhD Ghassan AlRegib, PhD
Postdoc Professor

123 of 195 Y __}TQLIV ES ’ Georgia
//A N\ g2’ Gl" Tech.



Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Robustness in Neural Networks
Why Robustness?

How would humans resolve this challenge?

We Introspect!

 Why am | being shown this slide?

* Why images of muffins rather than
pastries?

* What if the dog was a bullmastiff?

- A i
e A ~——

. . ; : \ ) .
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SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Introspectlon
............... 1 s s
! Visual Sensing ;| Reflection :
. |
I . .
. Sense .plnk feathers, | Why Spoonbill, rather than Flamingo? |
| ' straight beak : | x does not have an S-shaped neck :
- . |
2 | o ;
; Spoonbill 1 : Why Spoonbill, rather than Crane? | _
V= : y x does not have white feathers - »Spoonblll
Pl I I y
e ; : o "Why Spoonbill, rather than Pig? l
- Feed-Forward I | x's leg and neck shapes are |
! S;(!rISSirISJ i i CthEBFEBr1t .
L e e e e e e e e — .
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SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Goal : To simulate Introspection in Neural Networks

Definition : We define introspections as answers to logical and targeted
questions.

What are the possible targeted questions?
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
Introspection in Neural Networks

SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Observed Observed Cotinterfactual Observed
Corralations Contras i.\_/e

¥

Bullmastiff Why Bullmastiff? What if Bullmastiff was not in [ Why Bullmastiff, rather than a

the image? Boxer?

What are the possible targeted questions?

2 . . . . \ } .
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SCAN ME

Introspection Learning is a two-stage approach for Inference that combines visual sensing
and reflection

Goal : To simulate Introspection in Neural Networks

Contrastive Definition : Introspection answers questions of the form
‘Why P, rather than Q? where P is a network prediction and Q is the
introspective class.

Technical Definition : Given a network f(x), a datum x, and the network’s prediction
f(x) =y, introspection in f (-) is the measurement of change induced in the network
parameters
when a label Q is introduced as the label for x..

Networks," in Advances in Neural Information Processing Systems (NeurlPS), New Orleans, LA, Nov. 29 - Dec. 1
2022.
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
Gradients as Features

Why 5, rather than 1?

Why 5, rather than 4?

Input Image x Why 5, rather than 57 Why 5, rather than 67
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
Gradients as Features

T LG 3 W = - ]

Informative sparse features
[—

\. Why 5, rather than 0?\\Why 5, rather than 17

= ' l I‘ .
i Why 5, rather than 27 | Why 5, rather than 4?
l\ .. = o L " 8
Input Image x | Why 5, ratherthan 5?7 | . Why 5, rather than 6?

Networks," in Advances in Neural Information Processing Systems (NeurlPS), New Orleans, LA, Nov. 29 - Dec. 1
2022.
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
Gradients as Features

SCAN ME

For a well-trained network, the gradients are robust

Vi = Gradients w.r.t. weights

J = Loss function Yy
9 = Prediction Lemmal:Vy J(yr,9) = —Vwyr + Vwlog| 1 + 5 )
Vi
\
{f N r SN - \\
1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
_ _ _ Any change in class requires change in
0 0 : relationship between y; and y
. J . J . J
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Intros

pection

Deriving Gradient Features

Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

SCAN ME

Measure the loss between the prediction P and a vector of all ones and backpropagate to
obtain the introspective features

Introspective Features

Gradients =« = = =
Weights, W, i :

i . Normalized and vectorized

yr=1 gradients are introspective
I \ features
X -tof Sensing Ywl (3. y1) \
Network H
) Vector of all ones: A confounding label!
| )
|
f{L—1} (x)
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Introspection

Utilizing Gradient Features

Networks

Introspective Features Introspective Network
Gra.dlents - - Ten
Weights, W,
= lN 4
Vi s[4
Ty : g

|

. : 1o mep

X -+ Sensing Vw3, y1) ' H()
Network 1
[
\ ) :

I =
I : = M vectorized
f _ (x) v and normalized
{L 1} gradients
\ Y J
Introspective Features
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection
When is Introspection Useful?

SCAN ME

Introspection provides robustness when the train and test distributions are different

We define robustness as being generalizable and
calibrated to new testing data

Generalizable: Increased accuracy on OOD data

Calibrated: Reduces the difference between prediction accuracy and confidence

o og 8 . . . - ' . . .
w 3 \ ‘
- ‘ ) ‘.“»\
WA e &
< 0. ¢ 4 s ath
2y = v
- v o Wl v ) : . 4

Gauss ian Noase Defocus Blur Gaussnan Blur Spatter

o ¢
" X 4
|
- "
-
»e

Decolor- Lens Dirty Gaussian
Ch:llcngc ization Blur Lens  EXposure gy Noise Snow

; , . . : I J .
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SCAN ME

Calibration occurs when there is mismatch between a network’s confidence and its accuracy

LeNet (1998) ResNet (2016)
CIFAR-100 CIFAR-100
ol i o
w 0.8 Sug g2
2 %ug g. 2
g 0.6 =T S B - - .
E S < & « Larger the model, more misplaced is a network’s
o 0.4 By - i
. 2 L confidence
' " B L
00 | e — » On ResNet, the gap between prediction accuracy
0.0 02 04 06 08 1.0 00 02 04 0.6 0.8 1.0 . . . . ST
1.0 : . and its corresponding confidence is significantly
B Outputs ) .
0.8 02 Gap |4 high
2 4
8 0.6 ¥
& Ne
8 04 : 4:’
< v
0.2 o
' 4
0.0
00 02 04 06 08 1.0 00 02 04 0.6 08 1.0
Confidence
135 of 195 . [Tutorial @AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025] OLIVES ~j Gr Georgia
M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural N\ 7”2 Tech.
Networks," in Advances in Neural Information Processing Systems (NeurlPS), New Orleans, LA, Nov. 29 - Dec. 1 i "

2022.



Introspection in Neural Networks
Generalization and Calibration results

|deal: Top-left
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M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural
Networks," in Advances in Neural Information Processing Systems (NeurlPS), New Orleans, LA, Nov. 29 - Dec. 1

Legend
Feed-Forward Networks ® ResNet-18 @ ResNet-34 @ ResNet-50 ResNet-101
After Introspection ® ResNet-18 ResNet-34 @ ResNet-50 ResNet-101
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Introspection in Neural Networks
Plug-in nature of Introspection

Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

SCAN ME

Introspection is a light-weight option to resolve robustness issues

Table 1: Introspecting on top of existing
robustness techniques.

METHODS ACCURACY
RESNET-18 FEED-FORWARD 67.89%
INTROSPECTIVE 71.4% : : -
Introspection is a plug-in
DENOISING FEED-FORWARD 65.02%
INTROSPECTIVE __ 68.86% approach that works on all
ADVERSARIAL TRAIN (27) FEED-FORWARD 68.02%
INTROSPECTIVE 70.86% N etWO rkS a N d O N a N y
SIMCLR (19) FEED-FORWARD 70.28% d ownstream tas k!
INTROSPECTIVE 73.32% )
AUGMENT NOISE (28) FEED-FORWARD 76.86%
INTROSPECTIVE 77.98%
AUGMIX (26) FEED-FORWARD 89.85%
INTROSPECTIVE 89.89%
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Introspective Learning: A Two-stage
Approach for Inference in Neural
Networks

Introspection in Neural Networks
Plug-in nature of Introspection

SCAN ME

Plug-in nature of Introspection benefits downstream tasks like OOD detection, Active
Learning, and Image Quality Assessment!

5 X Table 2: Recognition accuracy of Active Learn-
Table 13: Performance of Contrastive Features against Feed-Forward Features and other Image ing strategies.

Quality Estimators. Top 2 results in each row are highlighted.

Methods Architecture Original Testset Gaussian Noise
PSNR IW SR FSIMc Per CSV SUM Feed-Forward Introspective sl B A
Database HA SSIM  SIM SIM MER UNIQUE UNIQUE Entropy €1) m"p:‘:::’ g ::: 3 4 : z‘; 2;;;’
Outlier Ratio (OR’ l) Feed Foeward D;\?; 0 \59 0.252 ;) 25
MULTI 0.013 0013 0000 0016 0004 0.000 0.000 0.000 0.000 Least 1) Inrospective 0373 0362 0264 026
TID13 0.615 0701 0632 0728 0655 0.687 0.620 0.640 0.620 vy FocdFornand 038 036 0251 0253
Root Mean Square Error (RMSE, |) Margm (32) Introspective 0381 0373 0265 02683
MULTI 11.320 10.049 8.686 10.794 9.898 9.895 8.212 9.258 7.943 BALD (#4) m*:ﬂ‘::" i Yo &",“3 2;;
TID13 0.652 0688 0619 0687 0643 0.647 0.630 0.615 0.596 Y T R R
Pearson Linear Correlation Coefficient (PLCC, 1) BADGE ) fvspective 030 037 0265 0260
MULTI 0801 0.847 0888 0.821 0852 0.852 0901 0.872 0.908
1 =1 0 1 21 -1 -1 2} Table 3: Out-of-distribution Detection of exist-
S 0851 0832 0866 0832 0855 0853 0.861 0.869 0.877 ing techniques compared between feed-forward
1 -1 -1 0 -1 -1 =1 0 0 and introspective networks.
Spearman’s Rank Correlation Coefficient (SRCC, 1) rrrTT—— o S e
MULTI 0.715 0884 0867 0867 0818 0.849 0.884 0.867 0.887 Datmsets  {95% at TPR) Ertur
-1 0 0 0 -1 -1 0 0 ¥ > L
TID13 0.847 0778 0807 0851 0854 0846 0.856 0.860 0.865 et i iad
-1 -1 %] A 0 1 0 0 Textures $8.74/19.66 1804749 88569779
MSP (35) SVHN 61418127 16.92/15.67 £9.3991.2
Kendall's Rank Correlation Coefficient (KRCC) &a::zgs ;a;c:sr;c?xss l«;ﬂfl'o&z‘g ::’;xu;:
0532 0702 0678 0677 0624 0655 0.698 0.679 0.702 ‘ — . —
MULTI Textares 52390 WINEA2 BA9INLY
-1 0 0 0 -1 0 0 0 ODIN (%) SVHN (681852 23511586 531529007
ces 365 4221/51.87 16231571 FLOGYN9S
TIDI13 0.366 0.5]98 ().6;11 0.367 0.?)78 0.?)54 0.((;)67 0.(:)67 0.677 gﬁ: oy aE STOAL' S
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Memes to Wrap Up Part 3
Robustness at Inference

Robustness

4

 TRAIN & TEST WERE DIFFERENT DISTRIBUTIONS

[@scott.a

Cannot depend on training to construct
robust models

2 . , . . \ ) .
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Explanatory Evaluation reduces Uncertainty

e
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Uncertainty

bbibin OLIVES Georgia
A N gol Tech



* Robustness under distributional shift in domains, environments, and adversaries are challenges for neural
networks

» Gradients at Inference provide a holistic solution to the above challenges

« Gradients can help traverse through a trained and unknown manifold
« They approximate Fisher Information on the projection
* They can be manipulated by providing contrast classes
* They can be used to construct localized contrastive manifolds
» They provide implicit knowledge about all classes, when only one data point is available at inference

» Gradients are useful in a number of Image Understanding applications
» Highlighting features of the current prediction as well as counterfactual data and contrastive classes
* Providing directional information in anomaly detection
* Quantifying uncertainty for out-of-distribution, corruption, and adversarial detection
* Providing expectancy mismatch for human vision related applications

142 of 195 // . [Tutorial @AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025] ‘.QLIVES‘; Gr Georgia
g N\ 7fZ Tech.



Explainability [1, 2]
Out-of-distribution Detection [3]
Adversarial Detection [4]
Anomaly Detection [5]
Corruption Detection [3]
Misprediction Detection [6]
Causal Analysis [7]

Open-set Recognition [8]

Noise Robustness [9]
Uncertainty Visualization [10]
Image Quality Assessment [11, 12]
Saliency Detection [13]

Novelty Detection [14]

Disease Severity Detection [15]

[1] AIRegib, G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and contextual
explanations. IEEE Signal Processing Magazine, 39(4), 59-72.

[2] Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural networks.
In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3289-3293). IEEE.

[3] J. Lee, C. Lehman, M. Prabhushankar, and G. AlRegib, "Probing the Purview of Neural Networks via Gradient Analysis,"
in IEEE Access, Mar. 21 2023.

[4] J. Lee, M. Prabhushankar, and G. AlRegib, "Gradient-Based Adversarial and Out-of-Distribution Detection,"

in International Conference on Machine Learning (ICML) Workshop on New Frontiers in Adversarial Machine Learning,
Baltimore, MD, Jul. 2022.

[5] Kwon, G., Prabhushankar, M., Temel, D., & AlRegib, G. (2020, August). Backpropagated gradient representations for
anomaly detection. In European Conference on Computer Vision (pp. 206-226). Springer, Cham.

[6] Prabhushankar, M., & AIRegib, G. (2024, August). Counterfactual Gradients-based Quantification of Prediction Trust in
Neural Networks. In 2024 IEEE 7th International Conference on Multimedia Information Processing and Retrieval (MIPR) (pp.
529-535). IEEE.

[7] M. Prabhushankar, and G. AlRegib, "Extracting Causal Visual Features for Limited Label Classification,” in IEEE
International Conference on Image Processing (ICIP), Sept. 2021.

[8] Lee, Jinsol, and Ghassan AlRegib. "Open-Set Recognition With Gradient-Based Representations." 2021 IEEE
International Conference on Image Processing (ICIP). IEEE, 2021.

[9] M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural Networks,"
in Advances in Neural Information Processing Systems (NeurlPS), New Orleans, LA, Nov. 29 - Dec. 1 2022

[10] Prabhushankar, M., & AIRegib, G. (2024). Voice: Variance of induced contrastive explanations to quantify uncertainty in
neural network interpretability. IEEE Journal of Selected Topics in Signal Processing.

[11] M. Prabhushankar and G. AlIRegib, "Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural
Networks," in Frontiers in Neuroscience, Perception Science, Volume 17, Feb. 09 2023.

[12] G. Kwon*, M. Prabhushankar*, D. Temel, and G. AlRegib, "Distorted Representation Space Characterization Through
Backpropagated Gradients," in IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, Sep. 2019.

[13] Y. Sun, M. Prabhushankar, and G. AlRegib, "Implicit Saliency in Deep Neural Networks," in IEEE International
Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, Oct. 2020.

[14] Kwon, G., Prabhushankar, M., Temel, D., & AlRegib, G. (2020, October). Novelty detection through model-based
characterization of neural networks. In 2020 IEEE International Conference on Image Processing (ICIP) (pp. 3179-3183).
IEEE.

[15] K. Kokilepersaud, M. Prabhushankar, G. AlRegib, S. Trejo Corona, C. Wykoff, "Gradient Based Labeling for Biomarker
Classification in OCT," in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022
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Inferential Machine Learning
Part 4: Fairness Interventions

. ) -
145 of 195 ) a Y\OLIV ES/ Gr Georgia



Gradients at Inference
To Characterize the Novel Data at Inference

At Inference

Tramed network knowledge is

L(B) not easily accessible

— <

Counterfactual 6‘),« vEeas oo™
and Contrastive Q? _ Local editing for
Representations Representation fairness
using Gradients Traversal using interventions
/ Interventions
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To discuss methodologies that promote robustness in neural networks at inference

Part 1: Inference in Neural Networks

Part 2: Explainability at Inference

Part 3: Uncertainty and Intervenability at Inference

Part 4. Fairness Intervention
 Definitions of Fairness
« Mathematical frameworks to study fairness intervention
« Data impact
* Aunified intervention framework
* Intervention in vision language models

2 . , . : \ / .
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Prevalent Concerns in Algorithmic Fairness

* Real-world examples of unfairness:

Healthcare — Computer-Aided Diagnosis (CAD) returned lower accuracy on black patients.
Criminal justice — COMPAS predicted high likelihood of re-offending crime to black people [1].
Advertising — Facebook's algorithm shows gender bias when promoting ads in several countries

[2].

Recruiting — Amazon's hiring algorithm was favoring men's resume than women's [3].
Search engine - Google's image search results reflect gender bias [4].

[1] https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

[2] https://www.cnn.com/2023/06/12/tech/facebook-job-ads-gender-discrimination-asequals-intl-cmd/index.html

[3] Kodiyan, Akhil Alfons. "An overview of ethical issues in using Al systems in hiring with a case study of Amazon’s Al based hiring tool." Researchgate Preprint (2019): 1-19.

[4] Feng, Yunhe, and Chirag Shah. "Has ceo gender bias really been fixed? adversarial attacking and improving gender fairness in image search." Proceedings of the AAAI Conference
on Artificial Intelligence. Vol. 36. No. 11. 2022.
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Effect in Large Foundation Models

« Text completion by GPT-3 (religion-violence bias)

149 of 195

A

a)

Two Muslims walked into a Texas church and began shooting. When
the police arrived, they shot the first officer in the head.

Bishop Sankey, at the church, said the following:

"He was trying to protect us, just like he does every week,” Sankey said
of Dickson, who is

SuBMIT @ L) o

b)

Two Muslims walked into a... [GPT-3 completions below]

synagogue with axes and a bomb.

bar. Are you really surprised when the punchline is ‘they were asked to leave'?”

c)

Muslims

Christians

Sikhs

Buddhists

How often do GPT-3 completions contain violence?

10

20

30 40 50
% Violent Completions

60

Abubakar Abid et al. Persistent Anti-Muslim Bias in Large Language Models. In AIES, 2021
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Effect in Large Foundation Models

» Text-to-image generation (gender-occupation bias)

. N o ‘ 2 “A photo of a doctor” generated with SD v.2.1
Lawyer (DALLE 2) (15/16 are male, Stable Diffusion + CLIP text encoder)
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Effect in Large Foundation Models

« Zero-shot object detection (gender-occupation bias)
(B) Zero-shot Object Detection with CLIP

Object Detection: “Nurse” Object Detection: “Doctor”

Seth, A., Hemani, M., & Agarwal, C. (2023). DeAR: Debiasing Vision-Language Models with Additive Residuals.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 6820-6829).

. ) -
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* Individual Fairness
« Semantically similar instances need to be treated similarly:
* dy(x;,x5) S L-dy(fo(xi), fo(x)))
* However, subjective, unscalable, legal issues, etc.

« Group Fairness (Statistical Fairness)

« Consistent performance across sensitive groups (A), such as race, gender,
background, etc:

« Demographic parity (DP): fo(X) L A
« Equalized odds (EOD): fp(X) L A|Y
« Min-max fairness: worst group accuracy
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Where does unfairness come from?

Data bias is one major resource

Domain Experts / Practitioners Sampling bias

« How data is distributed

= Labeling bias
a » How data is annotated .
L Data Bias
m = Selection bias
E * How data is preprocessed
* e.g., categorize, cleansing
= Subjective judgements = Complex multimodal bias
= Historical stereotypes » Web-scraping text-images from public domains

« Commonly used for Foundation Models

153 of 195 // . [Tutorial @AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025] OLIVES Gr Georgia

A Tech.



Training with Biased Data

» Empirical risk minimization (ERM):

1 n
n— Y L(x;:0
n*zgmnig1 (x;;0)

majority group with minority group with
more samples fewer samples
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Training with Biased Data

155 of 195 //

» Empirical risk minimization (ERM):

1 1
mem Y L(x;;0) = meln—|[ Y. L(x;0)|+

n
ni=1
Examples:
g 100
positive

negative

up
6%

Virus detection dataset from Google  from [Wang et al.

example

) L(xj; o)

jESmin

majority group with minority group with

more samples

Spielberg is a great spinner of a yarn, however this time he

fewer samples

just didn't do it for me. (Prediction: Positive)

The benefits of a New York Subway system is that a

person can get from A to B without being stuck in traffic and
subway trains are faster than buses. (Prediction: Negative)

Figure 1: Examples of spurious correlations in sen-
timent classification task. A sentiment classification
model takes Spielberg and New York Subway as short-

cuts and makes wrong predlctlons

Sentiment classification - example

, NAACL 2022]
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https://developers.google.com/machine-learning/crash-course/overfitting/imbalanced-datasets

Training with Biased Data

« Empirical risk minimization (ERM):

1 .
min— i§1£(xi' 0) = min —

1
)

L(Xi; 9)

_|_

) L(xj; o)

jESmin

majority group with minority group with
more samples

fewer samples

Such bias not only compromise generalization ability but also raise
concerns regarding safety and fairness in real-world applications.
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Addressing Bias via Balancing Data

water

Majority

{landbird, water} {waterbird, water}

landbird

waterbird

{landbird, land)

Majority
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{waterbird, land)

Bias ratio { =

Nmajority c

[0.5,1]
Ntotal
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Addressing Bias via Balancing Data

- Statistical aspect: adjusting the bias ratio

 Collect more data/data generation/data augmentation [Xu et al.
(2018); Jang et al. (2021); Chuang et al. (2021); Du et al. (2021);
Chan et al. (2024)]

« Resampling/reweighting in training [Buda et al. (2018); Sagawa et
al. (2019); Nam et al. (2020); Liu et al. (2021); Idrissi et al. (2022)]

{landbird, water}

landbird

{landbird, land)
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Addressing Bias via Balancing Data

« Statistical aspect: adjusting the bias ratio

 Collect more data/data generation/data augmentation [Xu et al.
(2018); Jang et al. (2021); Chuang et al. (2021); Du et al. (2021);
Chan et al. (2024)]

« Resampling/reweighting in training [Buda et al. (2018); Sagawa et
al. (2019); Nam et al. (2020); Liu et al. (2021); Idrissi et al. (2022)]

water
A

Majority

Nmajority c
Ntotal

i, water) ‘W ® v e Bias ratio { = [0.5,1]

landbird waterbird

[How balanced is enough?j

{landbird, land)
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Theoretical Estimation of Test Accuracy under Varying Training Bias Ratio

« Test accuracy on balanced data, ¢, = 0.5

r— 4

—w— Test Accuracy
-&- Estimation
Min-Max Error

T

0.0 0.1 0.2 0.3 0.4 0.5
Lo ("A"

(a) FMNIST+Linear

—+— Test Accuracy
-~ Estimation
Min-Max Error

0.0 01 0.2 0.3 0.4 05
1~ (u‘n

(e) MNIST(35)+Linear
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0.85 4
0.80
g 0.75
=
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(b) waterbird-{+ResNet

0.90 1
0.85 4
0.80 1
a 0751
g 0.70 4 U
0651 £
0.60
0.55 1

0.0 01 0.2 03 04 0.5
1 e clum

(f) waterbird-(+VGG

cy

<

cur:

Accuracy

o
S

0.82 1
0.80 1
0.78 1
0.76 1
0.74 4
0.72 4
0.70 1

™ T T T

00 01 02 03 04
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(c) CIFAR-con+ResNet

0.95 4

o
@
wn

0.751

0.70 1

S 0,900 1
B4

0.0 0.1 0.2 03 0.4
1= (lr.m

(g) CIFAR-con+VGG

0.5

Wang, Yipei, and Xiaogian Wang. "On the Effect of Key Factors in Spurious Correlation: A theoretical
Perspective." In AISTATS, pp. 3745-3753. PMLR, 2024.
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(d) CIFAR-water+ResNet
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Theoretical Estimation of Test Accuracy under Varying Training Bias Ratio

« Assume the latent representation z are Gaussian mixtures and orthogonal
[Nagarajan et al. (2020); Sagawa et al. (2020); Yao et al. (2022); Idrissi et al.
(2022); Ming et al. (2022)]:

 Binary label y ~Uniform{-1,1}
- Latent representation z.|y ~ P(an = y)N(y - pn|En) + Plan # )N (—y - pn|E5)

(train = 0 (train =0.01 (train - 0. 1

*  Background: 1 (e.g. Land)

® Background: -1 (e.g. Water)
Object: -1 (e.g. Waterbird)

Object: 1 (e.g. Landbird)

\ . y )
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Theoretical Estimation of Test Accuracy under Varying Training Bias Ratio

 Bayesian optimal classifier

Lemma 2. The Bayesian optimal classifier wx = [(w])7,--- , (w})7]7 given © = (u, X,~) can be written as

w; =17c,;2i‘1p.i,i= 1,---, N, such that

N 2
_1ta.nCnMy
E : (70"7—a)exp(F_(§:n—5v’ B ) )
ae{+1}" 23 n=1CaMn

Gn=1

where 7 > 0 is a positive constant that determines the norm of the classifier. And here m,, = ¥ 'y, > 0is
the Mahalanobis distance of the n-th feature.

’6

W)
7
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Theoretical Estimation of Test Accuracy under Varying Training Bias Ratio

 Training and testing accuracy under the optimal classifier

Lemma 3. (Optimal Accuracy.) Let (i, (e be the correlation ratios in the training and testing data. And
let the Mminy, Mspur be the Mahalanobis distance of the invariant and spurious features and satisfy mepur <
Miny + 4V Miny + 1 + 4. Then the training and testing accuracy of the optimal classifier can be written as:

A(Ctr) =% [1 i CtrR(g(Ctr)) 3 r(g(Ctr))]

A(Gues o) =5 [1+ GeR(9(G)) +7((6er)]
i . Miny + TMspur
R(T) —erf( \/2(minv 4= szspur)

Miny — TMspur
r(y) =erf(
\ \/ 2(Miny + szspur)

v \ A .
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(4)

Miny — TMspur
\/2(minv =+ T2mspur)

) — erf(

where ¢




Theoretical Estimation of Test Accuracy under Varying Training Bias Ratio

» The effect of changing training bias ratio {;,4,:

Theorem 4. Given the Mahalanobis distances of the two features miny, Mspur > 0 such that mepye < Miny +
4y/miny + 1 + 4, and the training correlations (i, ({, € (0,1), the performance shift over the testing set with
correlation ratio e € (0,1) is bounded by

| A(Gtes Cir) — A(Cte; Gir)|
(5)

Mspur
—2\/271'—,,“, C(l . C) (Cte F 2)|Ctr Ctrl

where ¢ is between (i, ({, and M > 0 is a constant.

0.90 A1
* On real data:
0.851
) ) S 0.80
* Miny, Mgy are estimated at two : 0'75
L] U . T '
cases With {4rqin — 1 - ~4- ResNet-18 Empirical
-§ -4 - ResNet-18 Theoretical
@ 0.65 7 ~4— VGG-16 Empirical
0.60 —4— VGG-16 Theoretical
Min-Max Empirical
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However, balancing data size is not always effective...

» Existing models are inevitably trained with imbalanced data

« Balancing data does not address model bias
» Model structure and design, e.g., CNN exhibit texture bias [Geirhos et al. (2019)]

(a) Texture image (b) Content image (¢) Texture-shape cue conflict

81.4% Indian elephant 71.1%  tabby cat 63.9% Indian elephant
10.3% indri 173% grey fox 26.4% indri
8.2% black swan 3.3% Siamese cat 9.6% black swan
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In the era of large foundation models

 Unique challenges in intervention in foundation models

. - - —-—| Large Foundation Models |- - -~ <

N

~
N
~

« Emergent behavior, zero-shot capabilities

« Multi-modality

« Extremely large model and dataset,
infeasible to train in research labs

— - - - O . O —
H——-——--——-‘

-
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Debiasing large foundation models

(1) Contrastive pre-training

Pepper the
aussie pup

167 of 195 //

A

—

S, —>» I
Image ‘_

CLIP [Radford et al. (2021)]

X

Y N y Y

-_— i S) Latent Space | Conditioning
] . — Diffusion Process Eemanﬁq
Text M _ ‘
Encoder Text

Al

/—"I—P" T] TI 'l'] - TN
LTy | BTy | LT 1Ty
5Ty | 3Ty | 13Ty Iy T Pixel Space
Q| '
LB 1Ty | BeTs | e Ts InTy denoising step crossattention  switch  skip connection concat

Local editing of the latent representation for fairness intervention

AOLIVES ),
\

oSN ye&
- ;./,A")D

Latent diffusion model [Rombach et al. (2022)]
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A unified framework to debias VLM

“A photo of man who works as a nurse.”
- .

CLIP-CAP CLIP-CAP
A woman in a wetsuit surfing on a wave. A man riding skis down a
snow covered slope.

CLIP-CAP + SFID CLIP-CAP + SFID CoDi CoDi+ SFID
A person on a surfboard in the water. A skier is going down a snowy hill.
(a) Debiasing VLM in image captioning task (b) Debiasing VLM in image generation task

¥y

Modalities and Tasks”. In NeurlPS. 2024. N N

z & | .
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Intervention based on explanation

Identify bias-relevant latent features

Waterbirds datet | ISIC dataset

(¢) Ours

169 of 195 // L [Tutorial @AAAI'25] | [Ghassan AlRegib, Mohit Prabhushankar, and Joy Wang] | [Feb 26, 2025] \\SLNE4(S//.- Gr Georgia
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Selective Feature Imputation for Debiasing (SFID):

* ldentify bias-relevant latent features
* Intervention via local editing of latent features

| Channal RandomForest Gender Label
% i =2 1
£ | . 1
‘ Encoder . ~ 9 0
Training Set | B :’I‘:
’ Encoder Ha| |H2)
; i“ { . A\ 4
-~ _ﬁ | . . .
o » Jr ]z J2
Validation Set . " . —__
Validation Embedding Ji J3 )2 Real-world Test Query

Feature Importance

Imputing Values = {{{1, Uy , Uz, "+ } —
() Feature Selection & Imputing Value Extraction (b) Debiasing Downstream Tasks

e Y ) 1
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A Jung, Hoin, Taeuk Jang, and Xiaogian Wang. “A Unified Debiasing Approach for Vision-Language Model across \\\2 e Tech
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Selective Feature Imputation for Debiasing (SFID)

A unified framework to reduces biases across . Text-to-image generation: “a photo of a plumber”
various downstream tasks and modalities.

» Cost-efficient: does not require costly
retraining or expensive hyperparameter tuning.

* Do not require annotated downstream
datasets:

» FairFace for image inputs and Bias-in-
Bios for text inputs as our debiasing
datasets

» Transferability and zero-shot capability
maintained after debiasing.

CoDi

; : , . . \ ) ]
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Experimental results: zero-shot classification

Table 1: Experimental results for zero-shot classification (FACET dataset) tasks. Bold indicates the
best result for each baseline, while underline denotes the second-best result.

Model Zero-shot Multi-class Classification

Accuracy A DP

Baseline 51.8740.58 11.084+0.90
CLIP DeAR. 52.08+0.63 10.04+0.80
(ResNet50) CLIP-clip 50.7340.58 10.09+0.89
Prompt-Debias 52.58+0.56 10.374+0.91

SFID (Ours) 50.93+0.57 9.63+0.86
Baseline 52.1740.58 11.60+0.93
CLIP DeAR. 50.09+0.45 10.37+0.72
(VIT-B/32) CLIP-clip 51.56+0.53 10.80+0.80
Prompt-Debias 51.9640.53 10.56+0.87
SFID (Ours) 52.14+0.53 10.15+0.85
Baseline 55.74+0.48 11.72+0.72
DeAR 56.304+0.52 11.26+0.84

XVLM CLIP-clip 54.52+0.50 9.98+0.81
Prompt-Debias  56.3740.48 10.35+0.78

SFID (Ours) 53.6940.59 9.91+0.92
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Experimental results: zero-shot cross-modal retrieval

Table 2: Experimental results for text-to-image retrieval (Flickr30K dataset) tasks. Bold indicates the

best result for each baseline, while underline denotes the second-best result.

Model

Text-to-Image Retrieval

R@1] R@5 R@10 Skew @100
Baseline 57.24+0.58 81.66+0.61 88.12+0.56 0.1883+0.0939
CLIP DeAR. 57.02+0.57 81.62+0.76 87.95+0.61 0.1817+0.1207
(ResNet50) CLIP-clip 56.83+0.43 80.99+0.54 87.39+0.52 0.154240.1067
Prompt-Debias 57.474+0.57 81.81+0.75 88.23+0.51 0.2030+0.0971
SFID (Ours) 56.94+0.51 80.89+0.62 87.41+0.60 0.1414+0.0955
Baseline 58.91+£0.51 83.08+0.62 89.21+0.48 0.172140.0992
CLIP DeAR. 59.46+0.45 83.26+0.66 89.23+0.51 0.1387+0.0912
(ViT-B/32) CLIP-cllp. 57.66+0.73 81.80+0.46 87.98+0.45 0.0920+0.0932
Prompt-Debias  58.86+0.59 82.71+0.62 89.08+0.42 0.1496+0.1097
SFID (Ours)  58.53+0.70 82.73+0.56 88.90:+0.56 0.0744+0.0616
Baseline 80.77+0.56 96.67+0.26 98.55+0.23 0.2355+40.1425
DeAR 78.82+0.57 96.03+0.39 98.17+0.22 0.2066+0.1667
XVLM CLIP-clip 75.99+0.54 94.77+0.53 97.434+0.31 0.2205+0.1224
Prompt-Debias  79.02+0.48 96.03+0.36 98.24+0.21 0.2355+0.1658
SFID (Ours) 78.00+0.46 95.67+0.45 98.01+0.25 0.2032+0.1229
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Table 3: Experimental results for image captioning. Bold indicates the best result for each baseline,
while underline denotes the second-best result.

Caption Quality Misclassification Rate
Model Max Max
METEOR SPICE |Male-Female| Overall Composite
Baseline 34.57+£0.83 25.41+0.73 2.20+1.81 2.10+£0.70  3.24+1.61
CLIP-CAP DeAR 33.90+£0.91 24.731+0.63 1.58+1.76 2.93+0.98 3.53+1.30
CLIP-clip 32.2840.72  23.4440.65 3.734+2.32 2.00+:0.90 4.3442.48
SFID (Ours) 32.08+0.78 23.7440.69 2.16+2.03 2.07+1.03 3.12+1.82
Baseline 24.01+£0.62 17.06+0.60 1.7241.37 1.1540.65 2.261+1.26
BLIP DeAR 21.76+0.59 15.51£0.47 2.6211.84 1.07+£0.63 2.8442.13
CLIP-clip 23.7440.54 16.96+0.54 2.29+1.67 1.15+£0.65 2.5941.81
SFID (Ours) 23.38+0.49 16.74%0.55 1.37+1.29 0.92+0.53 1.88+1.31
/ bbidin OLIVES Georgia
/A Tech



Table 4: Experimental results for text-to-image generation. Bold indicates the best result for each
baseline, while underline denotes the second-best result.

Model Mismatch Rate (Gender prompt) Neutral prompt
|Male-Female| Overall Composite Skew
Baseline 3.871+2.23 2.35+1.22 4424257 83.25
DeAR 89.284+2.08  44.64+1.04 99.81+2.33 99.88
SDXL CLIP-clip 3.78+1.88 2.11£1.03  4.314+2.06 82.05
Prompt-Debias  39.724+6.83  42.534+3.85 58.49+3.64 82.77
SFID (LC) 1.69+0.72 0.96+0.42  1.9740.67 81.57
SFID (HC) 1.54+1.14 0.84+0.71  1.74+1.57 81.57
Baseline 3.9442.71 5.54+2.08  6.85£2.16 84.94
DeAR 5.631+2.84 5424+1.10  8.05+£3.00 86.14
CoDi CLIP-clip 4.73+2.22 5.00+£1.39  7.01£1.53 84.58
Prompt-Debias  20.11+5.15  41.9942.57 46.77+£3.43 81.57
SFID (LC) 3.831+2.07 4.64+1.17 6.22+1.48 82.17
SFID (HC) 4.70+1.53 2.59+0.90 5.38+1.44 82.77
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Experimental results: computational efficiency

Table 7: Compute Resources Used for Experiments

Component Details
CPU AMD EPYC 7313 16-Core Processor
GPU NVIDIA RTX A5000
(CLIP ViTB-32 Image Encoder) 54.60
Training RandomForest S
Data used for debiasing 20,000 (training), 10,000 (imputation value) from FairFace
(CLIP ViTB-32 Text Encoder) 60.75
Training RandomForest 198
Data used for debiasing 20,000 (training), 10,000 (imputation value) from Bias-in-Bios
FACET inference data 34,686
. . 1,000
Flickr30K infersiice data (Picked from original with balanced gender distribution.)
Inference on FACET dataset w/o SFID 6.82s (0.196 ms / sample)
Inference on FACET dataset w SFID 7.06s (0.204 ms / sample)
Inference on Flickr30K dataset w/o SFID 14.62s (0.1462s / sample)
Inference on Flickr30K dataset w SFID 15.21s (0.1521s / sample)
Training RandomForest (CoDi Text Encoder) 65.90s
Training RandomForest (CoDi Image Decoder) 104.14s
Data used for debiasing 20,000 (training), 10,000 (imputation value) from Bias-in-Bios
Inference on CoDi w/o SFID 11.80s / (25 prompts at once)
Inference on CoDi w SFID 12.05s / (25 prompts at once)
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Debiasing Foundation Models in Zero-Shot Classification

(2) Create dataset classifier from label text

| = —-4“——_
153 ‘ 3 : pToFo‘ox ‘

« Zero-shot (ZS) classification:

Text
Eneoder‘

(3) Use for zero-shot prediction

Ty

‘ o
Ty ’ i

k- Figure from [Radford et al. (2021)]

’ T | T
- RSO

 Spurious correlation in ZS classification:
ISIC Dataset

CLIP zero-shot Ours CLIP zcro-shot Ours

\ . ) |
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« To address spurious correlation in zero-shot classification, we aim to update image
embeddings hy  in each subgroup g, , to maximize group-wise utility:

EAcc(hgy'a,W) = m}?.x Z;g A(hgy.a’w;y)?
gy,a

« Existing method: ROBOSHOT [Adila et al. (2024 )]

:_ . ' .~( s © . :_ x“ Projected G10 ¢ PrOJeCtlon determlned by
21 - 2 e ecton tne text modality;

1 P 14 —— Decision Boundary . R

of 8 ) « Alignment between image
e | I and text modality
=3 — (I;Z‘c)ision Boundary & —37 #
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Debiasing Foundation Models in Zero-Shot Classification

 Derivation of Accuracy

Existing method changes X ,
which changes the distribution of -1

179 of 195 / hddin

the image embeddings in the -2
latent space. -3
_4—4 -2

Lemma 1. Under the above data model assumption, the group-wise accuracy can be

derived as
1 wT,“.‘ly.u - o
5 erfel = Z,,“w) fy=1
A(hy, .. w:y) ; T ‘ : (4.5)
—erfl— Lo )+ = fy=-1
2 2wy, w2

where p, . and ¥, . represent the mean and covariance matriz of the image embedding

| P

w T
¥ Projected G10

4
3 .

¥  Projected GOO
2 —— Projection Line i
1
0

— Decision Boundary |

-
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Debiasing Foundation Models in Zero-Shot Classification

* Our method: updating image embeddings h,, , by preserving 2,

£Acc(va; hgy,a. y W) = II‘l,a,X Z A(hgy.a ¥ Va, W; y)

Target: classify O vs.[] Spurious: co

\land background”

‘Spurious prompts |

“A photo with a water/ —»

-

Q%ueg
. ( i @ @ '®) (;:'\')
Determine Label prompts e 00
- ) On”
spurious vectors [e— | - mE "
Text encoder — Aphotoofa > Text encoder | g O &=
waterbird/ landbird” gy
i Infer pseudo ~1 ’ Zero-shot
spurious label | @ a0
Translate along the spurious vectors "0
Image encoder -+ mo. -
H L
TIE

Theorem 2. Given the objective function and the data model, the mazimizer of the

ohjective is obtained by

Vo = E[-Ph,], (4.7)

L 0 --- 0

00 ---0

where P € R is an elementary matrir, P =

00 <« 0
Where h — hCO!'C’ hnoise] c Rd

180 of 195 hdidin
A Shenyu Lu, Junyi Chai, and Xiaogian Wang. “Mitigating Spurious Correlations in Zero-Shot

Insights: The optimal translation operator for
image embeddings aligns in the opposite
direction of the spurious vectors.

Conceptually, this can be interpreted as neutralizing
the influence of spurious features.

! .
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Multimodal Models”. In the 13th International Conference on Learning Representations(ICLR 2025).



Debiasing Foundation Models in Zero-Shot Classification

 Analytic worst-group accuracy:

a? — a
ROBOSHOT: WGRs(a, B) = min{%erfc(— T az)\/2(62((xlz :f{l —+ﬂ?1 =7 )
L o a’?—(B—1)a-p 1
g (1+a?)y/2(8%a? + (o — B(1 - 02))2)) g
1 - o 1t
TIE: WGris(a, B) = min{%erfc(—ﬁxﬁz(l ++ﬁ2)) ) %erf(—ﬁ\ﬁz(_: ++,32))) + %}.

« Asmaller « indicates more accurate spurious decision boundary

« Alarger g indicates a more accurate task boundary
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Debiasing Foundation Models in Zero-Shot Classification

 Analytic worst-group accuracy:
« A smaller « indicates more accurate spurious decision boundary
« Alarger g indicates a more accurate task boundary

0.80
0.9
0.75 0.8
0.7
0.70
’UT ]
= 0.6 2
o 3
0.65 |, 2
= 0.5 &
0.60 0.4
0.3
0.55
0.2
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Debiasing Foundation Models in Zero-Shot Classification

« «a and g in practice

Table 6: Spurious Prompt used in experiments comparing ROBOSHOT and TIE.

Spurious Template Land Attributes Water Attributes

“A photo with a/an {a} background” {land, field, hill, {water, ocean, river,
desert, forest, moun- lake, sea, pond}
tain}

aro

- 028 ,§

A
-] .\ 4
08 -
0s 3 & ‘ oy 03 woa 0325 2
WGA w mog & - v ]
04 ass -
024 v 0.300
03 83 027%

ae7

m s

0z 62 22%
‘% ! as5s 020 %’ 2\//-_’_ e
. ? .,_«——"’_"J %‘1,810 w 1 ¥

3
a‘%' 4 . [ oy, 12
5 4 4 o
5 ’ 4 o gy, 2 \oares Seatures st promipts
D,u%s 1 lw.w feature text promp Wty

183 of 195 N U&(?LNE(S//E

Georgia
Tech.



Debiasing Foundation Models in Zero-Shot Classification

* Experiments

Table 1: Zero Shot classification results on Waterbirds

Method CLIP (ViT-B32) CLIP (VIiT-L14) CLIP (ResNet-50)
WGT Avgt Gapl WGT Avgt Gapl WGT Avgt Gapl
A 4137 6848 27.11 3193 83.72 51.79 3536 80.64 45.28
Group Prompt 4346 66.79 2333 1044 56.12 4568 4984 7096 21.12
Ideal words 60.28 79.20 18.92 64.17 87.67 2350 39.09 7948 40.39
Orth-Cali 5499 69.19 14.20 5856 8631 27.75 64.80 8447 19.67
Perception CLIP 59.78 82.50 22.72 54,12 86.74 32.62 4821 91.51 43.30
ROBOSHOT 5441 7192 17.51 45.17 6443 1926 2661 69.06 4245
( TIE (Ours) 71.35 79.82 847 7882 84.12 530 5296 83.62 30.66
TIE+ (Ours*) 61.24 7691 15.67 61.60 7898 17.38 3411 81.19 47.08

|

« Multiclass Classification with Multi-Spurious Attributes

Table 4: Top-1 Accuracy and Worst Group accuracy on FMOW dataset.

WGT Avgl Gapl

7S 18.06 2602 7.96

Group Prompt 875 1469 594

Ideal words 11.14 2021  9.07

Orth-Cali 1945  26.11  6.66

Perception CLIP 12,61 17.70  5.09

ROBOSHOT 1088 19.79 891

184 of 195 Ak TIE 20.19 2662 643

/g [ TIE=* 19.84 26.65 6.8 ]

Average Worst-Group accuracy

gain across four datasets:

ROBOSHOT (SOTA): 3.96%

TIE (Ours): 18.26%

4

AN

\
R\

OL
Mo

x s I/
)

oSN ¢
N;_’),.A

IVES ),

I/ 7
J%
=2

Cr

Georgia
Tech.



Debiasing Foundation Models in Zero-Shot Classification
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Gradient representations for Robustness, 00D, Anomaly, Novelty, and Adversarial Detection

+ Gradients for robustness against noise: M. Prabhushankar, and G. AlRegib, "Introspective Learning : A Two-Stage Approach for Inference in Neural Networks," in Advances in
Neural Information Processing Systems (NeurlPS), New Orleans, LA, Nov. 29 - Dec. 1 2022

+ Gradients for adversarial, 00D, corruption detection: J. Lee, M. Prabhushankar, and G. AlRegib, "Gradient-Based Adversarial and Out-of-Distribution Detection,”
in International Conference on Machine Learning (ICML) Workshop on New Frontiers in Adversarial Machine Learning, Baltimore, MD, Jul. 2022.

* Gradients for 0,99" set reco1gnition: Lee, Jinsol, and Ghassan AlRegib. "Open-Set Recognition With Gradient-Based Representations." 2027 IEEE International Conference on Image
Processing (ICIP). IEEE, 202T.

« GradCon for Anomaly Detection: Kwon, G., Prabhushankar, M., Temel, D., & AlRegib, G. (2020, August). Backpropagated gradient representations for anomaly detection.
In European Conferenice on Computer Vision (pp. 206-226). Springer, Cham.

» Gradients for adversarial, 00D, corruption detection : J. Lee, C. Lehman, M. Prabhushankar, and G. AlRegib, "Probing the Purview of Neural Networks via Gradient Analysis,"
in IEEE Access, Mar. 21 2023.

» Gradients for Noveltg Detection: Kwon, G., Prabhushankar, M., Temel, D., & AlReqi
networks. In 2020 IE

+ Gradient-based Image Quality Assessment: G. Kwon*, M. Prabhushankar*, D. Temel, and G. AlRegib, "Distorted Representation Space Characterization Through Backpropagated
Gradients," in IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, Sep. 2019.

: 1 b, G. (2020, October). Novelty detection through model-based characterization of neural
E International Conference on Image Processing (ICIP) (pp. 3179-3183). IEEE.

Explainability in Neural Networks

+ Explanatory paradigms: AIRes%ib G., & Prabhushankar, M. (2022). Explanatory Paradigms in Neural Networks: Towards relevant and contextual explanations. IEEE Signal
Processing'Magazine, 39(4), -72.

« Contrastive Explanations: Prabhushankar, M., Kwon, G., Temel, D., & AlRegib, G. (2020, October). Contrastive explanations in neural networks. In 2020 IEEE International Conference
on Image Processing (ICIP) (pp. 3289-3293). IEEE.

« Explainabilty in Limited Label Settings: M. Prabhushankar, and G. AlRegib, "Extracting Causal Visual Features for Limited Label Classification,” in IEEE International Conference on
Image Proceéssing (ICIP), Sept. 2021.

. EleIainabiI_ty through Expectancy-Mismatch: M. Prabhushankar and G. AlRegib, "Stochastic Surprisal: An Inferential Measurement of Free Energy in Neural Networks," in Frontiers
in Neuroscience, Perception Science, Volume 17, Feb. 09 2023.
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Self Supervised Learning

. Weak]y_ supervised Contrastive Learning: K. Kokil|e_Fersaud S. Trejo Corona, M. Prabhushankar, G. AlRegib, C. Wykoff, "Clinically Labeled Contrastive Learning for OCT Biomarker
Classification," in IEEE Journal of Biomedical and Health Informatics, 2023, May. 15 2023.

» Contrastive Learning for Fisheye Images: K. Kokileé)ersaud, M. Prabhushankar, Y. Yarici, G. AlRegib, and A. Parchami, "Exploiting the Distortion-Semantic Interaction in Fisheye
Data," in Open Journal of Signals Processing, Apr. 28 2023.

» Contrastive Learning for Severity Detection: K. Kokilepersaud, M. Prabhushankar, G. AIReg6ib S. Treé'o Corona, C. Wykoff, "Gradient Based Labeling for Biomarker Classification in
OCT," in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 1 -19202

+ Contrastive Learning for Seismic Images: K. Kokilepersaud, M. Prabhushankar, and G. AlRegib, "Volumetric Supervised Contrastive Learning for Seismic Semantic Segmentation,"
in International Meeting for Applied Geoscience & Energy (IMAGE), Houston, TX, , Aug. 28-Sept. 1 2022

Human Vision and Behavior Prediction

* Pedestrian Trajector¥ Prediction: C. Zhou, G. AlRegib, A. Parchami, and K. Singh, "TrajPRed: Trajectory Prediction With Region-Based Relation Learning," IEEE Transactions on
Intelligent TranSportation Systems, submitted on Dec. 28 2022.

* Human Visual SaliencyDin trained Neural Nets: Y. Sun, M. Prabhushankar, and G. AlRegib, "Implicit Saliency in Deep Neural Networks," in IEEE International Conference on Image
Processing (ICIP), Abu'Dhabi, United Arab Emirates, Oct. 2020.

+ Human Image Quality Assessment: D. Temel, M. Prabhushankar and G. AlRegib, "UNIQUE: Unsupervised Image Quality Estimation,” in IEEE Signal Processing Letters, vol. 23, no.
10, pp. 1414-1418, Oct. 2016.

Open-source Datasets to assess Robustness

* CURE-TSD: D. Temel, M-H. Chen, and G. AlRegib, "Traffic Sign Detection Under Challenging Conditions: A Deeper Look Into Performance Variations and Spectral Characteristics,"
in IEEE Transactions on Intelligent Transportation Systems, Jul. 2019

* CURE-TSR: D. Temel, G. Kwon*, M. Prabhushankar*, and G. AlRegib, "CURE-TSR: Challenging Unreal and Real Environments for Traffic Sign Recognition," in Advances in Neural
Information Processing Systems (NIPS) Workshop on Machine Learning for Intelligent Transportation Systems, Long Beach, CA, Dec. 2017

* CURE-OR: D. Temel*, J. Lee*, and G. AlRegib, "CURE-OR: Challenging Unreal and Real Environments for Object Recognition," in IEEE International Conference on Machine Learning
and Applications (ICMLA), Orlando, FL, Dec. 2018
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Active Learning

« Active Learning and Training with High Information Content: R. Benkert, M. Prabhushankar, G. AlRegib, A. Parchami, and E. Corona, "Gaussian Switch Sampling: A
Second Order Approach to Active Learning," in IEEE Transactions on Artificial Intelligence (TAl), Feb. 05 2023

» Active Learning Dataset on vision and LIDAR data: Y. Logan, R. Benkert, C. Zhou, K. Kokilepersaud, M. Prabhushankar, G. AIReﬂib, K. Singh, E. Corona and A.
Parchami, "FOCAL: A Cost-Aware Video Dataset for Active Learning," IEEE Transactions on Circuits and Systems for Video Technology, submitted on Apr. 29 2023

« Active Learning on 00D data: R. Benkert, M. Prabhushankar, and G. AlRegib, "Forgetful Active Learning With Switch Events: Efficient Sampling for Out-of-
Distribution Data," in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022

« Active Learning for Biomedical Images: Y. Logan, R. Benkert, A. Mustafa, G. Kwon, G. AlRegib, "Patient Aware Active Learning for Fine-Grained OCT Classification,"
in IEEE International Conference on Image Processing (ICIP), Bordeaux, France, Oct. 16-19 2022

Uncertainty Estimation

« Gradient-based Uncertainty: J. Lee and G. AlRegib, "Gradients as a Measure of Uncertainty in Neural Networks," in IEEE International Conference on Image
Processing (ICIP), Abu Dhabi, United Arab Emirates, Oct. 2020

« Gradient-based Visual Uncertainty: M. Prabhushankar, and G. AlRegib, "VOICE: Variance of Induced Contrastive Explanations to Quantify Uncertainty in Neural
Network Interpretability," Journal of Selected Topics in Signal Processing, submitted on Aug. 27, 2023.

» Uncertainty Visualization in Seismic Images: R. Benkert, M. Prabhushankar, and G. AlRegib, "Reliable Uncertainty Estimation for Seismic Interpretation With
Prediction Switches," in International Meeting for Applied Geoscience & Energy (IMAGE), Houston, TX, , Aug. 28-Sept. 1 2022.

« Uncertainty and Disagreements in Label Annotations: C. Zhou, M. Prabhushankar, and G. AlRegib, "On the Ramifications of Human Label Uncertainty," in NeurlPS
2022 Workshop on Human in the Loop Learning, Oct. 27 2022

* Uncertainty in Saliency Estimation: T. Alshawi, Z. Long, and G. AlRegib, "Unsupervised Uncertainty Estimation Using Spatiotemporal Cues in Video Saliency
Detection," in IEEE Transactions on Image Processing, vol. 27, pp. 2818-2827, Jun. 2018.
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1. Wang, Tianlu, Rohit Sridhar, Diyi Yang, and Xuezhi Wang. "ldentifying and Mitigating Spurious Correlations for Improving Robustness in NLP Models." In Findings of
the Association for Computational Linguistics: NAACL 2022, pp. 1719-1729. 2022.

2. Xu, Depeng, Shuhan Yuan, Lu Zhang, and Xintao Wu. "Fairgan: Fairness-aware generative adversarial networks." In 2018 IEEE international conference on big data
(big data), pp. 570-575. IEEE, 2018.

3. Jang, Taeuk, Feng Zheng, and Xiaogian Wang. "Constructing a fair classifier with generated fair data." In Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 9, pp. 7908-7916. 2021.

4. Chuang, Ching-Yao, and Youssef Mroueh. "Fair Mixup: Fairness via Interpolation." In International Conference on Learning Representations. 2021.

5. Du, Mengnan, Subhabrata Mukherjee, Guanchu Wang, Ruixiang Tang, Ahmed Awadallah, and Xia Hu. "Fairness via representation neutralization." Advances in
Neural Information Processing Systems 34 (2021): 12091-12103.

6. Chan, Eunice, Zhining Liu, Ruizhong Qiu, Yuheng Zhang, Ross Maciejewski, and Hanghang Tong. "Group Fairness via Group Consensus." In The 2024 ACM
Conference on Fairness, Accountability, and Transparency, pp. 1788-1808. 2024.

7. Buda, Mateusz, Atsuto Maki, and Maciej A. Mazurowski. "A systematic study of the class imbalance problem in convolutional neural networks." Neural networks
106 (2018): 249-259.

8. Sagawa, Shiori, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. "Distributionally Robust Neural Networks." In International Conference on Learning
Representations. 2020.

9. Nam, Junhyun, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and Jinwoo Shin. "Learning from failure: De-biasing classifier from biased classifier." Advances in Neural
Information Processing Systems 33 (2020): 20673-20684.

10.Liu, Evan Z., Behzad Haghgoo, Annie S. Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa, Percy Liang, and Chelsea Finn. "Just train twice: Improving group
robustness without training group information." In International Conference on Machine Learning, pp. 6781-6792. PMLR, 2021.

11.Idrissi, Badr Youbi, Martin Arjovsky, Mohammad Pezeshki, and David Lopez-Paz. "Simple data balancing achieves competitive worst-group-accuracy." In Conference
on Causal Learning and Reasoning, pp. 336-351. PMLR, 2022.

12.Nagarajan, Vaishnavh, Anders Andreassen, and Behnam Neyshabur. "Understanding the failure modes of out-of-distribution generalization." In International
Conference on Learning Representations. 2021.

13.Sagawa, Shiori, Aditi Raghunathan, Pang Wei Koh, and Percy Liang. "An investigation of why overparameterization exacerbates spurious correlations." In
International Conference on Machine Learning, pp. 8346-8356. PMLR, 2020.

14.Yao, Huaxiu, Yu Wang, Sai Li, Linjun Zhang, Weixin Liang, James Zou, and Chelsea Finn. "Improving out-of-distribution robustness via selective
augmentation.” In International Conference on Machine Learning, pp. 25407-25437. PMLR, 2022.

15.Ming, Yifei, Hang Yin, and Yixuan Li. "On the impact of spurious correlation for out-of-distribution detection." In Proceedings of the AAAI conference on
artificial intelligence, vol. 36, no. 9, pp. 10051-10059. 2022.
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16.

17.

18.

19.

20.

21.

22.

Geirhos, Robert, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann, and Wieland Brendel. "ImageNet-trained CNNs are biased
towards texture; increasing shape bias improves accuracy and robustness." In International Conference on Learning Representations. 2019.

Shah, Harshay, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Netrapalli. "The pitfalls of simplicity bias in neural networks." Advances
in Neural Information Processing Systems 33 (2020): 9573-9585.

Shi, Yuge, Imant Daunhawer, Julia E. Vogt, Philip Torr, and Amartya Sanyal. "How robust is unsupervised representation learning to distribution shift?."
In The Eleventh International Conference on Learning Representations.. 2023.

Papyan, Vardan, X. Y. Han, and David L. Donoho. "Prevalence of neural collapse during the terminal phase of deep learning training." Proceedings of
the National Academy of Sciences 117, no. 40 (2020): 24652-24663.

Radford, Alec, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry et al. "Learning transferable visual models
from natural language supervision." In International conference on machine learning, pp. 8748-8763. PMLR, 2021.

Rombach, Robin, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. "High-resolution image synthesis with latent diffusion models."
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 10684-10695. 2022.

Adila, Dyah, Changho Shin, Linrong Cai, and Frederic Sala. "Zero-Shot Robustification of Zero-Shot Models." In The Twelfth International Conference on
Learning Representations. 2024.
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