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Abstract—A common problem in time series analysis is map-
ping the related elements between two sequences as they progress
in time. Methods such as dynamic time warping (DTW) and hid-
den Markov models (HMM) have good performance in mapping
time series signals with repeated (warped) elements relative to a
reference signal. However, there is not an adequate method for
mapping time series signals with inserted or deleted elements.
This work introduces hyperdimensional Bayesian time-mapping
(HyperBaT), a machine learning algorithm that maps two time
sequence signals that may contain inserted, deleted, or warped
elements. Additionally, HyperBaT estimates the common under-
lying signal shared between the two sequences. The algorithm is
presented in a general context so that it can be used in a variety
of applications. There are many relevant areas, including speech
processing, genetic sequencing, electronic warfare, communi-
cations, and radar processing, that process signals containing
inserted or deleted elements. As an example, HyperBaT is applied
to side-channels where it maps radio frequency (RF) side-channel
signals emitted from a computing device processor, which can be
used to track control flow execution and monitor for malicious
activity.

Index Terms—HMM, DTW, Time Series, Side Channel

I. INTRODUCTION

Comparison of time series sequences is a common task
for many applications. Often, it is desired to map the shared
elements in two related sequences as they progress in time.
This is particularly challenging when the sequences are non-
identical because of inserted or deleted elements. A simple
visualization of the non-identical time sequence mapping
problem with one inserted element can be seen in Fig. 1, where
elements in the sequence are visualized as symbols. Mapping
in this scenario requires linking elements in a noisy measured
signal to elements in a compared signal. The mapped elements
in Fig. 1 are connected with lines and the inserted element is
identified.

Straightforward distance metrics such as the Euclidean dis-
tance are frequently used for time-mapping, but these are sen-
sitive to distortions in the time axis and have difficulty when
sequences have different lengths [12], [6]. The dynamic time
warping (DTW) algorithm has been developed to map signals
of different lengths by allowing a nonlinear alignment of
sequences along the time axis [11], [18]. DTW was originally
developed in the 1960s [4], [19] and first gained wide usage
in speech processing [20], [15]. With DTW, the sequence
mapping is equivalent to finding an optimal path through a
two dimensional grid. Hidden Markov models (HMM) extend
DTW to include a metric based on the stochastic nature of the
signals [11], [16].

Fig. 1: A symbolic representation of the non-identical time
series mapping problem. In this case, a noisy measured signal
with an inserted element is mapped to the compared reference
signal.

Both DTW and HMMs perform well with signals that have
been warped or stretched in time with repeated elements. How-
ever, these algorithms are not well suited to map sequences
that contain additional inserted segments of unknown length or
structure. Previous efforts have attempted to implement insert
capabilities with DTW and HMMs [18], but only for very
short inserts. A limitation of DTW and HMM methods is that
computational complexity grows with the size of allowable
inserts [18]. Other methods, such as the segmental DTW and
unbounded DTW, seek to address the problem of inserts by
matching smaller segments or ”keywords” within a longer
sequence [3], [14]; however, this requires significant prior
knowledge about the expected locations of inserts.

This paper introduces hyperdimensional Bayesian time-
mapping (HyperBaT), a novel machine learning algorithm
designed to map time series sequences that contain inserted,
deleted, and warped segments. HyperBaT uses a three dimen-
sional mapping, rather than the two dimensional mapping of
DTW and HMM methods, to capture inserts and deletions
in addition to warps. HyperBaT exploits signal statistics and
chooses a mapping to satisfy an optimality criterion based on
probabilities, which is used to optimally map signals. Unlike
DTW and HMM methods, HyperBaT is able to capture inser-
tions and deletions of an arbitrary length without additional
complexity. Thus, HyperBaT computation is on the same order
as the standard implementations of DTW and HMM methods
with O(mn), where m and n are the lengths of the two
sequences. Because HyperBaT outputs probabilities, it can
easily be used with machine learning algorithms, such as
hidden Markov models (HMM), to model larger scale temporal
dynamics.

This work formulates HyperBaT in a general manner so
that it can be applied to a variety of applications. While
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this work focuses on one-dimensional real signals, HyperBaT
can be extended to multi-dimensional signals. As a real
world application, HyperBaT is applied to radio frequency
(RF) side-channel measurements of activity from computing
device processors. While this paper focuses on side-channel
measurements of processor activity, similar challenges exist in
applications that require separation of inserted or modified seg-
ments and identification of the common shared elements. As
one example, HyperBaT could be used to align DNA, RNA, or
protein sequences with templates for sequence classification,
similarity analysis, or identification of point mutations. Speech
processing is another possible application of HyperBaT as
different dialects or pronunciations can lead to different forms
of the same word, which has been a historically challenging
problem to overcome [20]. Other applications include elec-
tronic warfare, communications, radar processing, finance, and
data mining.

This work is organized as follows. Section II mathemati-
cally formulates the problem of non-identical time sequence
mapping in a general manner. Section III introduces the
HyperBaT algorithm. Then, Section IV studies HyperBaT
performance and provides real-world examples from side-
channel computing processor measurements. Finally, Section
V provides concluding remarks.

II. PROBLEM FORMULATION

The problem of non-identical time sequence mapping is
presented in this section. Discrete sequences are considered,
which may be sampled from continuous signals. Without loss
of generality, we assume the sequence elements to be real
signals.

A. Signal Model

Fig. 2: General model of two sequences that share a common
subset of elements.

Let the sequence x ∈ RT×1 be a vector with T elements
where x(i) ∼ N (0, σ2

x) for i = 1, . . . , T . The sequences
x1 ∈ RN1×1 and x2 ∈ RN2×1 are formed by adding
additional elements to the vector x to obtain sequences of
length N1 and N2 respectively. Both x1 and x2 contain the
full truth sequence x so that the truth sequence is a subset of
both sequences {x(i)}Ti=1 ⊆ {x1(i)}N1

i=1, {x2(i)}N2
i=1 where

the ordering of x is maintained. The sequence x will be
referred to as the common subset sequence as it is a subset

Fig. 3: Correct mapping of the sequences created in Fig. 2.

of x1 and x2. Then, noisy measurements of x1 and x2 are
observed to give

y1 = x1 + n1, (1a)
y2 = x2 + n2, (1b)

where y1,n1 ∈ RN1×1, y2,n2 ∈ RN2×1 and the noise
n1(i),n2(j) ∼ N (0, σ2

n) for i = 1, . . . , N1 and j =
1, . . . , N2. Note that a deletion in one sequence is effectively
an insertion into the compared sequence, so deletions are not
modeled separately. It should also be noted that the noise
terms n1 and n2 are assumed to have the same variance.
Additionally, for brevity, the signals x,x1,x2 are assumed to
have the same variance, but the extension to different variances
is straightforward. Fig. 2 has a visual representation of the
model where the signal is generalized so that elements are
represented by shapes.

The premise of this work is that a mapping exists that
connects the elements of x1 and x2 with the common subset
sequence x. For a mapping index k,

x(k) = x1(ik) = x2(jk), k = 1, 2, ..., T, (2)

where k is the index of the common signal x that is mapped
to the ik index of x1 and the jk index of x2. Again, it is noted
that the chronological order of x is maintained in x1 and x2

so that ik+1 ≥ ik and jk+1 ≥ jk for all k. The sequence
indices ik and jk from (2) are defined by a mapping function
φ(k), which is the mapping of the kth element of the common
subset sequence to the observations such that [18],

ik = φy1(k), k = 1, 2, · · · , T, (3a)
jk = φy2(k), k = 1, 2, · · · , T. (3b)

The mapping is equivalent to a particular path through a
two-dimensional grid where the sequences y1 and y2 are on
orthogonal axes. Then, each pair of elements that are mapped
to each other correspond to a point in the path through the
grid. Many different mappings exist, each with a different path
through the grid. A mapping algorithm aims to choose the
optimal mapping that correctly links the sequence elements.
Fig. 3 shows the correct mapping for the sequences in Fig. 2.
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HyperBaT solves the following problem: Given the
measurement sequences y1 ∈ RN1×1 and y2 ∈ RN2×1,
determine the common truth sequence x ∈ RT×1 where
T is unknown. Additionally, find the elements y1(ik) and
y2(jk) that correspond to each truth sequence element x(k)
for k = 1, · · · , T .

III. HYPERBAT

A. Mapping with HyperBaT

Fig. 4: H0 and H1 hypotheses.

HyperBaT implements a probabilistic approach to estimate
the optimal mapping function Φ. The key functionality in
HyperBaT is the ability to identify an insert in the signal. This
is achieved by introducing the concept of an insert hypothesis,
which associates inserts with probabilities. Suppose that index
k of the mapping function (3a)-(3b) gives an element from
each of the two sequences: y1(ik) and y2(jk). As represented
in Fig. 4, the elements y1(ik) and y2(jk) can be classified into
one of two hypotheses:
• Hypothesis H0: y1(ik) and y2(jk) are both observations

of the same truth sequence element and
x1(ik) = x2(jk) = x(k).

• Hypothesis H1: y1(ik) and y2(jk) are not observations
of the same element and x1(ik) 6= x2(jk).

The insert hypothesis is associated with a probability by
focusing on the difference of the observed elements, y1(ik)−
y2(jk). Under hypothesis H0,

y1(ik)− y2(jk) = n1(ik)− n2(jk) ∼ N (0, σ2
H0), (4)

where the summation property of Gaussian distributions is
used to obtain σ2

H0 = 2σ2
n. Alternatively, under hypothesis

H1,

y1(ik)− y2(jk) = x1(ik)− x2(jk) + n1(ik)− n2(jk),

∼ N (0, σ2
H1),

(5)

where σ2
H1 = 2σ2

x + 2σ2
n. Signal variance σ2

x and noise
variance σ2

n are not known, so σ2
H1 and σ2

H0 are left as
unknowns.

Examining σ2
H0 and σ2

H1 , it is clear that σ2
H0 < σ2

H1 .
Therefore, on average the magnitude of y1(ik) − y2(jk) is
greater under the H1 hypothesis than the H0 hypothesis.
Representing the insert hypothesis in terms of the magnitude
of the difference between the elements,

Hypothesis H0 : |y1(ik)− y2(jk)| ∼ D(σH0), (6)
Hypothesis H1 : |y1(ik)− y2(jk)| ∼ D(σH1), (7)

Fig. 5: Correct mapping of the example from Fig. 3 drawn in
(left) 2D and (right) 3D.

where D(σ) is the half-normal distribution with standard
deviation σ and probability distribution function

fD(x;σ) =

√
2

π

1

σ
e−

x2

2σ2 , x > 0. (8)

The notation Hk = H0 is used to represent hypothesis H0

and Hk = H1 to represent hypothesis H1 for mapping index
k with elements y1(ik) and y2(jk).

The insert hypothesis between two observation elements
adds an extra dimension of information in the mapping be-
tween the observed sequences y1 and y2, which allows the
mapping from Fig. 3 to be extended so that a mapping is
a path through a three dimensional grid. Fig. 5 shows that
y1 and y2 form two dimensions of the grid while the insert
hypothesis forms the third. The two mapping levels in the
insert hypothesis dimension are referred to as the H0 and
H1 planes. The path through the grid corresponding to the
mapping between two observation sequences is determined by
(ik, jk, Hk) for k = 1, · · · , T . Observed elements estimated
to share a truth sequence element are on the H0 plane and
elements estimated to not share a truth sequence element are
on the H1 plane. Therefore, an insert is detected by observing
when the mapped path jumps from the H0 plane to the H1

plane for the length of the insert and ends in the H0 plane. It is
the extra dimension of the insert hypothesis that allows inserts
to be discovered, regardless of length, and with a minimal,
constant computational complexity increase.

Here we define variables that are used in the derivation of
HyperBaT. Let N be the number of estimated mapped pairs
from the mapping of y1 and y2. Then, the two dimensional
mapping information for the mapped elements is

Φ =


i1 j1
i2 j2
...

...
iN jN

 =


φy1(1) φy2(1)
φy1(2) φy2(2)

...
...

φy1(N) φy2(N)

 (9)
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and Φk = [ik jk] is the two dimensional mapping for index
k. The third dimension of the mapping is grouped into

H(Φ) =
[
H1(Φ1) H2(Φ2) · · · HN (ΦN )

]T
, (10)

where Hk(Φk) ∈ {H0
k , H

1
k} is the hypothesis for the elements

y1(ik) and y2(jk). The observations are grouped into the
vector

Y (Φ) =
[
Y1(Φ1) · · · Y2(ΦN )

]T
, (11)

where Yk(Φk) = |y1(ik) − y2(jk)|. For simplicity in nota-
tion, the functional dependencies of the parameters will be
neglected in the rest of the derivation.

The mapped path through the three dimensional grid is
determined by Φ and H . Many choices of Φ and H exist
that correspond with different mapped paths. The best path is
chosen by maximizing the joint probability of a mapped path
(Φ,H) and observations (Y ),

Φ̂, Ĥ = arg max
H,Φ

P (Φ,H,Y ). (12)

The probability of a particular mapping P (Φ,H,Y ) is not
directly available. However, the probability can be computed
by introducing the standard deviations of the H0 and H1

hypotheses as nuisance parameters, which are not of direct
interest, but must be accounted for in the analysis. The
standard deviation for each mapped pair is placed in the vector

σ(H) =
[
σ1(H1) σ2(H2) · · · σN (HN )

]T
, (13)

with elements σk(Hk) ∈ {σH0 , σH1} where σH0 and σH1

are the standard deviations of the H0 and H1 hypotheses,
respectively. The probability in (12) can be evaluated by
integrating over the nuisance parameter vector,

Φ̂, Ĥ = arg max
H,Φ

P (Φ,H,Y ), (14a)

= arg max
H,Φ

∞∫
0

· · ·
∞∫
0

P (Φ,H,Y ,σ) dσ, (14b)

where dσ = dσ1dσ2 · · · dσN . Integrating over the nuisance
parameter σ provides the best mapping estimate without
knowledge of σH0 and σH1 .

The integral in (14) is evaluated as shown in Appendix A
and the resulting expression can be written as

Φ̂, Ĥ = arg max
H,Φ

T∏
k=1

Λkak, (15)

which is the multiplication of two terms for each mapping
index k. The first term in (15) is the measurement probability

Λk = P (Yk|Φk, Hk), (16a)

=

∞∫
0

P (Yk|Φk, σk) · P (σk|Hk) dσk. (16b)

This term is dependent on whether the mapping is in the H0

or H1 plane. A mapping in the H0 plane is given by

Λ0
k = e

− |y1(ik)−y2(jk)|2

2σ2t , (17)

where σt is a threshold standard deviation derived in Section
III-C. Alternatively, a mapping in the H1 plane is given by

Λ1
k = 1− Λ0

k. (18)

The second term in (15) is the transition probability

ak = P (Φk, Hk|Φk−1, Hk−1), (19)

which is the probability that the mapping transitions from one
point to another.

Each possible mapping has different values of Λk and ak.
Similar to DTW and HMM methods, the structure of (15)
allows dynamic programming to be used to find the optimal
mapping. After the mapped path is determined, warped ele-
ments are identified as vertical or horizontal path segments in
the H0 plane. Inserted elements are identified as path segments
in the H1 plane.

B. Estimating the Common Subset Sequence and SNR

The mapping (Φ,H) given by HyperBaT links the common
elements in the two sequences y1 and y2. This information can
be used to estimate the common subset of elements x. This
is achieved by averaging pairs of elements that are mapped
together with an H0 hypothesis. The mapping indices with
an H0 hypothesis are defined as k0, which is of length T
such that y1(k0(m)) and y2(k0(m)) are estimated to have an
H0 hypothesis for m = 1, . . . , T . Then, the estimated truth
sequence element for index k0 is

x̂(k0(m)) =
y1(ik0(m)) + y2(jk0(m))

2
. (20)

Estimation of the truth sequence also allows the SNR of y1

and y2 to be calculated under the assumption that they have
the same SNR. The signal variance is estimated from the T
estimated truth sequence elements as

σ̂2
x =

1

T − 1

T∑
k0=1

[
x̂(k0)−

T∑
k0=1

x̂(k0)

T

]2
. (21)

Since the elements mapped to the truth sequence are in the
H0 hypothesis plane, ak0 = y1(ik0) − y2(jk0) ∼ N (0, 2σ2

n)
and the noise variance is estimated as

σ̂2
n =

1
T−1

∑T
k0=1

[
ak0 −

∑T
k0=1

ak0
T

]2
2

. (22)

The estimated SNR for the observed sequences is then

SNR =
σ̂2
x

σ̂2
n

. (23)

C. Computing the Threshold σt
The derivation of the HyperBaT distance metric in Ap-

pendix A uses the threshold σt to separate the prior distribution
of σ into H0 and H1 regions, which is shown in Fig. 10.
This threshold is the only tuning parameter for HyperBaT.
Rather than arbitrarily choosing σt, it is chosen to achieve a
desired probability of incorrectly hypothesizing an insert in the
mapping. This occurs when two elements originate from the
same common subset element, but are incorrectly estimated to
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have an H1 hypothesis. The desired probability of an incorrect
insert hypothesis is defined to be pt. Then, for the elements
y1(ik) and y2(jk):

pt = P (Ĥk = H1|Yk,Φk, Hk = H0). (24)

Appendix B derives the threshold that achieves the probability
of an incorrect insert hypothesis of pt and the result can be
written as

σt =
√

log(2)x2σ2
n, (25)

where x =
√
−2σ2

t log(
1
2 )

2σ2
n

is the value of the Q-function that
obtains Q(x) = pt/2.

The threshold is a function of the noise variance σ2
n.

However, it should be noted that the noise variance is not
assumed to be known in HyperBaT. In practice, the average
value for σ2

n can be estimated from past data and used in
(25) under the assumption that noise variance does not vary
significantly through the sampled data.

D. Boundary Conditions

HyperBaT achieves better mapping accuracy if the boundary
conditions are specified. DTW is also frequently implemented
using a boundary condition constraint to improve performance
[7], [13]. The boundary conditions specify the elements in
y1 and y2 that map to the first and last elements in the
common subset sequence x. Thus, the boundary conditions
are knowledge of ik and jk such that x(k)→ y1(ik),y2(jk)
for k = 1 and k = T . It is typically assumed the beginning
condition is known (ik, jk for k = 1). Additional performance
gains are achieved if the ending condition is assumed known
(ik, jk for k = T ), which will be referred to as a forced
ending. Many applications do not have knowledge of the end-
ing condition, requiring a non-forced ending implementation.
Section IV contains simulations of HyperBaT and DTW with
and without forced ending to study the effects of boundary
condition knowledge.

IV. SIMULATION AND EXPERIMENTAL RESULTS

A. Simulated Signals

This section compares the performance of HyperBaT and
DTW using simulated sequences. Simulations offer the ad-
vantage that the underlying signals are known and can be
used as ground truth in comparison to various algorithm
mappings. The common subset sequence x is simulated as
x(k) ∼ N (0, 1) for k = 1, . . . , T . The first sequence y1 is
created with no inserted elements and only Gaussian noise is
added to x to achieve a specified SNR. The second sequence
y2 is generated with the same common subset and SNR,
but also contains an insert of a specified length (all inserted
elements are together).

Fig. 6 shows an example mapping from HyperBaT where
T = 20 and y2 has an insert of length 8 following the 8th

element. The type of line connecting elements dictates what
insert hypothesis plane the elements are mapped to. Each pair
of elements that are estimated to have an H0 hypothesis are
connected with a solid line while element pairs estimated to
have an H1 hypothesis are connected with a dashed line. The

type of symbol for each element dictates the two dimensional
mapping. Stars for both elements result from a diagonal path
step and an element is a circle if the mapping index for that
sequence progresses while the other sequence mapping index
remains stationary. In this example, HyperBaT correctly maps
the sequences.
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Fig. 6: HyperBaT without forced ending for two simulated
sequences. T = 20 and y2 is generated by adding 8 inserted
elements consecutively. In this example, HyperBaT correctly
estimates the mapping.

B. HyperBaT Performance and Comparison with DTW

This subsection compares the performance of HyberBaT
with the standard DTW/HMM approach from [18] for dif-
ferent insert lengths and SNRs. The probability of correct
mapped points is used as a performance metric to compare
the algorithms, which is computed by first calculating the
correct mapped pairs (ik, jk) for k = 1, . . . , T . Then Pc, the
probability of correct mapping for an algorithm, is calculated
as:

Pc =
Ncorrect

T
, (26)

where Ncorrect is the number of correct mapped pairs found
from the algorithm. Beginning conditions are assumed known
and HyperBaT and DTW are run with and without forced
ending. The simulated sequences are generated as described
in Section IV-A. In each of the simulated scenarios, the insert
is added after the 8th element in y2.

Fig. 7 compares the performance of HyperBaT and DTW
for several scenarios. Fig. 7 (a) shows the performance of
HyperBaT and DTW for a range of SNR values when T = 20
and the insert length is 8. It is seen that the forced ending
implementation of HyperBaT achieves better correct mapping
probability than DTW for all SNRs. However, non-forced end
HyperBaT struggles at lower SNR values for this scenario. It
should be noted that correct mapping of the sequences up to
the insert followed by incorrect mapping once the insert begins
gives a probability of 0.4. In Fig. 7 (b) the insert length is
varied while keeping SNR fixed at 30 dB and T = 20. Here,
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Fig. 7: Simulated HyperBaT and DTW performance with and without forced ending. In (a), results are shown for a range of
SNR when T = 20 and y2 has an insert of length 8. In (b), insert length is varied while T = 20 and SNR= 30 dB. In (c), T
is varied while SNR is 10 dB and insert length is 8. In (d), SNR is varied while T = 100 and insert length is 50.

it is seen that HyperBaT provides further improvement over
DTW as the length of the insert increases.

HyperBaT with non-forced ending does not perform well
for lower SNR values in Fig. 7 (a). However, T is only 20 in
this scenario. Adding more common elements after the insert
allows the uncertainty in the mapping to dissipate and the map-
ping converges to fewer numbers of likely paths. This is seen
in Fig. 7 (c), which shows the probability of correct mapping
under a scenario where an insert of length 8 appears after the
8th element, but the length of the truth signal is extended so
that more elements are added after the insert. It is seen that
the non-forced ending implementation of HyperBaT converges
with the forced-ending implementation of HyperBaT as the
number of elements after the insert increases. This example
is useful as it provides insight into practical considerations.

Scenarios without forced-ending knowledge and a low SNR
require long sequences to reach adequate performance.

The reader may also question what performance is achieved
for larger insert lengths. Fig. 7 (d) plots the probability of
correct mapping when T = 100, where again, y2 has an insert
after the 8th element. However, this time the insert is of length
50. This plot shows that even for lengthy inserted sequences,
HyperBaT is able to have good mapping performance and that
large numbers of elements after the insert allows the non-
forced ending implementation of HyperBaT to approach the
performance of forced ending HyperBaT implementation.
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C. Example Insert in RF Side-Channel Signal From a Com-
puter Processor

Recent research has suggested that radio frequency (RF)
side channels may be a useful method for cybersecurity
monitoring [5], [9]. The authors in [5] developed a method
to measure the RF signal emitted from computing device
processors, enabling remote security monitoring via the RF
side channel. This physically separate monitoring approach
offers many advantages over traditional methods, including a
reduced risk of the monitoring capability being compromised
during an attack. Callan et al.[5] demonstrated that these emis-
sions can be remotely detected and used to track a program’s
execution path on the monitored device and generate profiling
information.

However, there are unmet challenges with RF side channel
monitoring. The monitored processor not only executes the
sequential instructions from the program, but also additional
instructions, such as those corresponding with a cache miss
or operating system interrupt. These inserted instructions are
often unpredictable and can change the length of the signal
between two measurements of the same program. The length
of the inserted segments can vary significantly. Thus, program
execution tracking requires an algorithm that can compare
signals of different lengths and identify inserted elements
without prior knowledge of the length or structure of inserts.

As a real world example, a section of code from a pro-
gram is executed at two separate instances and side channel
measurements are collected. Then, a non-forced ending im-
plementation of HyperBaT is used to map the sequences as
shown in Fig. 8 (a). HyperBaT identifies an insert with three
elements and estimates the SNR from (23) to be 10.99 dB.
Fig. 8 (b) shows the two sequences overlaid after the inserts
have been removed.

V. CONCLUSION

HyperBaT has been proposed as a novel algorithm that
maps two non-identical time sequences by identifying the
common elements between the sequences as well as any
inserted, deleted, or warped elements. HyperBaT overcomes
the limitations of DTW and HMM methods by utilizing
probabilistic methods to explicitly map inserted elements in
a separate dimension. This is achieved without requiring prior
knowledge of insert size and structure along with compu-
tational complexity that does not depend on the allowable
number of inserts.

The performance of HyperBaT was compared to DTW for
aligning sequences with inserted elements. Simulations show
that HyperBaT without forced ending has better probability of
correct mapping than DTW without forced ending, particularly
for high SNR sequences. Forced ending implementation of
HyperBaT performs particularly well, however the knowledge
required for forced ending is not always available. Non-forced
ending implementation of HyperBaT can achieve results sim-
ilar to forced ending implementation if there are sufficient
numbers of elements after an insert.

The probabilistic output of HyperBaT can readily be used
with numerous other data modeling approaches. Future work
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Fig. 8: (a) Two RF side channel measurements from the same
executed program are mapped with HyperBaT. (b) The two
mapped sequences from (a) are overlaid after removing the
inserted elements.

will include integration of HyperBaT with machine learning
methods for large scale time mapping. Additionally, it may
be possible to reduce computational complexity to accelerate
HyperBaT as has been done with DTW to make it more
feasible for large scale data applications such as data mining
[8], [1], [2], [21].
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APPENDIX A
PROBABILITY METRICS

A dynamic Bayesian network model (DBN) is used to
represent dependencies of variables and evaluate (14), which
is visualized as a directed acyclic graphical model in Fig. 9.
The graphical model represents dependencies between random
variables with arrows. The state at index k is representative of
a mapped pair of elements (Φk, Hk), which have observation
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Yk. Markovity is assumed for the states so that the state
at mapped point k only depends on the state at mapped
point k − 1. The standard deviation σk is determined by
the hypothesis Hk, and Yk is the observation of the mapped
elements from Φk and depends on the standard deviation σk.
These dependencies are used to simplify the probability in
(14).

Fig. 9: Graphical model for mapping and observations.

Expanding (14) using the chain rule of probability,

Φ̂, Ĥ = arg max
H,Φ

∞∫
0

· · ·
∞∫
0

P (Φ,H,Y ,σ) dσ,

= arg max
H,Φ

∞∫
0

· · ·
∞∫
0

P (Y ,σ|Φ,H) · P (Φ,H) dσ,

= arg max
H,Φ

∞∫
0

· · ·
∞∫
0

P (Y |Φ,H,σ)

· P (σ|Φ,H) · P (Φ,H) dσ.
(27)

The Markovity assumption of the states (Φk,Hk) (as seen in
Fig. 9) is exploited to give,

Φ̂, Ĥ = arg max
H,Φ

∞∫
0

· · ·
∞∫
0

T∏
k=1

P (Yk|Φk, Hk, σk)

· P (σk|Φk, Hk) · P (Φk, Hk|Φk−1, Hk−1) dσ.

(28)

Referencing the graphical model from Fig. 9, conditional
dependencies on independent terms can be removed (Yk does
not depend on Hk and σk does not depend on Φk) so that
P (Yk|Φk, Hk, σk) = P (Yk|Φk, σk) and P (σk|Φk, Hk) =
P (σk|Hk), which allows it to be written as

Φ̂, Ĥ = arg max
H,Φ

∞∫
0

· · ·
∞∫
0

T∏
k=1

P (Yk|Φk, σk) · P (σk|Hk)

· P (Φk, Hk|Φk−1, Hk−1) dσ.
(29)

This equation can then be rearranged such that each index k
is integrated over σk separately, leading to

Φ̂, Ĥ = arg max
H,Φ

T∏
k=1

{[ ∞∫
0

P (Yk|Φk, σk) · P (σk|Hk) dσk

]

· P (Φk, Hk|Φk−1, Hk−1)

}
.

(30)

Similar to a standard HMM, the terms can then be grouped into
two categories: measurement probabilities (Λk) and transition
probabilities (ak),

Φ̂, Ĥ = arg max
H,Φ

T∏
k=1

Λkak, (31)

where

Λk = P (Yk|Φk, Hk) =

∞∫
0

P (Yk|Φk, σk) · P (σk|Hk) dσk

(32)
and

ak = P (Φk, Hk|Φk−1, Hk−1) (33)

are the measurement and transition probabilities respectively
at index k. The following subsections derive analytical forms
for (32) and (33).

A. Measurement Probability Λk

The first term in the measurement probability (32) is the
likelihood of an observation for a particular standard deviation.
Simplifying this term:

P (Yk|Φk, σk) = P
(
|y1(ik)− y2(jk)|

∣∣∣Φk, σk

)
,

=

√
2

π

1

σk
e
− |y1(ik)−y2(jk)|2

2σ2
k ,

(34)

which follows because Yk has a half-normal distribution as
seen in (8).

The second term of the measurement probability
(P (σk|Hk)) is the likelihood of a particular σk given a
hypothesis and has different values depending on whether
the mapping is on the H0 or H1 plane. Thus, Λk must be
evaluated differently for the H0 and H1 hypotheses. The
likelihood is calculated by expanding the prior on σk,

P (σk) =
∑
i

P (σk, Hk = Hi),

=
∑
i

P (σk|Hk = Hi)P (Hk = Hi),

= P (σk|Hk = H0)P (Hk = H0)

+ P (σk|Hk = H1)P (Hk = H1),

=
1

2

[
P (σk|Hk = H0) + P (σk|Hk = H1)

]
,

(35)

where the last step follows by assuming no prior knowledge of
the hypothesis so that P (Hk = H0) = P (Hk = H1) = 1/2.
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Jeffrey’s prior [10], P (σk) ∝ 1/σ2
k is chosen as an uninfor-

mative prior on σk. Then,

P (σk) =
1

σ2
k

∝ P (σk|Hk = H0) + P (σk|Hk = H1). (36)

Fig. 10: Jeffreys prior on σk is separated into two components,
where each component corresponds to a conditional depen-
dence on hypothesis H0 or H1.

A simple model is used for P (σk|Hk = H0) and
P (σk|Hk = H1) where they are assumed to be non-
overlapping and separated by a threshold σt such that,

P (σk|Hk = H0) =
1

σ2
k

, for 0 ≤ σk < σt, (37a)

P (σk|Hk = H1) =
1

σ2
k

, for σt ≤ σk <∞. (37b)

Therefore, the prior on σk is viewed as the summation of non-
overlapping likelihoods P (σk|Hk = H0) and P (σk|Hk =
H1) as seen in Fig. 10. As a sanity check, it is simple to
show that P (Hk = H0|σk) + P (Hk = H1|σk) = 1 is also
satisfied by separating the likelihoods on σk as in (37a)-(37b).

The probabilities in (37a)-(37b) are used as the second term
in the measurement probability (32). Any mapping index with
an H0 hypothesis is on the bottom plane of the mapping grid
and has measurement probability Λ0

k = Λk(Hk = H0) where

Λ0
k =

∞∫
0

P (Yk|Φk, σk) · P (σk|Hk = H0) dσk,

=

σt∫
0

√
2

π

1

σk
e
− |y1(ik)−y2(jk)|2

2σ2
k · 1

σ2
k

dσk

=

σt∫
0

√
2

π

1

σ3
k

e
− |y1(ik)−y2(jk)|2

2σ2
k dσk

=

√
2

π

1

|y1(ik)− y2(jk)|2
e
− |y1(ik)−y2(jk)|2

2σ2t .

(38)

Alternatively, a mapping index with an H1 hypothesis is on the
top plane of the mapping grid and has measurement probability

Λ1
k = Λk(Hk = H1) where

Λ1
k =

∞∫
σt

√
2

π

1

σ3
k

e
− |y1(ik)−y2(jk)|2

2σ2
k dσk

=

√
2

π

1

|y1(ik)− y2(jk)|2

(
1− e

− |y1(ik)−y2(jk)|2

2σ2t

)
.

(39)

From (38) and (39), the factor
√

2
π

1
|y1(ik)−y2(jk)|2 appears in

both the H0 and H1 hypothesis. Therefore, it can be neglected
giving

Λ0
k = e

− |y1(ik)−y2(jk)|2

2σ2t , (40a)

Λ1
k = 1− Λ0

k. (40b)

B. Transition Probability ak
The transition probability ak from (33) determines the

probability of moving from one index in the three dimensional
mapping to another. Similar to HMM methods, the transition
matrix can be learned from the data [17]. Alternatively, the
user can define the transition matrix based on prior knowledge
of the properties of the inserted elements and the structure of
the signal. The transition probability is only nonzero for path
steps that satisfy: ik − ik−1, jk − jk−1 = {0, 1}.

APPENDIX B
DERIVING THE THRESHOLD σt

The estimated hypothesis in HyperBaT is chosen as a
maximum likelihood estimate,

P (Yk|Φk, Hk = H0)
Ĥk=H

0

≷
Ĥk=H1

P (Yk|Φk, Hk = H1),

Λ0
k

Ĥk=H
0

≷
Ĥk=H1

Λ1
k

(41)

The probability of incorrectly mapping an insert hypothesis
is then,

pt = P (Λ0
k < Λ1

k|Hk = H0),

= P

(
e
− |y1(ik)−y2(jk)|2

2σ2t < 1− e
− |y1(ik)−y2(jk)|2

2σ2t

∣∣∣∣∣Hk = H0

)
,

= P

(
|y1(ik)− y2(jk)| >

√√√√−2σ2
t log

(
1

2

)∣∣∣∣∣Hk = H0

)
.

(42)

The probability in (42) is of the half-normal distribution
|y1(ik) − y2(jk)| ∼ D(

√
2σ2

n) and can be evaluated using
the Q-function for a normal distribution with variance 2σ2

n,

pt
2

= Q

(√
−2σ2

t log( 1
2 )

2σ2
n

)
. (43)

Let x =
√
−2σ2

t log(
1
2 )

2σ2
n

be the value of the Q-function that
obtains Q(x) = pt/2. Using this x, the threshold is calculated
to be

σt =
√

log(2)x2σ2
n. (44)
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This threshold is derived in order to meet a specific probability
of incorrectly mapping an insert. Alternatively, the threshold
can be computed to meet other criteria such as probability of
correctly mapping H0 elements.
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