
Journal of Hardware and Systems Security manuscript No.
(will be inserted by the editor)

Malware Detection in Embedded Systems using Neural
Network Model for Electromagnetic Side-Channel Signals

Haider Adnan Khan · Nader Sehatbakhsh · Luong N. Nguyen · Milos

Prvulovic · Alenka Zajić

Received: date / Accepted: date

Abstract We propose a novel malware detection sys-

tem for critical embedded and cyber-physical systems

(CPS). The system exploits electromagnetic (EM) side-

channel signals from the device to detect malicious ac-

tivity. During training, the system models EM ema-

nations from an uncompromised device using a neural

network. These EM patterns act as fingerprints for the

normal program activity. Next, we continuously moni-

tor the target device’s EM emanations. Any deviation

in the device’s activity causes a variation in the EM fin-

gerprint, which in turn violates the trained model, and

is reported as an anomalous activity. The system can

monitor the target device remotely (without any phys-

ical contact), and does not require any modification to

the monitored system. We evaluate the system with dif-

ferent malware behavior (DDoS, Ransomware and Code
Modification) on different applications using an Altera

Nios-II soft-processor. Experimental evaluation reveals

that our framework can detect DDoS and Ransomware

with 100% accuracy (AUC = 1.0), and stealthier code

modification (which is roughly a 5µs long attack) with

an AUC ≈ 0.99, from distances up to 3 m. In addition,

we execute control-flow hijack, DDoS and Ransomware

on different applications using an A13-OLinuXino - a

Cortex A8 ARM processor single board computer with

Debian Linux OS. Furthermore, we evaluate the prac-

ticality and the robustness of our system on a medical

CPS, implemented using two different devices (TS-7250

This work has been supported, in part, by NSF grants
1563991 and DARPA LADS contract FA8650-16-C-7620. The
views and findings in this paper are those of the authors and
do not necessarily reflect the views of NSF and DARPA.

Haider Adnan Khan · Nader Sehatbakhsh · Luong N.
Nguyen · Milos Prvulovic · Alenka Zajić
Georgia Institute of Technology, Atlanta, GA 30332, USA

and A13-OLinuXino), while executing a control-flow hi-

jack attack. Our evaluations show that our framework

can detect these attacks with 100% accuracy.

Keywords electromagnetic emanation security ·
security of cyber-physical systems · side-channel signal

analysis · malware detection · anomaly detection ·
neural network

1 Introduction

Embedded and Cyber-Physical Systems (CPS) have be-

come ubiquitous in modern life, and are projected to

become a USD 6.2 Trillion market globally by 2025 [1].

A substantial part of this projected value comes from

healthcare (USD 2.5 Trillion) and manufacturing indus-
try (USD 2.3 Trillion), where networked embedded de-

vices are used for real-time inventory tracking, to man-

age machines efficiently to save cost, and even to save

lives. Embedded devices are prevalent in medical set-

tings, and are widely used for portable health monitor-

ing and electronic record keeping. In addition, medical

CPSs perform many critical life supporting tasks [38].

Likewise, CPSs are deployed in many critical infras-

tructures including power generation, military systems,

autonomous and unmanned vehicles [48] etc. However,

proliferation of networked embedded devices introduce

new challenges [16]. Embedded devices are exposed to

security threats that can cause severe financial and phys-

ical damage.

Attackers have already targeted, and successfully

compromised different CPSs including industrial con-

trol systems [13, 14, 19, 20, 36, 42], smart power grid

systems [44], and medical devices [51]. Moreover, re-

cent years witnessed a widespread Mirai Distributed

Denial of Service (DDoS) attack [27], and a variety of

2 Haider Adnan Khan et al.

Ransomware attacks [8] on different Internet of Things

(IoT) devices.

Securing CPSs can be a challenging task as they

consist of many heterogeneous components including

sensors, actuators and embedded devices. In addition,

CPSs are often severely constrained by limited resource,

power, and cost. Thus, existing internal malware detec-

tion techniques (e.g. hardware support [47], dynamic

analysis [46], etc.) are not feasible due to their over-

head to the system.

A possible solution for these issues is anomaly-based

external malware detection [10,15,22,25,40,45,55]. These

frameworks often use a side-channel signal (e.g. Power

or EM) to gather real-time information about the sys-

tem and report potential threats if there is a signifi-

cant anomaly during the execution. While these frame-

works are effective in many cases, they are either coarse-

grained detection frameworks which are unable to de-

tect tiny changes caused by a stealthy malware (e.g. [25,

45,52]), and/or have high detection latency which makes

them less attractive option for near real-time systems

(e.g. [10]), and/or does not scale well with complexity

of the device (e.g. [40]).

To address these issues, we propose a novel malware

detection system that leverages deviations in electro-

magnetic (EM) side-channel signal for detecting mali-

cious activity on embedded and cyber-physical systems

using a neural network. In the training phase, the neu-

ral network first models “normal” EM side-channel sig-

nal from an uncompromised reference device using a

novel “masking” technique. Next, the system continu-

ously monitors the EM emanations from the target de-

vice. Any unusual activity in the target device causes

unexpected variations in device’s EM side-channel sig-

nal. Consequently, the emanated EM signal violates the

learned model (which is trained with “normal” program

behaviors only). Thus, the model’s prediction error goes

high. We detect this deviation in system’s prediction

error rate by applying low-pass filtering and threshold-

ing, and report as an anomalous or malicious program

activity. Our framework is able to detect tiny changes

(due to time-domain analysis as opposed to frequency-

domain), while having high accuracy with very low false

positive rate and detection latency.

To evaluate the system, we implement different mal-

ware behaviors. First we implement a DDoS cyber-

attack that sends a rapid succession of packets, a Ran-

somware attack that encrypts a memory block, and a

stealthy source code modification attack that alters the

original functionality of the application. We inject these

malware components into three applications running on

an Altera DE-1 prototype board (Cyclone II FPGA

with a NIOS II soft-processor). To assess the perfor-

mance of the detection system, we monitor EM ema-

nations from both malware-free and malware afflicted

application executions. Experimental results show that

the system can detect DDoS and Ransomware attacks

with 100% accuracy (100% True Positive Rate, and 0%

False Positive Rate), and stealthier code modifications

with an Area Under the Curve (AUC) ≈ 0.99. Next,

we investigate the robustness of the detection system

against variations in antenna distance and in presence

of environmental EM noise. We monitor the target de-

vice from four different distances (1 m, 2 m, 3 m and

4 m). In addition, we apply Additive White Gaussian

Noise (AWGN) to the monitored signal to evaluate the

detection performance at different SNR. The results

demonstrate that the system can detect malicious ac-

tivities with excellent accuracy from up to 3 m dis-

tance and/or with a 10 dB SNR. We further evaluate

the system with different malicious activities, such as

a control-flow hijack, a DDoS cyber-attack and a Ran-

somware memory encryption, on two different appli-

cations executing on an IoT device (A13-OLinuXino,

with a Cortex A8 ARM processor and Debian Linux

OS). Finally, to assess the practicality of the detection

system, we implement a real-world medical CPS, called

SyringePump, with two different devices (TS-7250 and

A13-OLinuXino board). We execute a control-flow hi-

jack attack on the SyringePump, and monitor it with

the detection system. The proposed system can suc-

cessfully detect all attacks on the IoT device and the

SyringePump with 100% accuracy.

The major contribution of this paper is that we pro-

pose a novel framework that exploits neural network

to model device’s EM side-channel signal and detect

anomalies which enable us to detect even tiny mali-

cious changes with high accuracy and relatively low de-

tection latency. We propose a novel training method

that models EM signals from an uncompromised ref-

erence device, and does not require any knowledge of

the nature of the malware attack (or its EM signature).

Furthermore, the detection system is equally effective

for different applications, and does not require access

to the application’s source code or control-flow graph.

This is useful as the source code and CFG for many

legacy and customized devices may not be readily avail-

able. This approach for remote program monitoring has

several advantages:

1. Non-Intrusive Monitoring: The proposed sys-

tem provides non-intrusive and remote monitoring.

The system does not make any modification to the

monitored system, nor does it impose any overhead

on the monitored system. In fact, the target device

is monitored externally, and without any physical

contact.

Malware Detection in Embedded Systems using Neural Network Model for Electromagnetic Side-Channel Signals 3

2. Isolation: In addition, the detection system is iso-

lated from the monitored system, and is not effected

by any attack on the target device.

3. Effective against Zero-Day Attacks: Finally,

the system does not require any training on the mal-

ware signature, and thus, is effective against zero-

day attacks.

The rest of the paper is organized as follows: Sec-

tion 2 states the assumed threat models for the detec-

tion system. Section 3 briefly discusses the related work.

Section 4 provides a detailed overview of the proposed

system, experimental results are evaluated in Section 5,

and finally, concluding remarks are given in Section 6.

2 Threat Model

We propose a remote monitoring system for critical and

high assurance embedded and cyber-physical devices

(e.g. medical devices) by leveraging the device’s EM

side-channel signal. The system can detect malicious

attacks through anomalous EM emanation pattern de-

tection. The envisioned threat model includes the fol-

lowing assumptions:

1. The malware detection system does not have any

prior knowledge of the nature of the attack or its EM

signature(s). The monitoring system only exploits the

EM signature(s) of the monitored application. In addi-

tion, the detection system may not have access to the

application’s source code or control-flow graph (CFG).

However, we assume that the system has a reference

model for malware-free EM signature(s), which we learn

by monitoring an uncompromised trusted device. We

further assume that the reference model is not compro-

mised by adversarial attacks.

2. The attacker has access to the monitored device.

Furthermore, the attacker has prior knowledge of the

application, and consequently, can exploit any vulner-

ability to execute malicious attacks on the system. For

instance, the attacker may exploit a buffer-flow vulner-

ability to launch a separate thread or process to execute

a cyber-attack (e.g. DDoS). Likewise, the attacker may

execute a control-flow hijack by modifying and disrupt-

ing the existing application and its original functional-

ity. In addition, the attacker may even reprogram the

application by modifying its source code, and execute

malicious activity (e.g. code modification attack). How-

ever, the proposed malware detection system does not

assume any knowledge of the nature of the attack, and

detects malicious activity through the deviation in the

device’s EM signature(s).

3 Related Work

Unintentional EM leakage is typically exploited by at-

tackers for extracting cryptographic keys from target

devices [3,4,21,26]. Researchers have also demonstrated

practical methods for measuring EM information leak-

age [11, 12]. While unintentional EM leakage is com-

monly used for cryptanalysis, EM side-channel signals

can be leveraged for detailed monitoring of program ac-

tivity [32]. Researchers have exploited EM side-channel

signals for profiling software execution “as-is” or with-

out any instrumentation [10,53]. Zero Overhead Profil-

ing (ZOP) [10] exploits EM signatures, and performs a

Depth-First Search (DFS) through the program’s control-

flow graph to profile acyclic paths with 94% accuracy.

Spectral profiling [53], on the other hand, observes that

periodic program activities (e.g. loops) cause periodic

EM emanation. This periodicity in EM signal appears

as spectral peaks in the spectrogram, and can be de-

tected through Short Time Fourier Transform (STFT)

of the signal. Spectral Profiling exploits these spectral

peaks to perform loop-level profiling of the program ac-

tivity.

In addition, [25, 45, 52] exploit the spectral peaks

for intrusion detection. Any deviation in a program’s

loop causes shift in the spectral peaks. EDDIE [45] ex-

ploits this spectral shift, and can efficiently detect even

tiny injections inside program loop. However, [45] can

only detect much larger (>500,000 instructions) mal-

ware outside the loop. Likewise, Syndrome [52] achieves

similar detection performance for medical CPSs. In con-

trast, [25] uses a stacked LSTM (Long Short-Term Mem-

ory) neural network to model spectrum sequences (i.e.

the Power Spectral Density of the EM side-channel sig-

nal), and achieves 98.9% accuracy for malware detec-

tion in PLC. However, the performance of [25] (or any

system that exploits STFT) strongly depends on the

size of the STFT sliding window, and it would be diffi-

cult to detect stealthier intrusions that are much smaller

than the sliding window (e.g. 200µs in [25]).

Apart from EM side-channel signal, fluctuations in

device’s power consumption (i.e. power side-channel sig-

nal) can be exploited for malware detection. Such ap-

proaches can, for example, protect against attacks tar-

geting the battery life of the hand-held mobile devices [9,

29, 34,39]. For instance, [29] and Smart Battery [9] ex-

ploit power profiling for mobile devices to detect power-

intensive malicious activity. Likewise, VirusMeter [39]

monitors battery power usage to identify “long-term”

mobile malware, while [34] exploits similarities between

power signatures to detect energy-greedy malware. In

addition, researchers have exploited power side-channel

signal for integrity assessment of Software Defined Ra-

4 Haider Adnan Khan et al.

Ref. Monitored
Side-Channel

Device Under
Test (DUT)

Description Performance Detection Algorithm

[9] Power Signal PDA
(Dell Axim X51)

Malware
Detection

detects power-intensive mal-
ware

detects abnormal current
by power profiling

[34] Power Signal PDA
(HP iPAQ)

Malware
Detection

detects energy greedy mal-
wares with 99% TPR and less
than 2% FPR

compares power signatures
with χ2 distance

[39] Power Signal Cell Phone
(Nokia 5500)

Malware
Detection

detects long-term eavesdrop-
ping, call interception and
text message forwarding with
93.0%, 90.5%, 98.6% detec-
tion rate and 4.3% FPR

compares power consump-
tion through machine
learning

[22] Power Signal Software
Defined Radio

Integrity
Assessment

detects deviation in execu-
tion

correlates power signatures

[15] Power Signal Embedded
Medical Device

Malware
Detection

detects malware with 85%
accuracy for unknown mal-
ware and 94% accuracy for
known malware

exploits statistical and
spectral features of dy-
namic power consumption
using machine learning

[40] Power Signal 8051 MCU
(STC89C52)

Control-flow
Integrity

99.94% for recognizing in-
struction types and 98.56%
for recognizing instruction
sequence

leverages HMM and
Viterbi to recover instruc-
tion types and sequence
during execution

[10] EM Signal FPGA (Altera
Cyclone II)

Software
Profiling

profiles software with 94%
accuracy

exploits depth-first tree
search using control-flow
graph

[45] EM Signal A13-OLinuXino
Board

Malware
Detection

detects malware inside and
between the loops, accuracy
92% with 0% false positives
but can detect only large
intrusions (> 500k instruc-
tions)

uses short time Fourier
transform and KS test

[25] EM Signal PLC
(Allen Bradley)

Control-flow
Integrity

98.9% detection rate (AUC) uses neural network
(stacked LSTM) to detect
legitimate PLC executions

[55] EM Signal PLC (Siemens) Malware
Detection

81.25% accuracy with 90.5%
TPR and 33% FPR.

uses deep neural network
(autoencoder) based model
for anomaly detection

Proposed
System

EM Signal FPGA (Altera
Cyclone II),
TS-7250 &
A13-OLinuXino board

Malware
Detection

detects DDoS, Ransomware
and control-flow hijack with
100% accuracy, and 5µs
code-modification with AUC
≈ 99%

models EM side-channel
signal with neural network

Table 1 Comparison of related work with the proposed system in terms of type of side-channel, type of device, performance,
and algorithm.

dios (SDR) [22], and for detecting malicious activity in

embedded medical devices [15]. Power finger-printing [22]

compares power signatures for integrity assessment of

SDRs, and WattsUpDoc [15] exploits statistical and

spectral features of embedded device’s dynamic power

consumption to identify malicious activity. Power side-

channel has also been exploited for code execution track-

ing in Microcontroller Unit (MCU) [40]. The system

models the Control-Flow Graph (CFG) as a Hidden

Markov Model (HMM) and uses Viterbi algorithm for

control-flow tracking. While [40] can detect even a sin-

gle instruction modification in MCU, it requires access

to device’s CFG and source code, which may not be

readily available for many legacy and customized sys-

tems and require a high sampling-rate equipment to

receive and record the data.

While these mentioned frameworks are effective in

many scenarios, they either (i) suffer from large detec-

tion latency (due to computational complexity of the

model), (ii) require knowledge of the source-code/CFG

and/or the malware, (iii) are unable to detect small

and stealthy malware, (iv) require physical access to

the system for measurement, and/or (v) have large false

positive rate.

To address the above issues, our system analyzes

amplitude demodulated EM side-channel signal (in time-

domain) using a neural network which enable us to de-

tect intrusions as small as 5µs with very low detec-

tion latency and high accuracy (AUC ≈ 0.99). Fur-

Malware Detection in Embedded Systems using Neural Network Model for Electromagnetic Side-Channel Signals 5

Fig. 1 Overview of the proposed malware detection system.

thermore, our framework can detect different malware

behaviors (e.g. DDoS, Ransomware) with 100% TPR

and 0% FPR. Moreover, the system can successfully

detect malware in more complicated systems such as

A13-OLinuXino Single-Board-Computer (which uses a

1 GHz ARM Cortex A8 processor and a Debian Linux

OS) and can monitor the system from up to 4 m dis-

tance without any explicit knowledge about the device’s

source code or CFG.

Neural networks are used for a wide variety of appli-

cations including speech recognition [23], image classifi-

cation [35], natural language processing [17] etc. Neural

network models are also exploited for time-series pre-

diction [33], stock market forecasting [54], and network

traffic prediction [5]. Likewise, [41] exploits a LSTM

network for anomaly detection in time-domain signal,

such as ECG signal, through forecasting. Unlike tradi-

tional forecasting or forecasting based anomaly detec-
tion, which use only past values to model future trends,

we use a novel training method that uses both past and

future samples. Such an approach enables us to accu-

rately predict the amplitude of EM signal for any given

point during the execution. Further details about our

framework are presented in the next section.

4 Overview of the Proposed System

We exploit a multilayer neural network for anomalous

(hence potentially malicious) program activity detec-

tion through device’s EM side-channel signal analy-

sis. Figure 1 demonstrates a high-level overview of the

proposed system. During the training phase, the neu-

ral network is trained to model the device’s EM side-

channel signal by executing trusted programs on a refer-

ence device. After training, the system is deployed, and

continuously monitors the EM emanation from the tar-

get device. When the target device performs malicious

Fig. 2 Prediction error with normal activity and malicious
activity.

activity, it emanates anomalous (i.e. untrained) EM sig-

nal. The deviation in the EM signal causes higher pre-

diction error (as shown in Figure 2), and the system

reports this as an anomalous program activity. We de-

scribe the system in further detail in the following sec-

tions.

4.1 Amplitude Demodulation

Before feeding to the neural network, the emanated EM

signal is first received through an antenna, amplitude

demodulated at the CPU clock frequency, and digitized

using an analog-to-digital converter (ADC). At each

processor cycle, as the CPU executes new instructions,

the states of its internal digital circuits keep changing

(i.e. switch on and off). This causes a current at the

CPU clock frequency whose amplitude is modulated by

the variations of the executed instructions. The carrier

modulated current, in turn, causes EM emanation, as
it flows within the processor, and through the device’s

printed circuit board (PCB) [57]. Thus to analyze the

program-related activities, we demodulate the received

signal r(t) at the CPU clock frequency fc.

xa(t) = |r(t)× ej2πfct| (1)

Here, xa(t) is the amplitude demodulated analog sig-

nal, and t denotes the time. The demodulated signal

xa(t) is then passed through an anti-aliasing filter with

bandwidth B, and sampled at a sampling period Ts.

xd(n) = xa(nTs) (2)

Here, xd(n) denotes the sampled signal at sample in-

dex n. The anti-aliasing filter cancels unwanted signals

with frequencies beyond fc±B. Note that, the sampling

period Ts is determined by the well known Nyquist cri-

terion 1
Ts
> 2B.

Finally, we preprocess xd(n) by scale normalization.

x(n) =
xd(n)

max(xd(n))
(3)

6 Haider Adnan Khan et al.

Fig. 3 Computation performed by a single node.

This ensures that the value of x(n) is between zero and

one and also makes the system robust against changes

in amplitude of the EM signals (e.g. due to change in

the antenna’s position, etc.). Finally, x(n) is used as the

input for the neural network.

Furthermore, the amplitude demodulation safeguards

against minor deviations in the monitored device’s clock

frequency. The monitored device can have clock fre-

quency shift (due to manufacturing variation) and drift

(due to temperature changes). However, the system dy-

namically detects the device’s clock frequency fc, and

applies synchronous amplitude demodulation at the de-

tected clock frequency (Equation: 1). Consequently, the

system is robust against clock frequency shift and drift

of the monitored device.

4.2 Proposed Neural Network

We use a Multilayer Perceptron (MLP) to model the

device’s EM side-channel signal. An MLP is a class of

feedforward artificial neural network which consists of,

at least, three layers of nodes: an input layer, a hid-

den layer and an output layer. The output of a node

in one layer is typically connected as the input for all

nodes in the next layer (i.e. fully-connected layer). As

such, it forms a weighted and directed graph, and can

be exploited to infer complex functions from observa-

tions [18,37].

Each node j computes a weighted sum of its inputs

x, and adds a bias bj to it (as illustrated in Figure 3).

zj = 〈wj,x〉+ bj (4)

Here, zj is the weighted sum of the inputs and the bias

at node j, and x is the input vector, x = [x1, x2, x3, ..., xm]

and wj is the vector of connection weights,

wj = [w1, w2, w3, ..., wm] and 〈·, ·〉 denotes the scalar

product operation. Next, zj is passed through an activa-

tion function (e.g. sigmoid function, hyperbolic tangent

function, linear and rectified liner functions etc.) [31].

yj = φ(zj) (5)

Fig. 4 Architecture of the proposed multilayer neural net-
work.

Here, yj denotes the output of node j after applying

the activation function φ(·). The activation adds non-

linearity to the neural network, and helps to model non-

linear functions.

While each node performs a simple computation, a

neural network can learn to approximate complicated

functions by adjusting its weights and biases through

training. During training, the network parameters (i.e.

weights and biases) are optimized by minimizing a loss

function (or cost function) through backpropagation al-

gorithm [50].

As illustrated in Figure 4, the proposed system ex-

ploits a neural network architecture that has six fully-

connected hidden layers with 256, 128, 96, 64, 32 and

16 nodes respectively. The input layer has 128 input

nodes (i.e. a vector of 128 consecutive samples of x(n))

while the output layer has only one output node (i.e.

the estimated amplitude for sample n). All the hidden

layers and the output layer use Rectified Linear Unit

(ReLU) as activation function as rectified linear units

have shown to improve performance [43,58] by mitigat-

ing the well-known vanishing gradient [28] problem.

We used MLP to model EM patterns. The other

popular network architectures include Convolutional Neu-

ral Network (CNN) and Recurrent Neural Network (RNN).

CNNs are traditionally used for 2D data (e.g. image

classification), while RNNs are useful for sequence data

(speech recognition, Natural Language Processing, time-

series prediction etc.). However, RNNs are generally

harder to train. MLPs, on the other hand, are very flex-

ible, and can efficiently learn complex input to output

mapping. Thus, we chose MLP due to its simplicity,

flexibility and computational efficiency.

Malware Detection in Embedded Systems using Neural Network Model for Electromagnetic Side-Channel Signals 7

4.3 Masking and Prediction

Our proposed neural network models the device’s EM

side-channel signal, and predicts (or outputs) the ampli-

tude (or value) of the EM signal at any instance, given

the past and the future EM signal values (or samples)

as inputs. The output is

y(n) = f(x(n)) (6)

where f(·) denotes the neural network model for the

device’s EM side-channel signal, y(n) is the output (or

predicted value), and x(n) denotes the input vector of

the neural network at sample-index n. The input vec-

tor x(n) consists of D samples (i.e. D = 2(d− k) = 128

in our system). To better predict y(n), our model uses

d previous and d future samples. However, we hide or

mask the k immediate past and the k immediate future

samples, as illustrated in Figure 5. The main reason for

using such a mask is that the adjacent samples from

an analog time-domain signal, such as EM signal, are

usually highly correlated, especially at higher sampling

rate. As such, the value of any unknown sample can be

predicted through interpolation of its adjacent samples.

However, interpolation would not be useful for differen-

tiating between normal and anomalous EM signal pat-

terns. We exploit neural network model to differentiate

anomalous EM signal from normal EM signal through

an increase in prediction error. Therefore, we want a

prediction model that works well (i.e. low prediction

error) for normal (i.e. trained) patterns but results into

high prediction error for anomalous (i.e. untrained) pat-

terns. An interpolating function models unknown sam-

ple as a weighted sum of its neighbors. While inter-

polation could be a good model for predicting highly
correlated samples, it would work equally well for both

trained and untrained patterns. Thus, the prediction

error for the untrained EM signal would be similar to

that of the trained signal. Consequently, it would be

difficult to differentiate between the normal and the

anomalous activity. Therefore, we mask the adjacent

samples to force the neural network to model (or re-

member) the “normal” EM signal patterns, rather than

learning an interpolating function. In our proposed sys-

tem, we mask 8 immediate past samples and 8 immedi-

ate future samples (i.e. k = 8), and after removing the

immediate 8 samples, use the remaining 64 past and 64

future samples (i.e. d− k = 64) as inputs as written in:

x(n) = [x(n− d), x(n− d+ 1), ..., x(n− k − 1),

x(n+ k + 1), ..., x(n+ d− 1), x(n+ d)]. (7)

It is important to mention that we found that with-

out using masking, the network performs poorly in de-

tecting anomalies.

Fig. 5 Past and future samples are used as inputs (black
circles) to predict the target output (green triangle). However,
adjacent samples (red crosses) are masked (i.e. not used as
inputs).

In the training phase, we collect EM signals by exe-

cuting malware-free applications on a reference device.

We then extract a smaller window from the recorded

EM signal. The window consists of 2d+ 1 samples, out

of which 2(d − k) samples are used as the input vec-

tor x(n), 1 sample is used as the target output x(n),

while 2k samples are masked. Thus, the window acts as

a training example (i.e. input and target output pair,

(x(n), x(n))). We then calculate the squared error, e(n),

which is computed as the squared difference between

the predicted value, y(n), and the true or target output

value, x(n), using the given training pair.

e(n) = (y(n)− x(n))2. (8)

Next, we slide this window through the entire EM signal

to get M training examples by setting n = 1, 2, ...,M .

We use Mean Squared Error (MSE) as the loss function.

MSE is the average of the squared prediction error e(n).

MSE =
1

M

M∑
n=1

e(n). (9)

Here, M is the number of training examples (i.e. total

number of windows) which in our evaluations typically

ranges between 2 to 5 million samples. During train-

ing, the network parameters are optimized by minimiz-

ing the loss function MSE through Stochastic Gradient

Descent (SGD) [7] optimization. Note that our Neural

Network training is designed such that it minimizes the

average error not the error for individual prediction.

The main reason is that during training we observed

that individual samples can sometimes experience rel-

atively large error due to temporary changes in EM

signals caused by transient noise (e.g. EMI) and/or mi-

cro architectural events (e.g. cache misses), however,

the overall behavior of the signal follows a determinis-

tic pattern for a given application. Thus as the MSE is

8 Haider Adnan Khan et al.

Fig. 6 Low-pass filtering and thresholding.

minimized, the neural network learns to model and pre-

dicts the EM signal more accurately (i.e. the prediction

error decreases on average).

4.4 Anomaly Detection

During the monitoring phase, the trained neural net-

work model is deployed to monitor a target device. The

system continuously observes the EM emanation from

the device, and extracts input and target output pair

(x(n), x(n)) from the EM signal. We use x(n) as test

inputs to predict y(n), and compute the squared pre-

diction error e(n). When the target device performs ma-

licious or anomalous activity (i.e. any activity that the

neural network was not trained with), it causes unex-

pected deviations in the device’s EM signal. This, con-

sequently, increases the network’s squared prediction

error e(n). We exploit this fluctuation in e(n) to detect

malware execution.

To avoid false positives due to transient noise or

variations in hardware activities which could cause tem-

porary large errors, we low-pass filter the squared pre-

diction error e(n), and apply thresholding to detect

anomalous program behavior. Figure 6 shows an ex-

ample on how filtering and thresholding can be helpful

to avoid false positives while maintaining the accuracy.

We apply an 2N+1 samples long Moving Average (MA)

filter (as a low pass filter) to the signal e(n), yielding

the filtered signal ẽ(n):

ẽ(n) =
1

2N + 1

N∑
i=−N

e(n− i). (10)

This low pass filtering results into a bi-modal Prob-

ability Density Function (PDF) (as shown in Figure 7),

where the squared prediction error ẽ(n) for normal and

malicious program activity can be separated by a thresh-

old θ . Thus, we set a threshold θ on ẽ(n) between

Fig. 7 Threshold selection using PDF of squared prediction
error for normal and program malicious activity.

the two PDF, and report anomalous program activity

whenever ẽ(n) > θ.

4.5 System Parameters

The performance of the detection system depends on a

number of system parameters, such as the length of the

input vector D, the size of the mask k, the moving av-

erage filter parameter N and the threshold parameter

θ. In this section, we discuss how these parameters are

chosen, and their impacts on the system performance.

Input Vector Length D: The EM signal represented

by the input vector provides a “context” for the predic-

tion. More specifically, the Neural Network exploits the

past and the future EM patterns to predict the present

EM amplitude. While a larger value for D increases the

“context”, this also adds to the complexity of the Neu-

ral Network, and may lead to overfitting. Thus, from

empirical evaluation, we use D = 128.

Mask Size k: The adjacent samples of the EM sig-

nal are more correlated at higher sampling rate (i.e.

with lower time-gap between two adjacent samples).

Thus, intuitively the mask (or k) should be larger with

higher sampling rate. However, a mask that is too large

may overshadow the “context”, and interfere with the

prediction. We monitored FPGA, TS-7250 and A13-

OLinuXino with 10 MHz bandwidth (i.e. 5 MHz band-

width on either side of the clock frequency). Thus, we

used the same mask (k = 8) throughout all experiments.

Moving Average Filter Parameter N: The moving

average filter helps to reduce false positives due to un-

predictable variabilities in hardware activities (e.g. cache

misses). These variabilities can cause transient yet high-

valued prediction errors. As such, the PDF of the squared

Malware Detection in Embedded Systems using Neural Network Model for Electromagnetic Side-Channel Signals 9

Fig. 8 Probability Density Function of the squared predic-
tion error for normal program activity with and without mov-
ing average filter.

error for normal activity resembles an exponential func-

tion with a long-tail (as shown in Figure 8). This tail

overlaps with the PDF of the malicious activity, and

consequently generates a lot of false positives. However,

the MA filter reduces the false positives by transform-

ing the PDF into a symmetric (Gaussian-like) func-

tion. With increasing N, the function gets sharper with

shorter tail, and results into fewer false positives (i.e.

less overlap with the PDF of the malicious activity).

However, this reduction of the false positives comes at

the cost of increased detection latency. Furthermore,

shorter malicious activities (e.g. intrusions that are shorter

than N samples) may go undetected. Thus, the optimal

N is a trade-off between reliable detection (low false

positives) and detection latency. In our experiments, we

used N = 64 for monitoring FPGA, and N = 1024 for

monitoring TS-7250 and A13-OLinuXino board. The

higher order MA filter safeguards against larger varia-

tions in EM signal due to the unpredictable activities

by the OS.

Threshold θ: The threshold θ helps to distinguish

the malicious activities from the normal activities, and

is chosen using the PDF of the squared prediction error.

If the squared prediction error has bi-modal and disjoint

PDF for normal and malicious activity, we can achieve

100% detection with zero false positive by setting the

threshold θ between the two PDFs (as in Figure 7).

However, if the two PDFs overlap, the value of θ is

a trade-off between false positives and false negatives.

Higher value of θ will lead to lower false positives at

the cost of higher false negatives, and vice versa. Note

that, in case of zero day attacks, we don’t have prior

knowledge about the PDF for the malicious activity.

Thus, we set the threshold θ slightly right to the tail of

the PDF corresponding to the normal activity.

Fig. 9 Experimental setup of the malware detection system.

5 Experimental Evaluation

We evaluate the proposed system with several different

types of malware on different applications and embed-

ded systems.

5.1 Embedded Device with Different Malware

Behavior

We implement two types of embedded system malware

payloads (DDoS attacks, Ransomware attacks) and a

code modification attack (similar to Stuxnet) on an Al-

tera DE-1 prototype board (Cyclone II FPGA with a

50 MHz NIOS II soft-processor). The DDoS attack ex-

ploits vulnerabilities such as buffer-overflow to divert

the control-flow to send DDoS packets in rapid succes-

sion through the devices JTAG port. We also imple-

ment a Cryptoviral Ransomware [6] that performs only

a single (16-byte) block encryption of AES-128. Intu-

itively, larger encryption should be easier to detect. Fi-

nally, we evaluate a Code Modification attack where

the source code has been slightly modified. We added

a small (about 10 instructions) to the source code to

mimic the behavior of Stuxnet-like malwares where the

adversary modifies the code to change a critical value

based on some conditions.

We inject these malware behaviors into three se-

lected applications (Print Tokens, Replace and Sched-

ule) from SIR repository [49]. The system was trained

and tested with a disjoint set of user inputs (i.e. the

training and testing executions has different user in-

puts, and thus follow different control-flow paths). Con-

sequently, there were significant variations in execution

time for different inputs. For instance, in Replace, the

shortest execution lasts only 71 µs while the longest

one is 4.58 ms. Likewise, in Print Tokens, the short-

est execution is 116 µs and the longest execution takes

10.8 ms. Similarly, for Schedule, the shortest execu-

tion is 48 µs and the longest execution takes 12.2 ms.

We used inputs (for both training and testing) that

10 Haider Adnan Khan et al.

provides high path coverage (using LLVM to find the

paths). For example, the Print Tokens application has

87 unique acyclic control-flow branches, out of which

83 were executed by the test set. Likewise, the Replace

application has 96 unique acyclic control-flow branches,

out of which 74 were executed during testing. Simi-

larly, the Schedule application has 83 unique control-

flow branches, and all of them were executed by the

test set.

The training and the cross-validation program ex-

ecutions were uncompromised (i.e. without malware),

while the testing contained both compromised and un-

compromised program executions. For Print Tokens, we

used 400 training, 45 cross-validation, and 192 testing

executions, of which 66 had DDoS, 68 had ransomware,

8 had code modification, while 50 were without mal-

ware. Likewise, for Replace, we used 458 training, 45

cross-validation and 188 testing executions. The testing

set contained 65 DDoS, 68 Ransomware, 5 code modi-

fication malware, and the rest (i.e. 50) were uncompro-

mised. The Schedule benchmark had total 284 training,

103 cross-validation and 294 testing examples. The test-

ing set included 67 DDoS, 68 Ransomware, 9 code mod-

ification, and 150 executions were without malware.

Area Under the Curve (AUC)
Application DDoS Ransomware Code Mod.
Print Tokens 1.0 1.0 1.0

Replace 1.0 1.0 0.99
Schedule 1.0 1.0 0.97

Table 2 Detection performance for different malware behav-
iors and different applications.

Figure 9 demonstrates our experimental setup. We

monitor the device executing these applications using

a 2.4-2.5 GHz 18 dBi panel antenna, and demodulate

the received EM signal using an Agilent MXA N9020A

spectrum analyzer. The demodulated signal is then fil-

tered using an anti-aliasing filter with 5 MHz band-

width, and finally sampled at 12.8 MHz sampling rate.

The Experimental results demonstrate that the mean

squared prediction error for the malicious (i.e. untrained)

activity is significantly higher than that of the normal

(i.e. trained) activity. This is also shown in Figure 7.

While the neural network can successfully model and

predict the EM signal for trained program activity with

low prediction error, the model fails for untrained pro-

gram activity. As a consequence, any execution of un-

trained program activity leads to deviations in device’s

EM emanation, which in turn results in higher predic-

tion error. Thus, the system can differentiate between

normal and anomalous program activity through the

neural network’s prediction error.

Table 2 demonstrates the performance of the pro-

posed system for detecting different malware activities

on different applications. Results show that the system

can detect all DDoS and Ransomware without any false

positive (AUC = 1.0), and for code modification the

system achieves roughly 0.99 AUC. It should be noted

that the execution time for DDoS and Ransomware is

much larger (roughly 25 µs and 150 µs respectively)

than that of the code modification attack, which takes

up only 5 µs. Hence, code modification is stealthier, and

harder to detect.

DDoS Ransomware Code Mod.
Latency 12.5µs 22.0µs 12.5µs

Table 3 Detection latency for different malwares.

We further evaluate the detection latency of the sys-

tem. We use a non-causal prediction model (i.e. the

neural network exploits both past and future samples

to predict the present sample value). This causes a de-

lay of d = 72 samples (5.625 µs) in prediction. In ad-

dition, the moving average filter introduces a delay of

N = 64 samples (5 µs). Thus the total system delay is

d+N = 136 samples (10.625 µs). However, the detec-

tion latency will be higher than the system delay due to

the time taken for threshold breaching by the anoma-

lous EM pattern. The experimental mean detection la-

tency for DDoS, Ransomware and code modification are

presented in Table 3. Both DDoS and code modification

are detected in less than 13 µs while Ransomware is de-

tected in 22 µs. In comparison, [25] and [45] has latency

greater than 200 µs and 2000 µs respectively.

Area Under the Curve (AUC)
Distance DDoS Ransomware Code Mod.

1m 1.0 1.0 0.99
2m 1.0 1.0 0.99
3m 0.99 1.0 0.97
4m 0.96 0.94 0.71

Table 4 Detection performance at different distances.

5.2 Robustness against Variations in Antenna Distance

To evaluate the robustness of the system, we trained

and tested the system by placing the antenna at differ-

ent positions. It is reasonable to assume that the sys-

tem will be trained with a reference device, and then

deployed to monitor a different target device. As such,

the antenna placement and positioning may vary be-

tween the training and the monitoring phase. Thus, it

is important that the detection system is robust against

variations in antenna placements. To evaluate the ro-

bustness of the system, we first trained the system from

Malware Detection in Embedded Systems using Neural Network Model for Electromagnetic Side-Channel Signals 11

1 m distance, and then used this trained system to mon-

itor the target device from four different distances (1 m,

2 m, 3 m and 4 m). Table 4 shows that the system is ro-

bust against variations in antenna distance. In addition,

the system demonstrates excellent performance from up

to 4 m distance. Further distance causes some degrada-

tion in system performance due to the lower Signal-to-

Noise Ratio (SNR) at higher distance. Note that our

framework is not limited by distance and higher dis-

tance coverage can be achieved by using higher gain

antennas (e.g. [30]).

5.3 Robustness against Noise and Interference

We further evaluate the robustness of the system against

environmental noise by applying Additive White Gaus-

sian Noise (AWGN) to the monitored signal. Any prac-

tical monitoring system should be able to detect secu-

rity threats under potentially noisy environment. Thus,

we evaluate the performance of the detection system

at different SNR by applying AWGN to the monitored

signal. Table 5 shows that the system is robust against

noise, and has an excellent detection performance even

at an SNR as low as 10 dB.

Area Under the Curve (AUC)
SNR DDoS Ransomware Code Mod.
30 dB 1.0 1.0 0.99
20 dB 1.0 1.0 0.98
10 dB 1.0 1.0 0.95
5 dB 0.85 0.95 0.71

Table 5 Detection performance at different Signal to Noise
Ratio.

In addition, the system is inherently robust against

any EM interference outside its monitored bandwidth.

As described in Section 4.1, the anti-aliasing filter used

during the analog-to-digital conversion nullifies any sig-

nal with frequencies beyond fc±B. Here, fc is the clock

frequency of the monitored device, and 2B is the mon-

itored bandwidth. Thus, any EM interference outside

the monitored bandwidth does not influence the detec-

tion performance.

5.4 Attack on IoT Device

We implement three different malicious activities (e.g.

code injection, DDoS and Ransomware) on an IoT de-

vice (A13-OLinuXino board with 1 GHz Cortex A8

ARM processor and Debian Linux OS). We inject these

malicious behaviors into two selected applications (ba-

sic math and bit count) from MiBENCH [24]. First, we

implement a buffer overflow attack to inject shellcode

into the application. Next, we port a DDoS bot in a se-

lected location of the application. The DDoS bot sends

100 TCP SYN packets, and then resumes to normal

program activity. Finally, we implement a Ransomware

prototype that performs AES 128 encryption.

Area Under the Curve (AUC)
Application Code Inj. DDoS Ransomware
Basic Math 1.0 1.0 1.0
Bit Count 1.0 1.0 1.0

Table 6 Detection performance for different malware behav-
iors on IoT device.

We monitored the emanated EM signal with a small

magnetic probe placed 5 cm away from the system us-

ing a commercially available software-defined radio (Et-

tus Research B200-mini) with a bandwidth of 40 MHz

centered at the clock frequency (1 GHz) of the device.

The collected signal was then demodulated, digitized,

down-sampled to 10 MHz sampling rate, and finally

processed through the proposed neural network frame-

work. For each application, we trained the system with

25 uncompromised (malware-free) executions. Next, we

test the system with 100 executions (25 malware-free,

25 with code injection, 25 with DDoS and 25 with Ran-

somware). Experimental evaluations (in Table 6) show

that the system detects all malicious activity without

any false positive.

We used the same neural network architecture and

parameters (e.g. D=128 and k = 8) throughout all ex-

periments. However, we exploited a higher order mov-

ing average filter (N=1024) to avoid false positives due

to transient activities by the OS. Consequently, the

detection latency of the system was higher (roughly

120 µs), which is still considerably lower than [25] and

[45] (200 µs and 2000 µs respectively). Note that, [45]

used a similar experimental setup (e.g. same benchmark

applications executed on same device with similar code

injection attacks). However, [25] monitored a PLC - a

simpler device (e.g. slower clock speed and does not

have an OS). Intuitively, it should be easier to model

EM emanation from a simpler device (e.g. in absence

of unpredictable OS activities), and thus should lead to

lower detection latency.

5.5 Attack on Medical Cyber-Physical System

We further evaluate the system by implementing ma-

licious attacks on a medical CPS called SyringePump.

A SyringePump is a medical device that can dispense

or withdraw a precise amount of fluid or medicine [56].

A SyringePump has three main components, a syringe

filled with medicine, an actuator (typically a stepper

12 Haider Adnan Khan et al.

motor), and a control unit that receives user inputs,

and controls the actuator accordingly.

TS-7250 Board A13-OLinuXino
AUC 1.0 1.0

Table 7 Malware detection performance for SyringePump
implemented with different devices.

To evaluate the robustness of the proposed malware

detection system, we implement an Open Source Sy-

ringePump [2] with two different devices:

1) TS-7250 Board (200 MHz Cirrus EP9302 ARM9

CPU with a Debian Linux OS), and

2) A13-OLinuXino Single-Board-Computer (1 GHz ARM

Cortex A8 processor with a Debian Linux OS).

We exploit a buffer overflow vulnerability in the

serialRead() function to hijack the control-flow, and

call MoveSyringe() function to dispense or withdraw

an unwanted amount of fluid. This is an example of a

code-reuse attack where the attacker repurposes exist-

ing code to perform unwanted action. As the attacker

executes existing code, albeit in an undesired way, a

code-reuse attack can be harder to detect. Any fail-

ure to administer medication at an appropriate dosage

can have a serious consequences for the patient. Thus,

this attack poses a critical threat to the integrity of the

SyringePump. For monitoring, we place a small mag-

netic probe 5 cm away from the system, and record and

demodulate the signal using a commercially available

software-defined radio (Ettus Research B200-mini).

We train the system with 25 executions, and test it

with 50 executions, out of which half were compromised

with malware. Experimental results (in Table 7) show
that the system achieves excellent performance, and de-

tects all malicious activity without any false positive.

6 Conclusions

We propose a novel framework for malware detection in

critical and high-assurance embedded and cyber-physcial

systems using EM side-channel signal analysis. The sys-

tem models device’s EM emanation with a multilayer

perceptron (MLP), and detects anomalous or malicious

program activity through deviations in the EM fin-

gerprint. The system is trained with EM signal from

uncompromised reference device, and can predict EM

emanation for normal (i.e. trained) program activity.

However, whenever the monitored device performs any

malicious (i.e. untrained) program activity, the trained

neural network model fails, and results in high predic-

tion error. We then detect this deviation in prediction

error, and report anomalous activity. The system does

not require any knowledge about the nature of the at-

tack or its malware signature, thus ensures protection

against zero-day attack. In addition, the system can

provide non-intrusive and remote monitoring (without

any physical access to the device), and does not require

any modification to the monitored system. Neither does

it impose any overhead on the monitored device. The

detection system can train its model by observing de-

vice’s EM emanation, and does not require any access

to the source code or the control-flow graph of the

monitored system. We demonstrate the effectiveness of

the system with several key malware behaviors (DDoS,

Ransomware and Code Modification), which the system

could detect with an excellent accuracy (AUC ≈ 0.99)

from up to 3 m away. System was also able to detect

attacks on an IoT device and a medical CPS with 100%

accuracy.

References

1. INTEL a guide to the internet of things infographic.
https://www.intel.com/content/www/us/en/internet-
of-things/infographics/guide-to-iot.html. Accessed:
2018-10-25

2. Abera, T., Asokan, N., Davi, L., Ekberg, J.E., Nyman,
T., Paverd, A., Sadeghi, A.R., Tsudik, G.: C-flat: control-
flow attestation for embedded systems software. In: Pro-
ceedings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 743–754. ACM
(2016)

3. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.:
The em sidechannel (s). In: International Workshop on
Cryptographic Hardware and Embedded Systems, pp.
29–45. Springer (2002)

4. Alam, M., Khan, H.A., Dey, M., Sinha, N., Callan, R.,
Zajic, A., Prvulovic, M.: One&done: A single-decryption
em-based attack on openssls constant-time blinded rsa.
In: Proceedings of the 27th USENIX Conference on Se-
curity Symposium, pp. 585–602. USENIX Association
(2018)

5. Alarcon-Aquino, V., Barria, J.A.: Multiresolution fir
neural-network-based learning algorithm applied to net-
work traffic prediction. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Re-
views) 36(2), 208–220 (2006)

6. Andronio, N., Zanero, S., Maggi, F.: Heldroid: Dissect-
ing and detecting mobile ransomware. In: International
Workshop on Recent Advances in Intrusion Detection,
pp. 382–404. Springer (2015)

7. Bottou, L.: Large-scale machine learning with stochastic
gradient descent. In: Proceedings of COMPSTAT’2010,
pp. 177–186. Springer (2010)

8. Brewer, R.: Ransomware attacks: detection, prevention
and cure. Network Security 2016(9), 5–9 (2016)

9. Buennemeyer, T.K., Nelson, T.M., Clagett, L.M., Dun-
ning, J.P., Marchany, R.C., Tront, J.G.: Mobile device
profiling and intrusion detection using smart batter-
ies. In: Hawaii International Conference on System Sci-
ences, Proceedings of the 41st Annual, pp. 296–296. IEEE
(2008)

Malware Detection in Embedded Systems using Neural Network Model for Electromagnetic Side-Channel Signals 13

10. Callan, R., Behrang, F., Zajic, A., Prvulovic, M., Orso,
A.: Zero-overhead profiling via em emanations. In: Pro-
ceedings of the 25th International Symposium on Soft-
ware Testing and Analysis, pp. 401–412. ACM (2016)

11. Callan, R., Zajić, A., Prvulovic, M.: A practical method-
ology for measuring the side-channel signal available to
the attacker for instruction-level events. In: Proceedings
of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 242–254. IEEE Computer So-
ciety (2014)

12. Callan, R., Zajić, A., Prvulovic, M.: Fase: finding
amplitude-modulated side-channel emanations. In: Com-
puter Architecture (ISCA), 2015 ACM/IEEE 42nd An-
nual International Symposium on, pp. 592–603. IEEE
(2015)

13. Cárdenas, A.A., Amin, S., Lin, Z.S., Huang, Y.L., Huang,
C.Y., Sastry, S.: Attacks against process control systems:
risk assessment, detection, and response. In: Proceedings
of the 6th ACM symposium on information, computer
and communications security, pp. 355–366. ACM (2011)

14. Chien, E.: Stuxnet: A breakthrough. Symantec. com 12
(2010)

15. Clark, S.S., Ransford, B., Rahmati, A., Guineau, S., Sor-
ber, J., Xu, W., Fu, K.: Wattsupdoc: Power side channels
to nonintrusively discover untargeted malware on embed-
ded medical devices. In: HealthTech (2013)

16. Colbert, E.: Security of cyber-physical systems— csiac.
J. Cyber Secur. Inf. Syst. 5(1) (2017)

17. Collobert, R., Weston, J.: A unified architecture for natu-
ral language processing: Deep neural networks with mul-
titask learning. In: Proceedings of the 25th interna-
tional conference on Machine learning, pp. 160–167. ACM
(2008)

18. Deng, L., Yu, D., et al.: Deep learning: methods and ap-
plications. Foundations and Trends® in Signal Process-
ing 7(3–4), 197–387 (2014)

19. Falliere, N., Murchu, L.O., Chien, E.: W32. stuxnet
dossier. White paper, Symantec Corp., Security Response
5(6) (2011)

20. Farwell, J.P., Rohozinski, R.: Stuxnet and the future of
cyber war. Survival 53(1), 23–40 (2011)

21. Genkin, D., Pachmanov, L., Pipman, I., Tromer, E.:
Stealing keys from pcs using a radio: Cheap electromag-
netic attacks on windowed exponentiation. In: Interna-
tional workshop on cryptographic hardware and embed-
ded systems, pp. 207–228. Springer (2015)

22. González, C.R.A., Reed, J.H.: Power fingerprinting in sdr
integrity assessment for security and regulatory compli-
ance. Analog Integrated Circuits and Signal Processing
69(2-3), 307 (2011)

23. Graves, A., Mohamed, A.r., Hinton, G.: Speech recogni-
tion with deep recurrent neural networks. In: Acoustics,
speech and signal processing (icassp), 2013 ieee interna-
tional conference on, pp. 6645–6649. IEEE (2013)

24. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin,
T.M., Mudge, T., Brown, R.B.: Mibench: A free, commer-
cially representative embedded benchmark suite. In: Pro-
ceedings of the fourth annual IEEE international work-
shop on workload characterization. WWC-4 (Cat. No.
01EX538), pp. 3–14. IEEE (2001)

25. Han, Y., Etigowni, S., Liu, H., Zonouz, S., Petropulu,
A.: Watch me, but don’t touch me! contactless control
flow monitoring via electromagnetic emanations. In:
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pp. 1095–1108.
ACM (2017)

26. Hayashi, Y.i., Homma, N., Mizuki, T., Shimada, H., Aoki,
T., Sone, H., Sauvage, L., Danger, J.L.: Efficient evalua-
tion of em radiation associated with information leakage
from cryptographic devices. IEEE Transactions on Elec-
tromagnetic Compatibility 55(3), 555–563 (2013)

27. Herzberg, B., Bekerman, D., Zeifman, I.: Breaking down
mirai: An iot ddos botnet analysis. Incapsula Blog, Bots
and DDoS, Security (2016)

28. Hochreiter, S.: The vanishing gradient problem dur-
ing learning recurrent neural nets and problem solu-
tions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 6(02), 107–116 (1998)

29. Jacoby, G.A., Marchany, R., Davis, N.: Battery-based in-
trusion detection a first line of defense. In: Information
Assurance Workshop, 2004. Proceedings from the Fifth
Annual IEEE SMC, pp. 272–279. IEEE (2004)

30. Juyal, P., Adibelli, S., Sehatbakhsh, N., Zajic, A.: A
directive antenna based on conducting discs for de-
tecting unintentional em emissions at large distances.
IEEE Transactions on Antennas and Propagation pp. 1–1
(2018). DOI 10.1109/TAP.2018.2870370

31. Karlik, B., Olgac, A.V.: Performance analysis of various
activation functions in generalized mlp architectures of
neural networks. International Journal of Artificial Intel-
ligence and Expert Systems 1(4), 111–122 (2011)

32. Khan, H.A., Alam, M., Zajic, A., Prvulovic, M.: De-
tailed tracking of program control flow using analog side-
channel signals: a promise for iot malware detection and a
threat for many cryptographic implementations. In: Cy-
ber Sensing 2018, vol. 10630, p. 1063005. International
Society for Optics and Photonics (2018)

33. Khashei, M., Bijari, M.: An artificial neural network (p,
d, q) model for timeseries forecasting. Expert Systems
with applications 37(1), 479–489 (2010)

34. Kim, H., Smith, J., Shin, K.G.: Detecting energy-greedy
anomalies and mobile malware variants. In: Proceedings
of the 6th international conference on Mobile systems,
applications, and services, pp. 239–252. ACM (2008)

35. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet
classification with deep convolutional neural networks.
In: Advances in neural information processing systems,
pp. 1097–1105 (2012)

36. Langner, R.: Stuxnet: Dissecting a cyberwarfare weapon.
IEEE Security & Privacy 9(3), 49–51 (2011)

37. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature
521(7553), 436 (2015)

38. Lee, I., Sokolsky, O.: Medical cyber physical systems.
In: Design Automation Conference (DAC), 2010 47th
ACM/IEEE, pp. 743–748. IEEE (2010)

39. Liu, L., Yan, G., Zhang, X., Chen, S.: Virusmeter: Pre-
venting your cellphone from spies. In: International
Workshop on Recent Advances in Intrusion Detection,
pp. 244–264. Springer (2009)

40. Liu, Y., Wei, L., Zhou, Z., Zhang, K., Xu, W., Xu, Q.:
On code execution tracking via power side-channel. In:
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pp. 1019–1031.
ACM (2016)

41. Malhotra, P., Vig, L., Shroff, G., Agarwal, P.: Long short
term memory networks for anomaly detection in time se-
ries. In: Proceedings, p. 89. Presses universitaires de Lou-
vain (2015)

42. McMillan, R.: Siemens: Stuxnet worm hit industrial sys-
tems. Computerworld 14 (2010)

43. Nair, V., Hinton, G.E.: Rectified linear units improve re-
stricted boltzmann machines. In: Proceedings of the 27th

14 Haider Adnan Khan et al.

international conference on machine learning (ICML-10),
pp. 807–814 (2010)

44. Nakashima, E., Mufson, S.: Hackers have attacked foreign
utilities, cia analyst says. Washington Post (2008)

45. Nazari, A., Sehatbakhsh, N., Alam, M., Zajic, A.,
Prvulovic, M.: Eddie: Em-based detection of deviations in
program execution. In: Computer Architecture (ISCA),
2017 ACM/IEEE 44th Annual International Symposium
on, pp. 333–346. IEEE (2017)

46. Newsome, J., Song, D.X.: Dynamic taint analysis for au-
tomatic detection, analysis, and signaturegeneration of
exploits on commodity software. In: Proceedings of the
Network and Distributed System Security Symposium,
NDSS 2005, San Diego, California, USA (2005)

47. Ozsoy, M., Khasawneh, K.N., Donovick, C., Gorelik, I.,
Abu-Ghazaleh, N.B., Ponomarev, D.: Hardware-based
malware detection using low-level architectural features.
IEEE Trans. Computers 65(11), 3332–3344 (2016)

48. Richards, R.: High-assurance cyber military systems
(hacms). DARPA. mil (2016)

49. Rothermel, G., Elbaum, S., Kinneer, A., Do, H.:
Software-artifact infrastructure repository. UR L
http://sir. unl. edu/portal (2006)

50. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learn-
ing representations by back-propagating errors. nature
323(6088), 533 (1986)

51. Sametinger, J., Rozenblit, J., Lysecky, R., Ott, P.: Secu-
rity challenges for medical devices. Communications of
the ACM 58(4), 74–82 (2015)

52. Sehatbakhsh, N., Alam, M., Nazari, A., Zajic, A.,
Prvulovic, M.: Syndrome: Spectral analysis for anomaly
detection on medical iot and embedded devices. In:

2018 IEEE International Symposium on Hardware Ori-
ented Security and Trust (HOST), pp. 1–8 (2018). DOI
10.1109/HST.2018.8383884

53. Sehatbakhsh, N., Nazari, A., Zajic, A., Prvulovic, M.:
Spectral profiling: Observer-effect-free profiling by moni-
toring em emanations. In: The 49th Annual IEEE/ACM
International Symposium on Microarchitecture, p. 59.
IEEE Press (2016)

54. Ticknor, J.L.: A bayesian regularized artificial neural net-
work for stock market forecasting. Expert Systems with
Applications 40(14), 5501–5506 (2013)

55. Wang, X., Zhou, Q., Harer, J., Brown, G., Qiu, S., Dou,
Z., Wang, J., Hinton, A., Gonzalez, C.A., Chin, P.: Deep
learning-based classification and anomaly detection of
side-channel signals. In: Cyber Sensing 2018, vol. 10630,
p. 1063006. International Society for Optics and Photon-
ics (2018)

56. Wijnen, B., Hunt, E.J., Anzalone, G.C., Pearce, J.M.:
Open-source syringe pump library. PloS one 9(9),
e107216 (2014)

57. Zajic, A., Prvulovic, M.: Experimental demonstration
of electromagnetic information leakage from modern
processor-memory systems. IEEE Transactions on Elec-
tromagnetic Compatibility 56(4), 885–893 (2014)

58. Zeiler, M.D., Ranzato, M., Monga, R., Mao, M., Yang,
K., Le, Q.V., Nguyen, P., Senior, A., Vanhoucke, V.,
Dean, J., et al.: On rectified linear units for speech pro-
cessing. In: Acoustics, Speech and Signal Processing
(ICASSP), 2013 IEEE International Conference on, pp.
3517–3521. IEEE (2013)

