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ABSTRACT

Monitoring computer system activities on the instruction level provides more resilience to malware attacks
because these attacks can be analyzed better by observing the changes on the instruction level. Assuming the
source code is available, many training signals can be collected to track the instruction sequence to detect whether
a malware is injected or the system works properly. However, training signals have to be collected with high
sampling rate to ensure that the significant features of these signals do not vanish. Since the clock frequencies
of the current computer systems are extremely high, we need to have a commercial device with high sampling
rate, i.e. 10GHz, which either costs remarkably high, or does not exist. To eliminate the deficiencies regarding
the insufficient sampling rate, we propose a method to increase the sampling rate with the moderate commercial
devices for training symbols. In that respect, we first generate some random instruction sequences which exist
in the inspected source code. Then, these sequences are executed in a for-loop, and emanated electromagnetic
(EM) signals from the processor are collected by a commercially available device with moderate sampling rate,
i.e. sampling rate is much smaller than the clock frequency. Lastly, we apply a mapping of the gathered samples
by utilizing modulo of their timings with respect to execution time of overall instruction sequence. As the final
step, we provide some experimental results to illustrate that we successfully track the instruction sequence by
applying the proposed approach.

Keywords: Side Channels, Instruction Tracking, Information Leakage, Electromagnetic Emanations, Malware
Attacks

1. INTRODUCTION

As devices get more interconnected through the Internet of Things (IoT), it becomes imperative to find effective
way of securing all these devices. Interest in tracking the program activity is drawing the attention of experts
from various fields due to its possible applications in monitoring code flow, detecting malicious activities, reverse
engineering, cryptanalysis, etc.1–7

Side channels are unintentional and asynchronous channels that can leak some sensitive information while
performing a computer activity.8 Many attacks are reported based on power analysis,1,2, 9–11 temperature anal-
ysis,12 acoustic emanations,13,14 electromagnetic (EM) emanations,7,15–18 etc. One of the emerging applications
of side-channel analysis is their use for tracking program activities on various code levels such as loops, paths,
and basic blocks.3–6,19 Most of the previous work on single instruction code analysis is focused on building side-
channel-based disassembler,1,20,21 i.e. reconstructing the instructions from the side-channel signal. In particular,
work in1,2, 20,21 shows that when several samples per instruction are available to the observer (i.e. analyzed de-
vices have 1, 4, or 16 MHz clock frequency) and the simplest form of pipelining (i.e. only prefetch and execute)
is used, the instructions can be successfully reconstructed from side-channels. However, any device that is more
advanced than microcontrollers, i.e., has the processor clock frequency higher than 16 MHz and has more than
two stage pipeline architecture, requires signal receivers with very high sampling rate (on the order of many
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times the processor clock frequency) to ensure that significant features of these signals are present in the received
signal. Such receivers are either very expensive or non-existent.

To address this problem, we propose a method that utilizes existing receivers but allows for tracking of
individual instructions on more advanced computer processors. To achieve this objective, we propose a new
technique to collect training sequence and upsample it in a way that allows for single-instruction tracking using
heavily undersampled received signals. Assuming the source code is available, many training signals can be
collected to track the instruction sequence. We first generate some random instruction sequences which exist
in the inspected source code. Then, these sequences are executed in a for-loop, and emanated electromagnetic
(EM) signals from the processor are collected by a commercially available receiver with moderate sampling rate,
i.e., sampling rate is much lower than the clock frequency. Then, we propose a new method that we refer to as
modulo operation. The method is based on an idea that repeating the activity of interest periodically can be
used for reconstructing the signal with higher effective sampling rate. Finally, we apply mapping of the gathered
samples by utilizing modulo of their timings with respect to execution time of overall instruction sequence.
Correlating single execution of individual instructions in a testing phase with the upsampled version of signal
collected in training phase, we show that we can correctly track individual instructions even when received signals
are undersampled.

The rest of the paper is organized as follows. Section 2 describes our implementation of single instruction
tracking using EM signature generation, Section 3 describes how modulo operation allows for effectively increasing
sampling rate, Section 4 presents experimental results, and Section 5 briefly summarizes the conclusions.

2. A METHOD FOR SINGLE INSTRUCTION TRACKING

One of the emerging applications of side-channel analysis is their use for tracking program activities on various
code levels including individual instructions.

Two of the main challenges in tracking individual instructions on more advanced processors is lack of model
that describes the pipeline effect on the emanated EM signal and heavily undersampled received signals. In
order to address the first issue, we propose to monitor sequences of instructions instead of a single instruction.
When an instruction is executed, pipeline is filled with neighboring instructions that are just before or after
that instruction, and those neighboring instructions are included in the instruction sequence. As much as the
individual contributions from the neighboring instructions that appear in different stages of pipeline are not
known, using the whole sequence as a signature allows us to include their aggregate effect.

To address the problem of undersampled signals, we propose a modulo operation as a method to upsample
received EM side-channel signals. Assuming we have a signal that is composed of samples from a periodic signal,
modulo operation can be used to upsample that signal (reader can refer to Section 3 for detailed analysis of
modulo operation). One should note that, when the instruction sequence is executed, the emanated EM signal
occurs only once and hence it is not a periodic signal. However, since we have access to the device during training
phase, we can artificially mimic the required periodicity condition by executing the same sequence repeatedly.
It should also be noted that the repetition of the instruction sequence is only used in the training phase and not
in the testing phase, where instruction sequence is executed only once. Considering the requirements above, we
can summarize the setups used for training and testing phases as follows.

• Training Phase: This phase is used to generate EM signatures. Therefore, the instruction sequence is
executed N consecutive times by utilizing a for loop. The pseudo code for this setup is shown in Figure 1a.
The empty for-loop before and after the execution of the instruction sequence are used as markers to detect
the beginning and ending of the instruction sequence.

• Testing Phase: In this phase, the unknown sequence of individual instructions is tested against signals
collected in a training phase. Unlike in training phase, in testing phase, the instruction sequence is executed
only once. The pseudo code for this phase can be seen in Figure 1b. The empty for-loops before and after
the execution of the instruction sequence are similarly used as markers to detect the beginning and ending
of the instruction sequence.



for

#empty for loop

end

for N times

#Instruction sequence

end

for

#empty for loop

end

(a) Pseudo code for Training Phase

for

#empty for loop

end

#Instruction sequence

for

#empty for loop

end

(b) Pseudo Code for Testing Phase

Figure 1: Pseudo codes for Training and Testing phases.

Implementing modulo operation while generating the EM signatures does not only increase the sampling rate,
it also results in EM signatures that are averaged versions of N executions of the same instruction sequence.
This helps with reducing noise as well as avoiding aliasing. By using sequences of instructions instead of single
instructions, we are inevitably increasing the total possible number of EM signatures that needs to be generated.
On the other hand, the longer the sequence, the better the pipeline effect is included in the generated EM
signature. This situation indicates the trade off between the total number of EM signatures and the ability to
address the pipeline effect. Finally, the training and testing EM signals are correlated against each other and
different sequences of instructions are correctly classified.

3. MODULO OPERATION AS A METHOD FOR UPSAMPLING SIDE-CHANNEL
SIGNALS

In this section, we first explain the theory behind the modulo operation, then illustrate the technique through
simple examples, and finally discuss the required conditions for this operation to be applicable.

Theoretical Perspective: Let’s assume that y(t) is a long periodic signal with period T , and Ts is the sampling
period of the measuring instrument, which (without loss of generality) can be defined as

Ts = kT + ∆m. (1)

Here, k is a fixed non-negative integer, T is the period of the target signal y(t), and ∆m (that will be referred to
as modular offset) is defined as:

∆m = mod(Ts, T ). (2)

Let ys[n] be a discrete time sequence which is constructed by sampling y(t) with the sampling period Ts as

ys[n] = y(nTs), for ∀n where n ∈ {0, 1, 2, ..., N − 1}. (3)

Since Ts is known, sampling times, tn’s, for each sample n are also known:

tn = nTs, for ∀n where n ∈ {0, 1, 2, ..., N − 1}. (4)

Let tmod
n be the time indicating where the nth sample corresponds in the fundamental period of y(t) and it

can be written as

tmod
n = mod (tn, T ) = mod (n (kT + ∆m) , T ) = mod (n∆m, T ) , for ∀n where n ∈ {0, 1, 2, ..., N − 1}. (5)

It should be noted that 0 ≤ tmod
n < T . Hence, the value of the nth sample (ys[n]) can be wrapped around

and used to fill in the value for tmod
n . After repeating this process for all samples and sorting tmod

n ’s accordingly,



we can obtain several new samples in y(t)’s fundamental period [0, T ]. The next step is determining the exact
number of the new samples in y(t)’s fundamental period [0, T ].

Number of New Samples: As we repeat calculating tmod
n for increasing number of n’s, every sample fills in a

distinct point within [0, T ] until tmod
n becomes zero again (other than n = 0 for which tmod

n is always zero). Let
M denote the smallest nonzero sample index n for which tmod

n = 0. For any sample with index number M or
greater than M , it is not possible to fill in a distinct point within [0, T ] because the value at tmod

n is already filled
by a previous sample. In other words, any subsequent sample with index n ≥ M does not increase the total
number of distinct sample points within the fundamental period. Next step is determining the exact number of
new samples M . In order to find that, we use the definition in (5): tmod

n = mod (n∆m, T ). Trivial solution is
tmod
n = 0 for n = 0, but we are looking for the sampling index n > 0. Then, we can observe that mod (n∆m, T )

becomes zero when n∆m is the same as the least common multiple of ∆m and T . Let lcm(x, y) correspond to an
operator whose result is the least common multiple of its operands x and y. It should be noted that we are using
less strict definition of least common multiple operator, i.e, the result and operands x and y do not necessarily
have to be integers, i.e., lcm(0.01, 0.02) = 0.02.

Hence, the total number of samples in one period of y(t) is equal to M which can be found as:

M =
lcm(∆m, T )

∆m
. (6)

New samples are spaced by Tn
s = T/M , therefore, the new sampling frequency fns is:

fns =
1

Tn
s

=
M

T
=
lcm(∆m, T )

T∆m
. (7)

If the total number of samples, N , is equal to or larger than M , we will have at least one sample that
represents the value of the signal at t = 0, Tn

s , 2T
n
s , ..., (T − Tn

s ). Therefore, when this condition is satisfied, new
sampling time of the signal becomes Tn

s . Consequently, it can be concluded that the effective sampling rate has

been increased from 1
Ts

to 1
Tn
s

= lcm(∆m,T )
T∆m

.
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(a) y(t) (solid curve) and ys1 [n] (markers) for Ts1 = 2.01.

0 5 10 15

Time (s)

-1

-0.5

0

0.5

1

V
al

u
e

(b) y(t) (solid curve) and ys2 [n] (markers) for Ts2 = 2.53.

Figure 2: The solid curves represent the continuous target signal y(t) = sin (2πt), whereas the markers represent
ys[n] (samples obtained from y(t) with sampling rates Ts1 = 2.01 (a) and Ts2 = 2.53 (b) ). One should note that
this is a case where the signal is heavily undersampled, which causes aliasing.

3.1 Modulo Operation Through Examples

In order to illustrate how modulo operation works, consider the following signal:

y(t) = sin (2πt). (8)



We consider two different cases of Ts: Ts1 = 2.01 and Ts2 = 2.53. Since the period of y(t) is 1, the modular
offsets are ∆m1 = 0.01 and ∆m2 = 0.53, respectively. After sampling y(t) with sampling periods Ts1 and Ts2 ,
we obtain the following discrete time signals:

ys1 [n] = y(nTs1) = sin (2πnTs1) and ys2 [n] = y(nTs2) = sin (2πnTs2), for ∀n (9)

where n ∈ {0, 1, 2, ..., N − 1}.
The solid curves in Figure 2 illustrate y(t), whereas the markers in Figure 2a and 2b represent ys1 [n] and

ys2 [n], respectively. One should note that for both cases Ts > T and we have less than 1 sample for each period
of y(t). This situation presents a scenario where the sampling rate is very low with respect to the frequency
of the signal under investigation. Due to aliasing, which occurs as a consequence of undresampling, ys1 [n] and
ys2 [n] are completely different from each other even though they are obtained from the same signal. Without
any further assumptions, ys1 [n] and ys2 [n] cannot be used to recover the target signal y(t).

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

-1

-0.5

0

0.5

1

V
al

u
e

(a) ys[n] for Ts1 = 2.01.

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

-1

-0.5

0

0.5

1

V
al

u
e

(b) ys[n] for Ts2 = 2.53.

Figure 3: Time axis is extended to [0, 1000] s for Figure 2, and the markers start to resemble y(t) in (a) but not
in (b).

In Figure 3, time axis is extended to [0, 1000] s, and one can note that the waveform that is generated by the
markers in Figure 3a resembles the sinusoidal target signal y(t) on a different timing scale. However, Figure 3b
does not resemble y(t) at all. Aliasing in Figure 3b is, therefore, very obvious, but one should also realize that
aliasing occurs in Figure 3a as well. Although the shape of the markers resemble the target signal, the period of
the signal generated by markers is completely different than the period of the target signal.
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(a) Samples sorted (tmod
n ) for Ts1 = 2.01.
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(b) Samples sorted by (tmod
n ) for Ts2 = 2.53.

Figure 4: When samples are sorted by their modular sampling timing (tmod
n ), the reconstructed signal fully

resembles y(t) in its fundamental period for both (a) and (b).



The results obtained after applying the modulo operation are presented in Figure 4 and it can be noted
that the reconstructed signals from both ys1 [n] and ys2 [n] are identical to y(t) for t ∈ [0, T ]. These figures
expose the strength of the proposed approach to increase the sampling rate. We have first showed that ys1 [n]
and ys2 [n] are samples obtained from the same target signal y(t), but they are completely different signals due
to aliasing. However, applying the modulo operation helped us to recover the underlying target signal in both
cases. Therefore, in addition to increasing the sampling rate, modulo operation is very useful in resolving aliasing
present in undersampled signals.

This example shows how modulo operation can be used to reconstruct a periodic signal in its fundamental
period with higher effective sampling rate. One should note that we assume a few conditions that are required
for modulo operation:

• The target signal is a periodic signal and its period is known or estimated.

• Modular offset (∆m = mod(T, Ts)) is nonzero, in other words, the sampling period Ts is not an integer
multiple of the period of the target signal.

For any signal that satisfies the aforementioned conditions, modulo operation can be applied. We now show that
the signal obtained by using the setup of Training Phase in Section 2 indeed satisfies those conditions:

• Same instruction sequence is executed several times consecutively by using a for loop, and therefore, the
signal becomes periodic during the execution of the for loop. Also, because the total number of executions
of the instruction sequence is determined by us (thus, known to us), the period of the instruction sequence
(the time it takes for the instruction sequence to be executed only once) can be estimated through dividing
the total execution time by the number of iterations. With this specific setup, the periodicity condition
can be satisfied and the period can be easily estimated.

• Sampling period, Ts, is determined by the sampling equipment. Usually, it is very unlikely to have Ts be
an integer multiple of T , but even if this occurs, sampling time of the equipment can be slightly adjusted
in a way to avoid Ts from being an integer multiple of T .

The discussion above shows that setup used in Training Phase of our experiments satisfies the required
conditions for applying modulo operation. It is worth re-emphasizing that this setup is used for generating the
EM signatures (where we have much more degree of freedom in modifying the source code), but it is not repeated
for the actual instruction tracking stage (Testing Phase), because, the instructions are executed only once in
the actual tracking stage.

Finally, it may be worthwhile to note that modulo operation is not increasing the real-time sampling rate.
Instead, modulo operation uses the samples that are recorded from several repetitions of a periodic signal and
creates a new signal whose time scope is limited to one period of the signal, but the new signal contains samples
that are spaced much closer to each other in time.

4. EXPERIMENTAL RESULTS

In all our experiments we use Altera DE1 Cyclone II, a high-density, low cost FPGA (Field Programmable Gate
Array). For implementing our code on the device, we use Altera’s embedded processor Nios II that employs
a relatively advanced pipeline architecture with 6 pipeline stages (Fetch, Decode, Execute, Memory, Align and
Writeback) and operates at 50 MHz clock frequency. The considered instructions are given in Table 1.

In this section, we consider 20 instruction sequences listed in Table 2. Note that instructions include the
basic arithmetic operations such as ADD,SUB,MUL,DIV, as well as load (LDM) and store (STM) instructions.

We measure the emanated EM signals with a near field magnetic probe (AAronia PBS H3) that is located
above the processor of the target device as shown in Figure 5. For recording the measured data, we use a
spectrum analyzer (Keysight N9020A MXA). Main reason behind using this device is the built-in features of the
device to downconvert the recorded signal and the visualize the signal around the clock frequency. However, any



Table 1: Instructions used for the experiments (Altera DE1 Cyclone II).

Instruction Description

LDM ldw rA, 0(rB) Load register rA with the memory word located at the the effective byte address

STM stw rA, 0(rB) Store rA to the memory location by the effective byte address

ADD addi rA, rB, IMM16 Sum the 16-bit immediate and rB values, and store in rA

SUB sub, rA, rB, IMMED Subtract IMMED from the value of rB, and store in rA

MUL muli rA, rB, IMM16 Multiply 16-bit immediate and rB values, and store in rA

DIV div rA, rB, rC Divide rB by rC and then store to rC

Figure 5: Measurement Setup: Magnetic near field probe is located on top of the processor of the FPGA.

other less expensive device with similar sampling rate features can be used to repeat the same experiments. We
record the signal with 25.6 MHz sampling rate around 50 MHz center frequency and 10 MHz bandwidth.

Figure 6 displays the recorded signal for a specific instruction sequence (DIV-DIV-SUB-DIV-ADD-MUL-SUB-MUL-
ADD-DIV). The top and bottom plots in Figure 7 represent the modulo operation result and the single execution
of the same instruction sequence, respectively. One should note that the plot on the top is much more smooth
due to higher resulting sampling rate and the averaging nature of modulo operation. In fact, for this specific
instruction sequence, the sampling rate is increased by a factor of 125. In order to compare those two signals, we
use Pearson correlation coefficient.22 Clearly, these two discrete time signals have different number of samples.
Therefore, the modulo operation result is re-sampled at the same time instances of the single execution signal.
Re-sampled modulo operation result and the original single execution result are plotted on top of each other in
Figure 8 and the resulting correlation coefficient is 0.96. Note that when the same modulo operation result is
correlated with single execution of other instruction sequences, the correlation coefficient is less than 0.9 for all
different sequences.

Table 3 shows the correlation matrix between the EM signatures that are obtained with modulo operation
and the single execution of the instruction sequences. We can note that the dominant terms in the matrix are the
diagonal terms, which supports the claim that the generated EM signatures by modulo operation can be used to
detect the corresponding instruction sequences. One should also note that, similar instruction sequences (such
as instruction sequence 10 and 11, which differ only in one instruction) have higher cross correlation coefficients,
but none of the cross correlation coefficients are above 0.9. Therefore, the corresponding threshold for these
instruction sequences can be set as 0.9.



Table 2: Instruction sequences that are used in the FPGA experiments

Seq. No. Sequence

1 SUB-DIV-STM-DIV-STM-MUL-LDM-MUL-SUB-MUL-ADD-DIV-LDM-DIV-ADD-MUL

2 LDM-MUL-ADD-MUL-LDM-DIV-SUB-MUL-ADD-DIV-SUB-DIV-STM-DIV-STM-MUL

3 STM-MUL-STM-DIV-SUB-MUL-LDM-MUL-SUB-DIV-ADD-MUL-LDM-DIV-ADD-DIV

4 MUL-ADD-ADD-SUB-DIV-SUB-DIV-ADD-MUL-SUB

5 ADD-SUB-ADD-SUB-DIV-SUB-DIV-ADD-MUL-MUL

6 ADD-ADD-MUL-SUB-ADD-DIV-DIV-MUL-SUB-SUB

7 SUB-DIV-SUB-DIV-MUL-ADD-MUL-SUB-ADD-ADD

8 SUB-DIV-ADD-DIV-ADD-MUL-SUB-MUL-ADD-SUB

9 ADD-DIV-SUB-DIV-ADD-MUL-SUB-MUL-ADD-DIV-SUB

10 DIV-DIV-SUB-DIV-ADD-MUL-SUB-MUL-ADD-DIV-SUB

11 MUL-DIV-SUB-DIV-ADD-MUL-SUB-MUL-ADD-DIV-SUB

12 ADD-DIV-SUB-DIV-ADD-MUL-SUB-MUL-ADD

13 DIV-DIV-SUB-DIV-ADD-MUL-SUB-MUL-ADD

14 MUL-DIV-SUB-DIV-ADD-MUL-SUB-MUL-ADD

15 DIV-SUB-DIV-MUL-SUB-MUL-ADD-DIV-SUB-MUL-ADD-DIV-SUB-SUB

16 DIV-SUB-DIV-MUL-ADD-DIV-SUB-MUL-ADD-DIV-SUB-SUB

17 DIV-SUB-DIV-DIV-SUB-MUL-ADD-DIV-SUB-SUB

18 DIV-SUB-DIV-MUL-ADD-DIV-SUB-SUB

19 DIV-SUB-DIV-DIV-SUB-SUB

20 DIV-SUB-DIV-SUB

These results illustrate that single instruction level tracking is possible, even when received signals are heavily
undersampled.

5. CONCLUSIONS

Earlier work have illustrated the usage of EM emanations for instruction tracking on processors with simple
pipeline architectures and low operating frequencies. In this paper, we show how EM emanations can be used
to track instructions on a more advanced device (an FPGA) with a processor that has a more complex pipeline
structure and higher operating clock frequency.

In order to track the instructions, we generate reference signals (called as EM signatures) to be compared with
the emanated signals. The complex structure of the target device has motivated us to develop a new technique and
modified experimental setups to generate EM signatures. Firstly, in order to incorporate the pipeline effect, EM



Figure 6: Recorded signal for the given sequence in Training Phase before modulo operation.
.

signatures are generated for sequences of instructions rather than single instructions. Furthermore, we propose
and implement a technique called modulo operation, which addresses the issue introduced by low sampling rate.
Results show that modulo operation is successful not only to obtain an EM signature with higher sampling rate,
but also to eliminate possible measurement noise. Results demonstrate that a specific EM signature is highly
correlated with the single execution of the same sequence and much less correlated with all other sequences. This
confirms the applicability of EM signals that are generated by using modulo operation.

As much as the EM signatures for instruction sequences used in our experiment can be used to detect the
corresponding sequences, achieving instruction tracking at instruction level necessitates generating EM signatures
for all possible sequences. To this end, our experimental results show that using modulo operation for generating
EM signatures for all possible sequences is a feasible approach to obtain high success rate.

Figure 7: The plot on the top presents the result of the modulo operation obtained by using Training Setup,
plot on the bottom presents the single execution of the same instruction sequence obtained by Testing Setup.
.



Figure 8: Resampled modulo operation result (solid curve) vs. single execution of the same instruction sequence
(dashed curve)

Table 3: Correlation between the EM signatures and their one-time-run versions for Altera DE1 Cyclone II. The
columns denote the EM signatures and the rows denote the one-time-run versions. The diagonal entries dominate
the other terms, therefore, the generated EM signatures can identify the executed sequences and corresponding
instructions (The values given in the table is correlation coefficient × 100).

Generated EM signatures

1A 2A 3A 4A 5A 6A 7A 8A 9A 10A 11A 12A 13A 14A 15A 16A 17A 18A 19A 20A
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1B 91 54 73 15 23 11 21 19 28 43 21 23 7 54 18 37 27 24 14 2

2B 12 95 50 16 57 43 50 21 39 56 58 6 65 58 50 57 10 46 9 18

3B 61 67 93 6 55 42 50 2 18 62 66 28 52 68 24 55 8 46 5 16

4B 19 6 20 94 46 61 42 73 62 10 29 73 50 14 44 4 67 27 78 66

5B 9 53 18 52 97 79 80 75 72 30 49 39 55 32 53 50 55 62 61 67

6B 11 31 2 66 80 91 87 85 75 16 50 67 61 16 59 43 70 72 68 79

7B 2 43 20 32 70 80 92 64 73 24 54 48 50 38 61 55 55 72 54 76

8B 27 8 34 41 30 47 38 97 66 19 26 83 42 21 56 2 76 24 77 66

9B 41 3 31 57 44 62 57 80 98 19 37 82 62 19 76 0 90 34 68 69

10B 22 57 53 20 55 40 44 11 20 96 88 22 70 76 33 83 3 47 4 11

11B 20 49 33 44 57 53 50 50 62 65 93 26 82 58 58 70 46 51 47 47

12B 12 41 48 42 10 18 7 80 52 47 7 94 10 50 47 33 68 14 75 66

13B 20 41 20 59 61 60 57 69 80 36 80 45 98 40 62 39 75 58 61 57

14B 33 65 72 11 65 44 46 8 31 76 83 30 81 95 29 62 7 49 7 10

15B 39 20 25 34 33 46 47 64 80 3 45 66 54 4 96 17 70 25 56 55

16B 13 53 41 26 53 57 66 25 36 82 78 1 60 60 48 96 12 66 17 36

17B 32 25 41 57 28 51 36 78 85 38 15 82 42 32 64 21 95 20 74 56

18B 12 42 27 49 61 81 91 49 58 38 48 32 54 38 45 63 45 97 31 53

19B 23 11 20 46 40 42 25 77 59 23 19 66 32 16 51 9 70 4 92 70

20B 8 6 17 40 46 55 59 72 66 13 23 71 34 8 57 14 58 25 77 94
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