IDEA: Intrusion Detection through
Electromagnetic-Signal Analysis for Critical
Embedded and Cyber-Physical Systems

Haider Adnan Khan, Nader Sehatbakhsh, Luong N. Nguyen, Robert Callan Member, IEEE,

Arie Yeredor Senior Member, IEEE, Milos Prvulovic Senior Member, IEEE, and Alenka Zaji¢ Senior Member, IEEE

Abstract— We propose a novel framework called IDEA that
exploits electromagnetic (EM) side-channel signals to detect ma-
licious activity on embedded and cyber-physical systems (CPS).
IDEA first records EM emanations from an uncompromised
reference device to establish a baseline of reference EM patterns.
IDEA then monitors the target device’s EM emanations. When
the observed EM emanations deviate from the reference patterns,
IDEA reports this as an anomalous or malicious activity. IDEA
does not require any resource or infrastructure on, or any
modification to, the monitored system itself. In fact, IDEA is
isolated from the target device, and monitors the device without
any physical contact. We evaluate IDEA by monitoring the
target device while it is executing embedded applications with
malicious code injections such as DDoS, Ransomware and code
modification. We further implement a control-flow hijack attack,
an advanced persistent threat, and a firmware modification on
three CPSs: an embedded medical device called SyringePump, an
industrial PID Controller, and a Robotic Arm, using a popular
embedded system, Arduino UNO. The results demonstrate that
IDEA can detect different attacks with excellent accuracy (AUC
> 99.5%, and 100% detection with less than 1% false positives)
from distances up to 3 m.

Index Terms— electromagnetic emanations, electromagnetic
side-channel, security of cyber-physical systems, side-channel
signal analysis, malware detection

I. INTRODUCTION

Cyber-Physical Systems (CPS) is experiencing an exponen-
tial growth, and is expected to be a USD 6.2 trillion market
globally by 2025 [1], [2]. While this expected growth is
predominantly in healthcare (USD 2.5 trillion) and manufac-
turing (USD 2.3 trillion), CPSs are ubiquitous, and can impact
every aspect of our daily life including critical life supporting
medical devices [3]. Furthermore, embedded and CPSs are
prevalent in many critical infrastructures including nuclear
power generation, military systems, transportation systems,

This work has been supported, in part, by NSF grants 1563991 and DARPA
LADS contract FA8650-16-C-7620. The views and findings in this paper are
those of the authors and do not necessarily reflect the views of NSF and
DARPA.

Haider Adnan Khan, Luong N. Nguyen, Robert Callan, and Alenka
Zaji¢ are with the School of Electrical and Computer Engineering, Nader
Sehatbakhsh and Milos Prvulovic are with the School of Computer Science,
Georgia Institute of Technology, Atlanta, GA 30332, USA, and Arie Yeredor
is with School of Electrical Engineering Tel-Aviv University, Tel-Aviv, Israel.

autonomous and unmanned vehicles, communication satellites,
etc. [4]. While seamless connectivity helps to ensure enhanced
monitoring and control, networked embedded and CPSs are
exposed to remote attacks that can cause serious physical and
financial consequences and damages.

A variety of CPSs, including Industrial Control System
(ICS), smart grid system, and medical devices, have already
been targeted by the attackers. A few of these disastrous
cyber-attacks are: Stuxnet [5], [6], [7], cyber-attacks on smart
grids [8], attacks on medical devices (e.g. pacemakers, insulin
pumps, etc. [9], [10], [11], [12], [13]), the infamous Mirai
Distributed Denial of Service (DDoS) attack [14], and a
variety Ransomware attacks (e.g. WannaCry [15], [16]). A
comprehensive review of attacks on CPSs can be found in [17].

Cyber-physical systems consist of heterogeneous building
blocks including diverse hardware components such as sen-
sors, actuators and embedded systems, and different propri-
etary and customized software. As each component brings
about its own unique set of vulnerabilities and threats, securing
CPSs can be a challenging task. Many CPSs use customized
software and hardware, which are often difficult to update
or upgrade [18]. In addition, the state of the art malware
detection techniques such as malware signatures [19], [20],
sandboxing [21], [22], hardware support [23], [24], [25], [26],
machine learning [27], [28], and dynamic analysis [29], [30],
[31] require substantial computational power. As CPSs often
have severe resource, power, and cost constraints, current
security solutions may be impractical or inadequate for most
CPSs [32]. Furthermore, attackers often hijack the control
of the victim device, and may disable or even co-opt the
monitoring system. Hence, an isolation between the device
and the monitoring system is preferable, especially for critical
infrastructures or high-assurance systems.

To address these issues, we propose a novel framework
called IDEA that uses electromagnetic (EM) side-channel
signals to detect malicious activity on CPSs. The first step in
IDEA is to record EM emanations from an uncompromised de-
vice to create a baseline dictionary of signal fragments which
correspond to the normal behavior of the device. Then, IDEA
continuously monitors the target device’s EM emanations,

comparing the observed EM emanations against the baseline
dictionary. When no malware is present, the device’s EM
emanations match the entries in the baseline dictionary well.
If, however, the observed EM emanations deviate significantly
from the entries in the baseline dictionary, we report this as
an anomaly which is potentially caused by a malware.

To evaluate IDEA, we port different malware behaviors such
as a DDoS cyber-attack, a Ransomware attack, and a source
code modification on an Intel-Altera’s FPGA Nios-II softcore.
In addition, we implement three CPSs, a medical embedded
device called SyringePump, a proportional-integral-derivative
(PID) controller for an industrial soldering iron, and a robotic
arm for an assembly line, with Arduino UNO - a popular
embedded system. We exploit a buffer-overflow + control-
flow hijack attack, an advanced persistent threat (APT), and
a firmware modification attack on these CPSs respectively.
Experimental evaluation reveals that IDEA can detect DDoS
and Ransomware malware with a 100% accuracy (with no
false positives), and stealthier code-modification with an Area
Under the Curve (AUC) > 97.5% from distances up to 3 m.
Furthermore, IDEA can successfully detect all instances of
attacks on the implemented CPSs without reporting any false
positive.

Finally, we evaluate IDEA with insertions of unknown
(untrained-on) snippets of signals into an original reference
signal to find the smallest insertion that can be reliably
detected. The results show that IDEA can detect intrusions
that consist of roughly 200 instructions on FPGA, and roughly
800 instructions on an Internet of Things (IoT) development
board, with a 100% accuracy and zero false positive.

This approach for external monitoring of intrusion on de-
vices used on critical infrastructures has several advantages:

1) Non-intrusive Monitoring: The target device is not
perturbed or modified in any way. The monitor does not
impose any overhead, nor does it use any resource on
the monitored device. In fact, the target device can be
monitored from a distance without any physical contact.

2) Isolation: The monitor is isolated from the target de-
vice. Hence, the integrity of the monitor cannot be
compromised even when the monitored device itself is
completely compromised.

3) Zero-Day Protection: IDEA identifies malicious activ-
ity using the trusted references only, without any a-priori
knowledge of malware signatures or vulnerabilities. This
means that no training on malware or anomalous behav-
ior is needed, and ensures protection against zero day
attacks and obviates the need for regular updates for
new malware signatures.

The rest of this paper is organized as follows: Section II
states the envisioned threat model, Section III discusses the
related work, Section IV details our method for intrusion
detection, Section V presents experimental setup and evalua-
tions, Section VI discusses limitations of IDEA and directions
for future research, and finally Section VII presents some
concluding remarks.

II. THREAT MODEL

IDEA is an external monitoring system for high-assurance
CPSs (such as embedded medical devices), and can detect
execution of malware through EM side-channel of the target
device. The envisioned threat model in this paper involves the
following assumptions:

1. The monitoring framework (IDEA) has no a priori
knowledge about the nature of the attack or its EM signa-
ture(s) and only relies on the signatures for the monitored
application itself. We assume that IDEA always has correct
reference models for malware-free signatures of the monitored
applications and these models are stored in IDEA and can not
be compromised.

2. The adversary has physical and/or remote access to the
target device, and has a prior knowledge of the device and
its software. The attacker can thus exploit any vulnerability
(e.g. a buffer-overflow) to execute a malicious activity on
the system by either launching a separate thread/process and
starting a potential cyber-attack (e.g. DDoS) or modifying/re-
using the existing application to disrupt or change the original
functionality of the targeted system (e.g. control-flow hijack).
Furthermore, the adversary can even modify the system’s
source code and libraries and/or reprogram the system to start a
malicious activity. However, as mentioned earlier, IDEA does
not know anything about the nature of the attack and only
reports an error if an anomaly is detected which may be caused
by an actual attack (true positive), or it may not (false positive).

III. RELATED WORK

Traditionally, attackers have exploited unintentional elec-
tromagnetic leaks [43], [44], [45] and other analog side-
channel signals such as power consumption [46] or acoustic
emission [47], [48] to extract sensitive information from victim
systems. Researchers have also demonstrated methods for
systematically identifying and quantifying EM side-channel
signals [49], [50]. Apart from cryptographic key extraction,
researchers have also leveraged EM side-channels for hard-
ware Trojan detection [S1], [52], and for enhanced physical
authentication [53].

More recently, researchers have proposed several ap-
proaches to monitor a device’s power fluctuations for malware
detection (e.g. [33], [34], [36], [37], [54], [55]). For instance,
VirusMeter [33] monitors battery power usage to identify
“long-term” mobile malware, while [34] measures similarities
between power signatures to detect energy-greedy malwares.
Furthermore, researchers have leveraged power consumption
monitoring for integrity assessment of Software Defined Ra-
dios (SDR) [35] and for malware detection in embedded
medical devices [36]. Power Finger-Printing Inc. [35] mea-
sures processors power consumption and compares against
stored trusted signatures for integrity assessment of SDRs,
and WattsUpDoc [36] extracts statistical and spectral fea-
tures from dynamic power consumption to identify anomalous
or malicious activity on embedded medical devices. Liu et
al. [37] provide code execution tracking based on the power
signal using an HMM model to recover most likely executed

Ref. | Monitored Device Under Test | Description | Performance Detection Algorithm
Side-Channel | (DUT)
[33] | Power Cell Phone Malware detects long-term eavesdropping, call inter- | compares power consumption
Consumption (Nokia 5500 Sport) | detection ception and text message forwarding with | through machine learning
93.0%, 90.5%, 98.6% detection rate and
4.3% false positive rate
[34] | Power PDA (HP iPAQ) Malware detects energy greedy malwares with 99% | compares power signatures with
Consumption detection true positive rate and less than 2% false | x?2 distance
positive rate
[35] | Power Software Defined | Integrity detects deviation in execution correlates power signatures
Consumption Radio assessment
[36] | Power Embedded Medical | Malware detects malware with 85% accuracy for | exploits statistical and spectral
Consumption Device detection unknown malware and 94% accuracy for | features of dynamic power con-
known malware sumption using machine learning
[37] | Power 8051 MCU Control- 99.94% for recognizing instruction types | leverages HMM and Viterbi to
Consumption (STC89C52) flow and 98.5% for recognizing instruction se- | recover instruction types and se-
integrity quence quence during execution
[38] | EM FPGA Software profiles software with 94% accuracy uses depth-first tree search using
Emanation (Altera Cyclone II) | profiling control flow graph
[39] EM A13-OLinuXino Malware detects malware inside and between the | uses short time Fourier transform
Emanation board detection loops, accuracy 92% with 0% false pos- | and KS test
itives but can detect only large intrusions
(> 500k instructions)
[40] EM PLC Control- 98.9% accuracy (AUC) uses a neural network to detect
Emanation (Allen Bradley) flow legitimate PLC executions
integrity
[41] | Telemetry Industrial Control | Malware detects network intrusion with 94.3% accu- | exploits decision tree based algo-
data System detection racy rithm
[42] | System Medical CPS Malware detects intrusion with 92.4% detection rate | exploits rule based behavior
behavior detection with 0.66% false positives specification
IDEA| EM FPGA & Al3- | Malware detects intrusions larger than 200 instruc- | compares EM emanations with
Emanation OLinuXino board | detection tions with 100% true positives and 0% false | a reference dictionary with Eu-
& Arduino UNO positives clidean distance

TABLE I

COMPARISON OF RELATED WORK WITH THE IDEA IN TERMS OF TYPE OF SIDE-CHANNEL, TYPE OF DEVICE, SOFTWARE OR HARDWARE INTRUSION, AND

PERFORMANCE.

instruction sequence with a revised Viterbi algorithm. While
these works can be very effective in some scenarios, they
are ineffective when the immediate access to the device is
not possible (e.g. due to packaging) and/or the monitor has
to be placed in some distance from the device (unlike using
EM). Moreover, another advantage of using EM over power
consumption is that EM signals usually have much more
bandwidth than power traces, i.e. EM signals may provide
much more information per unit time and provide a better
resolution (and accuracy) to detect very small changes (e.g.
firmware modification) in high-speed systems.

In addition, recent research has exploited EM side-channel
signals for profiling of software execution “as-is”, without any
hardware or software modifications or instrumentation [38],
[56]. Zero Overhead Profiling (ZOP) [38] exploits signatures
of emanated EM signals for software profiling. To profile a
program, it performs a depth-first search (DFS) through the
program’s control flow graph to determine the lowest-cost path
from the tree’s root (the entry of the program) to a leaf node
(any exit of the program). While ZOP [38] achieves 94%
accuracy for profiling acyclic paths, DFS is prone to error
propagation (i.e. any false prediction is likely to lead to a
cascade of false predictions). As a consequence, ZOP can gen-
erate a large false positive rate. Furthermore, ZOP needs access
to the source code to insert markers for training, and requires
complete knowledge of the program’s control flow graph for
monitoring. All of these severely limit its practicality for

anomaly/malware detection. In contrast, Spectral profiling [56]
observes that periodic program activities, such as loops, often
generate periodic EM side-channel signals, which in turn
generate spectral peaks at the frequencies that corresponds
to the loop’s per-iteration durations. Thus [56] exploits Short
Time Fourier Transform (STFT) to identify such spectral peaks
and uses them for loop-level profiling of program execution.
Moreover, [39] extends the spectral profiling, and exploits
the spectral peaks for intrusion detection. Any injection of
instructions inside an existing loop alters the loop’s iteration
time, and hence causes a deviation or shift in the frequency of
the spectral peak, which [39] exploits for intrusion detection.
While this approach can accurately detect changes as small
as two instructions inside a loop in the program, it can only
detect very large deviations (>500,000 instructions) outside
loops.

In contrast, IDEA starts with a training set of trusted
executions of a program to be monitored and learns a dic-
tionary of fixed length “words” or windows of EM signals.
The monitoring consists of splitting the signal into same-
length windows and matching them against the dictionary,
and producing a dictionary-based reconstruction of the signal.
IDEA then flags large deviations between the observed and
reconstructed signal as anomalous (e.g. malware). So, the
training can be accomplished on “live” runs (without any
markers or any other changes) and without any access to the
source code or the control flow graph. In addition, IDEA is free

j))) <7 Demodulation
‘ LPF H ADC H

Reference System

Training

LPF H ADC

)

Monitored System

Demodulation

Monitoring

Training Signals Dictionary :
m % I Threshold =
Intrusion
1-NN |
Match I Moving
Average
- Filter
s o 3’
| ol Squared
bl | e ﬂ + Error
Monitored Signal Reconstruction

Fig. 1.

from error propagation. Hence, a few rare false mis-matches
do not have a compounding impact on the overall performance
of the algorithm. As a result, IDEA achieves 100% detection
rate without any false positives for detecting malwares such
as Ransomware and DDoS. The performance is even more
impressive considering that IDEA is trained and monitored
with different user-inputs (i.e. the training and the monitored
executions followed different control flow paths through the
program). So, there is a considerable variability between the
training and the monitored program execution, which renders
the anomaly detection more difficult, and the performance
evaluation more realistic and reliable. Unlike some existing
methods (e.g. WattsUpDoc), IDEA does not require training
on the malware itself, and hence is effective against zero-day
attacks. Furthermore, IDEA is equally effective both inside
and outside loops.

Apart from analog side-channels, telemetry data analysis has
also been exploited for network intrusion detection in ICS [41].
Likewise, behavior rule based intrusion detection system for
critical medical CPSs has been demonstrated [42]. However,
both of the systems struggle to achieve high detection rate at
low (or near-zero) false positive rate, which is a prerequisite
for monitoring any critical CPS. For ease of reference, we
compare all these methods with the proposed IDEA in Table 1.

IV. IDEA OVERVIEW

Figure 1 illustrates the workflow of IDEA. The signals in
both training and monitoring phase are demodulated, low-pass
filtered, and sampled before they are subjected to the main part
of IDEA signal processing, which exploits techniques similar
to template-based pattern matching to identify anomalous
(hence, potentially malicious) activity during the program
execution. In the training phase, IDEA learns a dictionary
of reference EM signatures or “words” by executing trusted
programs on an uncompromised reference device. Next, in the
monitoring phase, it continuously monitors the target device’s
EM signal by matching it and reconstructing it using the
dictionary. When the reconstruction error is above a predefined
threshold (i.e. there is a significant deviation from the refer-
ence EM signatures), IDEA reports an anomaly (intrusion).
The rest of this section describes IDEA in more detail.

Overview of IDEA framework.

A. AM Demodulation

Unintentional EM emanations occur at various frequencies,
but of particular importance is the frequency band centered
around the clock frequency of the processor, a.k.a. Central
Processing Unit (CPU). This is because this frequency band
contains signals that are primarily a function of the instruction
sequence executed by the CPU. Each processor cycle, the
CPU draws a current which is a direct result of the instruc-
tion(s) being executed. Much of this instruction-dependent
current is drawn by the CPU clock circuitry and by circuitry
which does new computations (i.e. switches on and off) every
CPU clock cycle. This creates a strong current at the CPU
clock frequency which acts as a carrier modulated by the
clock-to-cycle variations in program activity (i.e. executed
instructions). These currents flow through wires within the
processor and on the device’s printed circuit board (PCB).
At CPU and memory clock frequencies (and their harmonics)
the EM emanations created can propagate far enough to be
observed with a high signal to noise ratio [57]. When observed
this way, the emanating device has much in common with
a communications system since the device is a transmitter
which (inefficiently and unintentionally) transmits a message
signal carrying information about program activity using an
amplitude modulated carrier (i.e. the clock signal). We can
then receive and demodulate this signal using wireless com-
munications techniques. All EM signals, both in the training
phase and in the monitoring phase, are AM demodulated
at the processor clock frequency, low-pass filtered with an
anti-aliasing filter, and sampled before being sent for signal
processing.

B. Training Phase: Dictionary Learning

The training phase consists of learning a dictionary of EM
signatures through the execution of trusted programs on a
reference device. We execute trusted programs on an uncom-
promised device, and observe and record the corresponding
EM signals. We use different inputs to execute different control
flow paths as described in [38]. Ideally, we would like to
observe all possible control flow paths. However, in a practical
scenario, this may require too many inputs (hence, too many
training examples). For example, a twenty level nested IF
ELSE condition will have 22° = 1048576 different execution

paths. Nevertheless, we aim at observing most control flow
execution paths, and try to ensure that even if there are
unobserved control flow paths, they are either highly unlikely
or relatively brief. These goals are the same as those that guide
program testing, so program inputs created to provide good
test coverage of a program are highly likely to also satisfy the
needs of IDEA training. Once we have the training signals,
we learn the dictionary words using the following process.

1) Learning Words: The demodulated EM signal is split
into multiple overlapping short-duration windows that are
recorded as dictionary entries or “words”. These words corre-
spond to the EM signature of the underlying program execu-
tion. All dictionary words have the same word-length [. Each
word is shifted by s samples from the previous one. When s
is small, we end up with densely overlapping words. Conse-
quently, we learn a dictionary with large number of words
with slight variability (i.e. shift). This can help to achieve
shift-invariant pattern matching. Shift-invariance is necessary
because of hardware events, such as cache misses, that delay
(or shift) the subsequent execution (and the corresponding EM
signal). A cache miss can potentially occur at many different
points of the program execution. It is neither practical nor even
possible to generate a training set with all possible scenarios
of cache hits or misses. Therefore, creating a dictionary with
densely overlapped words can help us match EM signatures
better under variability due to hardware activity.

2) Word Normalization: All dictionary words are post
processed by mean subtraction and scale normalization:

w = (wo — p)/o (1)

Here, w denotes the normalized word, p is the mean and o
is the standard deviation of the unnormalized word wyg.

This normalization improves the matching accuracy by
ensuring that the matching is based on the pattern (i.e. the
relative shape of the waveform) rather than on the actual
amplitude. For instance, due to different positions of the an-
tenna, the distance from the processor may change between the
training and the monitoring phase. Hence, the training and the
monitored signals can have different scales or amplifications.
This normalization nullifies such issues.

3) Dictionary Reduction through Clustering: Next, we ap-
ply clustering to reduce the number of dictionary entries.
All applications have loops, which tend to generate repetitive
EM patterns. Likewise, the same control flow paths are often
reiterated at different points of the execution, and generate
similar EM patterns. Consequently, the reference dictionary
can have a large number of words or patterns that are very
similar, and correspond to the same code execution. The
objective of clustering is to assign similar words or EM
patterns into a single cluster, and exploit the cluster centroid
as the representative of the cluster. Using cluster centroids
as dictionary words improves the computational efficiency by
reducing the number of dictionary entries.

As the number of clusters & (i.e. the number of unique EM
patterns) is not known a priori, popular clustering algorithms
such as k-means can not be used for the dictionary reduction.

Training Signals

#1

|
word#1 | word#2 | word#3 word #4

#2

| word#5 | word#6 | word #7

word #9

I word #8

|
) |
| word#5 | I

Fig. 2. An example of verifying the monitored signal using dictionary words.
The monitored signal (shown with black lines) is verified against training (red,
blue and green) signals.

Instead, we use a threshold based clustering, where threshold
t is used as a parameter. Given a cluster centroid c;, the
algorithm proceeds by alternating between two steps:

Assignment Step: Assign each unassigned word w,, whose
Euclidean distance from the centroid ¢; is less than the
threshold ¢ to the cluster S;.

Si = {w,: Jlw, —cil|> <t A wy¢S;Vj, 1<j<i} (2)

Update Step: Update the cluster centroid ¢; by averaging
all members of cluster S;.

1
AP @

wp €S

Once the assignments no longer change, select a new cluster
centroid randomly from the words that have not yet been
assigned to any cluster. The algorithm converges when all
words are assigned to a cluster.

C. Monitoring Phase: Intrusion Detection

In the monitoring phase, the EM signal is continuously
monitored and matched against the dictionary, and anoma-
lous activity is reported when the monitored signal deviates
significantly from its dictionary-based reconstruction.

1) Matching and Reconstruction: The monitored EM signal
is split into windows and matched against the dictionary using
the 1-Nearest Neighbor algorithm [58], with Euclidean dis-
tance as the distance metric. The signal is then reconstructed
by replacing each window with its best-match dictionary
word. This is illustrated in Figure 2. The entire signal can
be reconstructed by concatenating these best-match words
that correspond to the signal’s sequence of windows, and
this reconstructed signal is then used for anomaly (intrusion)
detection.

Monitored Signal

Intrusion

Amplitude

Time
Squared Reconstruction Error

->

—before SMA filter
—after SMA filter

Detection

Squared Error

Time

Fig. 3. Intrusion detection from reconstruction error: the squared reconstruc-
tion error is passed through a SMA filter to reduce false positives.

2) Detection: The detection continuously compares the
monitored signal with the reconstructed signal. Specifically,
we compute the per-sample reconstruction error as the squared
difference between samples of the monitored and the recon-
structed signal:

e(n) = (z(n) —y(n))? ©))

Here, x(n), y(n) and e(n) denote the monitored signal, the
reconstructed signal, the squared reconstruction error signal,
respectively and n denotes the sample-index.

The detection algorithm is illustrated in Figure 3. Due to
considerations presented in Section D.3 below, we then apply
an L-samples long Simple Moving Average (SMA) filter to
the signal e(n), yielding the filtered signal é(n):

=
é(n) = T Z e(n—1))

=0
Finally, we set a threshold on €, and whenever this threshold
is breached, we report an intrusion. Figure 4 illustrates how
reconstructed curves based on IDEA algorithm match the
original program execution vs. the execution with malware.
From the plot we can observe that reconstructed signal deviates
significantly from the execution with malware compared to
the deviation form the normal execution, hence allowing us to

detect the malware.

D. System Parameters

The performance of IDEA depends on a number of system
parameters, such as word-length [, word-shift s, and order of
the SMA filter L. The rest of this section is a discussion of
how these system parameters are chosen.

1) Word-Length: The word-length [has an impact on the
performance of the proposed system. The optimal word-length
l is a tradeoff between confidence in a match (the longer the
word, the more reliable the match) and likelihood of a good
match (the shorter the word, the more likely it is to find a
dictionary word that matches it well).

Original Program Execution

Amplitude

Time
Anomalous Program Activity

Amplitude

Time

Fig. 4. Top green curve: original program execution; Bottom red curve:
program execution with intrusion; Black curve: IDEA-reconstructed signal.
Note that black curve better matches with green than with red curve.

Therefore, the word-length [should be long enough to avoid
good matches among a set of unrelated signals. To achieve
that, a word in a dictionary should represent a relatively long
sequence of processor instructions or hardware activity. This
ensures that it is unlikely that a non-trained program will
produce a sequence of executed processor instructions that
is an excellent match for any dictionary entry of a trained
program.

On the other hand, the word-length [should be short enough
so that random events, such as cache misses or interrupts, do
not preclude good matches. For example, if we use a word
that is very long, it will be difficult to find good matches in
the dictionary of any reasonable size. This is because different
inputs and hardware activities result in different signals when
executing the same code, a reasonable-sized dictionary can
contain only a small subset of the possible valid words, and a
(long) window of the monitored signal will likely exhibit many
input-dependent and hardware behaviors that do not match any
of the dictionary words. By using a smaller word length we
limit the number of word variants that can be produced, which
reduces the dictionary size required for “full” coverage of
these variants. Even when dictionary coverage of word variants
is not complete and a window of the monitored signal has
a set of input-dependent and hardware behaviors that is not
represented in the dictionary, a smaller word length increases
the probability that the dictionary contains a word that matches
the window for most of its duration, and thus still produces a
reasonably small reconstruction distance.

In order to estimate the optimal word-length I, we insert
snippets of untrained signals into the trained or trusted ref-
erence signals. First, we record EM signals by executing a
benchmark program with different inputs. Next, we follow a
10 fold cross validation to test each of these signals with and
without an “untrained” insertion from a different benchmark
program. Here, signals without insertion represent class 0 or
“known”, while signals with insertion correspond to class 1 or
“intrusion”. Figure 5 shows the histograms corresponding to
“known” and “intrusion” with different word-lengths. For w =
16 samples, the Maximum Mean Squared Reconstruction Error
(MMSRE) is low for both known (or trained) and intrusion

N @ @
S S S

Probability Density
s g

~

word length = 16 samples 30 word length = 32 samples word length = 128 samples
[_JKnown Program SN | ° Il
! Known Program [IKnown Program
- Unknown Intrusion 2 []Unknown Intrusion 25| | Unknown Intrusion
i 2 o 2
@ 5]
=] 04
215 2
3 a3
g 3
5 10 e,
o o
10 5 1
0 olan H
0 0.05 0.1 0.15 02 025 0 0.1 0.2 03 0.4 0.5 0 05 1 1.5

0

Maximum Mean Squared Reconstruction Error

Fig. 5.

(or untrained) signals (i.e. even an untrained signal can be
matched with words in the dictionary). As a result, the two
histograms overlap. However, for w = 32 samples, MMSRE
corresponding to the known signal is significantly lower than
that of the intrusion, and there exists a clear threshold between
the two classes. When the word-length is much larger, i.e.
w = 128 samples, MMSRE for both known and intrusion
signals gets much higher (i.e. even a trained signal cannot
be matched with low Euclidean distance). Hence, the two
histograms cannot be separated anymore.

These experimental evaluations reveal that for any intrusion
larger than 256 samples, IDEA can achieve Area Under the
Curve (AUC) better than 0.9995 on the Receiver Operating
Characteristic (ROC) curve for any word-length between 32
to 64 samples. If not specified differently, the rest of the paper
assumes word-length w = 32 of samples. This corresponds to
Sps of execution time, which is about 250 processor clock
cycles on the FPGA board.

2) Word-Shift: Another parameter that impacts the perfor-
mance of IDEA is a word-shift. Each “word” in the dictionary
has to be shifted some number of samples from the previous
one in order to compensate for hardware activities such
as cache hit or miss. We estimate the optimal word-shift
s through experimental evaluation. Again, we exploit a 10
fold cross validation in which snippets of insertions from an
“untrained" program are treated as intrusion. Figure 6 shows
the ROC curve for different word-shifts for an intrusion of
128 samples. It is clear that s = 1 performs the best, and
the larger s results in smaller AUC. This results is intuitive
as s = 1 mimics shift invariant signal matching most closely.
However, it should be noted that, the detection performance
for s = 2 is comparable to that of s 1. Hence, s = 2
can be exploited to reduce the computational requirements.
The number of entries in the dictionary would be roughly
halved for s 2 compared to s 1. So, the memory
requirement would be halved, and consequently, so would be
the computational time. Nevertheless, as we intend to highlight
the performance of our system, we use s = 1 in the remainder
of this paper.

3) Filter Order: In order to justify the use of the SMA filter
and to determine its optimal length, consider the following
detection problem. Let e(n) £ x(n) — y(n) denote the
error signal, defined as the difference between the monitored

Maximum Mean Squared Reconstruction Error

Maximum Mean Squared Reconstruction Error

Histogram for maximum mean squared reconstruction error with different word-lengths.

1.0 - - = e
ﬁ’f‘ —=— word shift=1 (AUC=0.99626)
i word shift=2 (AUC=0.99256)

08 . o word shift=4 (AUC=0.9842)
y word shift=8 (AUC=0.9639)

True Positive Rate
o o
N ()]
-l gl

o
N

°
o
g

T T T T T
0.15 0.20 0.25 0.30 0.35

False Positive Rate

T
0.10

o
o
=]
o
o
a

0.40

Fig. 6. ROC curves for intrusion detection with different word-shift.

and reconstructed signals. Observing an L-samples segment
thereof e(n — L +1),...,e(n), we wish to decide whether:

e Hy : This is a valid program execution segment; or
e H; : This is an intrusion code segment.

We begin by attributing two simplified statistical models to the
error signal under each hypothesis: ¢(n) is assumed to be an
independent, identically distributed (iid) zero-mean Gaussian
process, but with a different variance under each of the
different hypotheses:

e Hy:e(n)
e Hyi:¢(n)

~ N(0,03)
~ N(Oa O—%)

where 03 < o7 are fixed variances (presumed known, for

now). The Likelihood Ratio Test (LRT) for deciding between
the two hypotheses then takes the form:

flen—=L+1),...,e(n)|Hy) S

fle(n—L+1),... e(n)[Ho) m, (6)

where f(-|H;) denotes the conditional joint probability distri-
bution function (pdf) of the observations given H;,7 = 0,1,
and 7 is a threshold value. Substituting Gaussian distributions

and taking the log we get

— £log (0?) Z

i=0

n*’L

Z n— i) >log() (7)

—0 Ho

L
+ = 5 log(c?)

which can be further rearranged as
A KOG

- Z _21 <1og (k) +

where k = 02?/02 > 1 denotes the ratio between the two
variances. This means that the average of squared samples of
€(n) over the L-samples observation interval is to be compared
to some threshold 7. This average is precisely é(n), the output
of a length-L. SMA filter in (5), with e(n) £ €2(n).

To determine an optimal value for L, note ﬁrst that the
mean and variance of &(n) under H; are (resp.) o7 and 207,
1 = 0,1. We note further, that if L is sufﬁ01ently large (say,
larger than 10 or so), considering the Central Limit Theorem,
the distribution of €(n) under each hypothesis is approximately
Gaussian. Consequently, the false positive and false negative
probabilities can be shown to decay monotonically in L.
Therefore, to have them minimized, L should take the largest
possible value that does not breech the H; model. Namely,
L has to be chosen as the full length of the shortest possible
intrusion. Since that length is not known a priori, we chose
to set the filter order equal to the shortest length of insertion
that we intend to detect. If not specified differently, we use
L = 256 as the filter length.

Note that in reality the situation is somewhat more com-
plicated than described above. First, the iid Gaussian signal
model for e(n) is inaccurate, as its samples are expected to be
correlated and not necessarily Gaussian distributed; The vari-
ances U% and 0(2) would rarely be known; And reconstruction
errors may be very high for a few brief, sporadic segments,
even under H, resulting either from lack of full coverage in
the training phase (i.e. lack of appropriate training examples
that follow the same control flow path as the monitored signal)
or from the variability of hardware activities between the
training signal and the monitored signal. These complications
certainly undermine any claim of optimality of the LRT in
this case. However, the rationale behind the resulting test
remains valid, justifying the use of the SMA filter and the
choice of L. For example, the possibility of short occurrences
of large errors under Hy would merely increase the mean
and variance of é(n) under Hy, thereby increasing the false
positive rate. Nevertheless, the dependence of this rate on L
remains monotonically decreasing, still supporting our choice
of the largest possible L that does not breech H;.

2
7 10g(n)> . (8)

n—1) 277
Hoy

V. EXPERIMENTAL EVALUATION

In this section we present our experimental results on detect-
ing several different types of malware on different applications
and embedded systems. It is important to emphasize that

IDEA is not limited to these applications and/or malware,
but fundamentally can be applied to any system that has
observable EM emanations.

A. Experiments with Different Malware Behaviors

To show the effectiveness of IDEA on detecting different
malware behaviors, we selected 3 applications from the SIR
repository [59]: (Replace, Print Tokens, and Schedule) and
implemented three common types of embedded system mal-
ware payloads (DDoS attacks, Ransomware attacks, and code
modification) on an Altera DE-1 prototype board (Cyclone
II FPGA with a NIOS II soft-processor) while executing
any of these SIR applications. We selected applications from
SIR repository because they are relatively compact (allowing
manual checks of our results to get a deeper understanding
of what affects the IDEA accuracy), are commonly used to
evaluate performance of techniques that analyze program ex-
ecution, and have many program inputs available (each taking
a different overall path through the program code), so we can
use disjoint sets of inputs for training and monitoring and yet
have a large number of inputs for training (to improve code
coverage) and monitoring (to obtain representative results).

For DDoS cyber-attack, we assume that exploiting a vulner-
ability (e.g. buffer-overflow), the control-flow will be diverted
(e.g. using code-reuse attack) to a code that sends DDoS
packets in rapid succession, without waiting for reply from the
target. After sending a burst of packets, the malware returns
execution for a while to the original application, so the device
continues to perform its primary functionality. In the case of
an embedded device, e.g. Altera DE-1 (Cyclone II FPGA)
board, there is no traditional network (e.g. Ethernet) port. So
we instead implement the packet-sending activity using the
JTAG port.

For Ransomware attack, we implement a Cryptoviral [60],
that encrypts the victim’s data, and demands ransom in return
for the decryption key. We assume that the attacker inserted
the malicious code through firmware modification. We used
Advanced Encryption Standard, AES-128 for encryption. En-
cryption of large files is time-consuming, and can be easily
detected by IDEA. To make things more challenging, the
Ransomware we implement encrypts only one encryption
block of AES-128, which corresponds to a 16-byte data. Note
that more secure cyphers, e.g. AES-256, have larger encryption
blocks, and are thus easier to detect.

For code modification, which is the basis of an important
class of malware (APT and firmware modification attacks),
we assume that the malware has already successfully modified
the source code of the program, and that the goal of IDEA is
to detect when this modified code executes. For example, in
the Replace benchmark, there is a function called subline(),
which is used to search for words in an input string. In a
scenario where authorities use this code to look for names in
intercepted communication, the attacker’s modification of this
code would prevent any word that begins with specific initial
letters from being reported.

Fig. 7. Measurement setup used to collect EM traces from distance.

Setup: To observe the EM emanations, we used a 2.4-2.5
GHz 18dBi panel antenna that was placed 1 m, 2 m, and
3 m away from the device (see Figure 7). We used a (fairly
expensive) Agilent MXA N9020A spectrum analyzer to
demodulate and record the EM emanations, primarily so we
can have more control and flexibility in our investigations,
but in the next section (V.B) we will show that a sub-
$1000 SDR receiver (USRP-B200mini [61]) can be used
instead. To assess IDEA’s performance, we have used
program input sets from [59]. Malware injections occur in
roughly 30% of the runs, randomly selected, and in each
injection, the injection time (relative to the beginning time of
the run) is drawn randomly from a set of 10 predefined values.

Detection Performance: In order to evaluate the performance
of the intrusion detection system, we apply a 10 fold cross
validation. We execute each benchmark program with different
inputs. Some of these executions are infected with malicious
intrusions. As the system does not assume any a priori
knowledge about the threat models or the intrusions, we do not
use any of these infected executions for training the system.
Likewise, we select all the system parameters through experi-
ments with “untrained” insertions from a different benchmark
program, without using any actual infected signal. The non-
infected signals are randomly divided into 10 roughly equal-
sized subsets. In each fold, we test one of these subsets along
with the infected signals, while the rest of the non-infected
signals are used for training the system. The objective of the
experiment is to measure how successfully the system can
identify and differentiate between the infected and the non-
infected signals.

We follow this procedure with three different benchmark
programs, namely Print Tokens, Replace and Schedule. For
Print Tokens, a total of 637 executions were recorded, out of
which 142 were infected with different variants of malware -
68 Ransomware, 66 DDoS, and 8 code modification. In case
of Replace, we have recorded 691 executions including 138
infected ones out of which 68 were Ransomware, 65 were
DDoS, and 5 were code modification. For Schedule, we collect
681 executions where 144 of them were infected with 68
Ransomware, 67 DDoS, and 9 code modification.

Figure 8 plots the ROC curves for IDEA intrusion
detection on different benchmark programs with different
variants of intrusions. It shows excellent performance

Program:Print Token

—=—Ransomware (AUC=0.99841)
—e—DDoS (AUC=0.99752)
Code-Mod. (AUC=0.99732)

o
o
i

o
o
.

=3

=
e
=

True Positive Rate

o
N
"
&

T T T T T
000 005 010 015 020 025 030 035 040
False Positive Rate

Program:Replace

1.0
—=&— Ransomware (AUC=0.99899)
—e— DDoS (AUC=0.9955)
0.8 1 Code-Mod. (AUC=0.99454)
i)
©
14]
© 06
=
‘@
3 T
0.4 4
o4
2
=
024
0.0 % T T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
False Positive Rate
Program:Schedule
1.0
|—=— Ransomware (AUC=1)
—e— DDoS (AUC=1)
0.8 Code-Mod. (AUC=0.97651)
2
©
o
0064
=
‘@
o
Q044
)
2
=
024
0.0 % T

hd T T T T T T
000 005 010 045 020 025 030 035 040
False Positive Rate

Fig. 8. Receiver Operating Characteristic curves for intrusion detection on
three different benchmark programs for different variants of malwares.

in all three benchmark programs, with Area Under the
Curve (AUC) very close to 1 for Ransomware and DDoS
malwares. Code modification creates a much smaller change
in the program’s execution, thus is much harder to detect.
However, IDEA still detects it with an AUC > 97.5%.
Specifically, detection of all code modifications is achieved
by tolerating a false positive rate of no more than 1% in
Print Tokens and Replace, and no more than 12% in Schedule.

Detection at Different Distances: Next we test IDEA at three
different distances (1 m, 2 m and 3 m) from the monitored
device. The results (Figure 9) show that the performance
of IDEA remains stable over different distances. In fact,
for all three benchmark programs, the performance is quite
similar at 1 m and 2 m, with AUC better than 99.5%. The
performance degrades somewhat at 3 m, achieving 99% AUC
for Replace and 98% AUC for Print Tokens and Schedule.
The degradation in accuracy at the 3 m distance is mainly

Program Print_Token|

—=— 1m (AUC=0.99794
—o— 2m (AUC=0.99461
3m (AUC=0.97885

True Positive Rate

T T T T T T T
000 005 010 045 020 025 030 035 040
False Positive Rate

Program Replace

1.0
I —=— 1m (AUC=0.99719)
—e— 2m (AUC=0.99769)
08 A+ 3m (AUC=0.99351)
k)
5 B
© 0.6 -
2%
@
o
Q04
[}
2
=
0.2 4

& T T

T T T
000 005 010 015 020 025 030 035 040
False Positive Rate

Program Schedule

—=— 1m (AUC=0.99848)
—e— 2m (AUC=0.99710)
3m (AUC=0.98149)

o
o

e
o

True Positive Rate
°
'S

e
N

e
o

od—3—3 = =l

T T T T T T
0.10 0.15 0.20 0.25 0.30 0.35 0.40

False Positive Rate

=3
=)
S
o
o
&

Fig. 9. Receiver Operating Characteristic curves for intrusion detection on
three different benchmark programs from different distances.

due to a reduced signal-to-noise ratio (SNR) as the monitored
signal weakens with distance, and we believe that these
results can be improved by using customized (higher-gain)
antennas and low-noise amplifiers.

Detection at Different SNR: To evaluate IDEA in presence of
environmental EM noise, we apply Additive White Gaussian
Noise (AWGN) to the monitored signal, and test IDEA by
monitoring the benchmark application Replace at three differ-
ent SNR (20 dB, 10 dB and 5 dB). The results are shown in
Figure 10. Experimental evaluation demonstrates that IDEA is
robust against EM noise. In fact, IDEA achieves an excellent
performance (AUC > 99.5%) at 20 dB SNR. Furthermore, at
10 dB SNR, IDEA can still detect intrusions with an AUC
> 95%. However, at 5 dB SNR, the detection performance
degrades to a 67.4% AUC.

In addition, IDEA is inherently robust against out-of-band
EM interference from adjacent devices. IDEA monitors the

1
5 g
0.8}
° =20 dB (AUC = 0.9958)
* --10 dB (AUC = 0.9520)
o : -+ 5 dB (AUC = 0.6742)
g 0.6 A
,‘E‘
o]
o
0 0.4 e
2
=
0.2
Iy
. L ’ i : ;
0 0.2 0.4 0.6 0.8 1

False Positive Rate

Fig. 10. Receiver Operating Characteristic curves for intrusion detection at
different SNR.

target device at a frequency band around its processor’s clock
frequency. Any EM interference with frequencies outside this
monitored band is blocked by the anti-aliasing filter during the
analog-to-digital conversion (ADC). Since each device emits
EM signal at its own clock frequency, interference is limited
and can be filtered out using signal processing.

B. Experiments with Cyber-Physical Systems

To emphasize on practicality of IDEA and to demonstrate
its ability to successfully detect real malware on real CPSs,
we use IDEA to monitor three industrial CPSs implemented
on a well-known embedded system, Arduino UNO. We use
a control-flow hijacking attack, an APT, and a firmware
modification attack on these CPSs for evaluation.

The first CPS we use is called a SyringePump which
is designed to dispense or withdraw a precise amount of
fluid, e.g. in hospitals for applying medication at frequent
intervals [62], and it is a representative of a medical CPS.
The device typically consists of a syringe filled with medicine,
an actuator (e.g. stepper motor), and a control unit (Arduino
UNO) that takes commands and produces controls for the
stepper motor (a sample of this CPS can be found in [62]).
We implement a control-flow hijack attack on this system by
exploiting an existing buffer-overflow vulnerability in a sub-
routine (serialRead()) that reads the inputs which causes the
program’s control-flow to jump to an injected malicious code.
We assume that the adversary is interested in disrupting the
correct performance of the system by dispensing/withdrawing
an unwanted amount of fluid which could cause a significant
damage to the patient, thus the injected code causes the syringe
to dispense a random amount of fluid. The buffer-overflow is
implemented by sending a large inputs to overwrite the stack
followed by the address of the “injected” malicious code which
overwrites the actual return address of the serialRead).

The second system is a proportional-integral-derivative
(PID) controller that is used for controlling the temperature
of a soldering iron. This type of system could also be used
to control the temperature or any other critical value in other
settings, such as a building or an industrial process, and thus
is representative of a large class of industrial CPSs. Using
a feedback loop and a history of previous temperatures, the

Fig. 11. Experimental setup for the SyringePump: (1) Arduino device with
LCD, (2) stepper motor, (3) syringe, (4) magnetic probe and (5) software-
defined radio.

system keeps and/or changes the temperature to a desired
temperature (a sample of this CPS can be found in [63]). To
implement an APT on this application, we assume that the
adversary’s malware (like in Stuxnet) has already infiltrated
the system and can reprogram the device. The adversary’s goal
is to change a critical value under some conditions, which in
turn can cause damage to the overall physical system. In our
evaluation, we made a malicious modification to the source
code so that the temperature history is altered under a specific
condition (e.g. for a specific model number). Consequently,
the system will set a wrong temperature. The injected code is
only 2 lines of code (i.e. IF(X) THEN LASTTEMPHISTORY =
RANDOMVALUE).

The final system in our evaluation is a robotic arm. Robotic
arms are often used for manufacturing, and are critical
components of many modern factory. Robotic arms typically
receive inputs/commands from a user and/or sensors and move
objects based on these inputs. There is a growing concern in
security of these CPSs since they are typically connected to
the network and are exposed to cyber-threats (e.g. [64]). A
simple implementation of such a robot can be found in [65].
For this system, we implement a firmware modification attack,
where we assume that the reference libraries (e.g. library
for Servo, Serial, etc.) are compromised (this can be also
considered as a zero-day vulnerability). Note that, we assume
that IDEA’s training contains the “unmodified” version of
these library (baseline reference data). In this attack, we
modify a subroutine (writeMicroseconds()) in Arduino’s
Servo library [66] by adding an extra if condition to change
the speed of Servo motor randomly and reprogram the system
with this compromised library, assuming that the adversary is
interested in causing a malfunction in arm’s movement.

Setup. An Arduino UNO with an ATMEGA328p
microprocessor clocked at 16 MHz is used to implement the
CPSs. A magnetic probe is used to receive EM signals from
the device. Figure 11 shows the experimental setup for the
SyringePump. For all measurements, we use a commercially
available SDR receiver (Ettus Research B200-mini) to
record the signal. B200-mini costs significantly lower than
a spectrum analyzer and makes IDEA a practical option for

System AUC Malware Type
SyringePump > 0.999 Control-flow hijack
PID Controller | > 0.999 APT
Robotic Arm > 0.999 | Firmware Modification
TABLE II

EXPERIMENTAL RESULTS FOR THREE MALWARE ON THREE CPSs.

monitoring security-critical systems. For each CPS, we use
25 randomly selected signals for training and 25 malware-free
and 25 malware-afflicted signals for testing.

Detection Performance. Table II summarizes the detection
accuracy of IDEA on the three CPSs. As seen in the table, in
all cases, IDEA has successfully detected every instances of
a malware without reporting any false positive which makes
IDEA a promising framework for monitoring critical CPSs,
where very small false positive rate while having a high
detection accuracy is required. Note that in all cases, the
runtime for the malicious code is significantly less (< 0.01%)
than the overall runtime of the application.

C. Experiments with loT Devices

To demonstrate the robustness of IDEA, we also use it to
monitor an A13-OLinuXino (Cortex A8 processor) IoT board.
Unlike the FPGA-based system that runs the application “on
bare metal,” this board runs a Linux operating system (OS).
The defensive mechanisms already present in the OS make it
harder to inject prototype malware activity. Instead, we model
malware injection by injecting snippets of signals from a
different (not-trained-on) program. For this experiment, we use
Replace as the reference program, on to which signal-snippets
from Print Tokens were inserted as anomalous (not-trained-
on) signal. This approach also allows injections of any chosen
duration, and use of different signals for different injection
instances. In contrast, construction of even one short-duration
actual malware instance is very challenging. For example, a
single packet sent in a DDoS attack, or single-block encryption
in Ransomware, lasts much longer than any of our signal-
snippet injections.

To allow a direct comparison between our real-malware
and signal-snippet injections, we also perform signal-snippet
injection experiments on the DE-1 FPGA board. We use 10-
fold cross validation, and test signals from a trained benchmark
program Replace, with or without insertions or intrusions from
Print Tokens. Figure 12 shows the experimental results. We
can observe that intrusions longer than 256 samples (i.e. 200
instructions or 40us length) on the FPGA are detected with an
AUC of 99.95%. For the IoT board, an AUC better than 99.8%
is achieved for intrusions with at least 1024 samples (i.e. 800
instructions or 7.94us length). The difference in duration of
the intrusion that is needed to achieve the same AUC on the
two devices is mainly due to OS activity that is present on the
IoT board and absent on the FPGA board. This OS activity
introduces variation in the signals, increasing reconstruction
error even for valid executions. This, in turn, raises the
reconstruction error threshold for reporting an anomaly at a

Variable Length of Intrusion: FPGA‘

1.0 s s
—=#— 64 samples (AUC=0.9762)

j —e— 128 samples (AUC=0.9977)

0.8 256 samples (AUC=0.9995)

True Positive Rate
2 <
| I

0.2+

T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

False Positive Rate

[Variable Length of Intrusion: [0T |

o

—8— 256 samples (AUC=0.8902)
—e— 512 samples (AUC=0.9931)
1024 samples (AUC=0.9982)

o
o

True Positive Rate
o
2 <

o
N

VII. CONCLUSIONS

This paper proposes a novel framework called IDEA that
uses electromagnetic (EM) side-channel signals to detect ma-
licious program activity on CPSs. IDEA first records EM
emanations from an uncompromised device to establish a
baseline of uncompromised EM patterns. Then, IDEA con-
tinuously monitors the device’s EM emanations, comparing
the observed EM emanations against the reference dictionary.
When the observed EM emanations deviate significantly from
the entries in the reference dictionary, IDEA reports this as an
anomaly which could be caused by malware. The proposed
method does not require any resource or infrastructure on, or
any modifications to, the monitored system itself. To evaluate
IDEA’s effectiveness, we implement a number of malicious
activities such as a Ransomware, a firmware modification,
and a control-flow hijack on three CPSs, and then use IDEA
to monitor these CPSs while it is subjected to a malicious-
attack. We find that IDEA can detect different components of
malware with excellent accuracy from up to 3 m, and find
every instances of attacks on CPSs with perfect accuracy.

o
o
T T S T 1

T T T T T T
000 005 010 015 020 025 030 035 040
False Positive Rate

Fig. 12. Receiver Operating Characteristic curves for intrusion detection on
a FPGA (top) and on an IoT Device (bottom).

given confidence level, so more anomalous samples are needed
to reach this increased reconstruction error threshold.

VI. LIMITATIONS AND FUTURE WORK

A major concern for commercial deployment of the
IDEA monitoring system is its cost. However, we envision that
IDEA will be deployed to monitor critical and high-assurance
CPSs, e.g. critical infrastructures, military systems, hospital
equipment etc. In such scenarios, the cost of deployment (e.g.
cost of antenna, software-defined radio and signal processing)
is offset by the cost of the monitored system and by the cost
and consequences of security breach. In addition, deployment
of IDEA is relatively simple; IDEA does not make any change
to the monitored system, and thus creates no regulatory, safety,
or disruption concern for the system.

Another important limitation with IDEA is its scalability.
IDEA requires very high training coverage, which is difficult
to achieve for larger programs. However, we exploit software
engineering techniques that ensure high path coverage for
training. Moreover, IDEA stores EM patterns corresponding
to normal program activities in a reference dictionary. This
dictionary may grow prohibitively large for larger applications.
While we use clustering to keep the dictionary size manage-
able, future work should investigate feature dimensionality
reduction techniques (e.g. principal component analysis) to
further optimize the dictionary size without sacrificing the
detection accuracy. In addition, future research should focus
on extending IDEA’s capability to monitor multiple devices
simultaneously and to monitor multi-core processors.

[1]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

“INTEL a guide to the internet of things infographic,” https:
/Iwww.intel.com/content/www/us/en/internet- of-things/infographics/
guide-to-iot.html, accessed: 2018-03-01.

M. M. Chui and R. Roberts, “Mckinsey quarterlythe internet of things,”
2010.

R. Richards, “High-assurance cyber military systems (hacms),” DARPA.
mil, 2016.

E. Colbert, “Security of cyber-physical systems,” Journal of Cyber
Security and Information Systems, vol. 5, no. 1, 2017.

T. M. Chen and S. Abu-Nimeh, “Lessons from stuxnet,” Computer,
vol. 44, no. 4, pp. 91-93, 2011.

R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Security
& Privacy, vol. 9, no. 3, pp. 49-51, 2011.

N. Falliere, L. O. Murchu, and E. Chien, “W32. stuxnet dossier,” White
paper, Symantec Corp., Security Response, vol. 5, no. 6, 2011.

E. Nakashima and S. Mufson, “Hackers have attacked foreign utilities,
cia analyst says,” Washington Post, January 2008.

K. Parrish, “Hackers can gain control of an in-
sulin pump to inject a harmful dose into patients,’
http://www.digitaltrends.com/computing/johnson-animas-onetouch-
ping-insulin-pump-vulnerable-hacker-attack/, October 05, 2016.

C. Li, A. Raghunathan, and N. K. Jha, “Hijacking an insulin pump:
Security attacks and defenses for a diabetes therapy system,” in e-Health
Networking Applications and Services (Healthcom), 2011 13th IEEE
International Conference on. 1EEE, 2011, pp. 150-156.

G. Loukas, Cyber-physical attacks: A growing invisible threat.
Butterworth-Heinemann, 2015.

“Cybersecurity for networked medical devices is a shared responsibil-
ity: Fda safety reminder,” https://www.fda.gov/MedicalDevices/Safety/
AlertsandNotices/ucm189111.htm, November 04, 2009.

“Cybersecurity for medical devices and hospital networks: Fda
safety communication,” https://www.fda.gov/MedicalDevices/Safety/
AlertsandNotices/ucm189111.htm, June 17, 2013.

I. Zeifman, D. Bekerman, and B. Herzberg, “Breaking down mirai:
An iot ddos botnet analysis,” Imperva. Source: https://www. incapsula.
com/blog/malware-analysis-mirai-ddos-botnet. html, 2016.

R. Brewer, “Ransomware attacks: detection, prevention and cure,” Net-
work Security, vol. 2016, no. 9, pp. 5-9, 2016.

D. F. Sittig and H. Singh, “A socio-technical approach to preventing,
mitigating, and recovering from ransomware attacks,” Applied clinical
informatics, vol. 7, no. 2, p. 624, 2016.

A. Humayed, J. Lin, F. Li, and B. Luo, “Cyber-physical systems
securityéATa survey,” IEEE Internet of Things Journal, vol. 4, no. 6,
pp. 1802-1831, 2017.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Z.-K. Zhang, M. C. Y. Cho, C.-W. Wang, C.-W. Hsu, C.-K. Chen, and
S. Shieh, “Iot security: ongoing challenges and research opportunities,”
in Service-Oriented Computing and Applications (SOCA), 2014 IEEE
7th International Conference on. I1EEE, 2014, pp. 230-234.

K. Dunham, “Evaluating anti-virus software: Which is best?” Informa-
tion Systems Security, vol. 12, no. 3, pp. 17-28, 2003.

A. Mohaisen and O. Alrawi, “Av-meter: An evaluation of antivirus scans
and labels,” in International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, 2014, pp. 112-131.
C. Foundation, “Automated malware analysis - cuckoo sandbox,”
http://www.cuckoosandbox.org/.

C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic
malware analysis using cwsandbox,” IEEE Security & Privacy, vol. 5,
no. 2, 2007.

S. Das, Y. Liu, W. Zhang, and M. Chandramohan, “Semantics-based
online malware detection: Towards efficient real-time protection against
malware,” IEEE Transactions on Information Forensics and Security,
vol. 11, no. 2, pp. 289-302, 2016.

J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethu-
madhavan, and S. Stolfo, “On the feasibility of online malware detection
with performance counters,” in ACM SIGARCH Computer Architecture
News, vol. 41, no. 3. ACM, 2013, pp. 559-570.

M. Ozsoy, K. N. Khasawneh, C. Donovick, I. Gorelik, N. Abu-Ghazaleh,
and D. Ponomarev, “Hardware-based malware detection using low-level
architectural features,” IEEE Transactions on Computers, vol. 65, no. 11,
pp. 3332-3344, 2016.

A. Tang, S. Sethumadhavan, and S. J. Stolfo, “Unsupervised anomaly-
based malware detection using hardware features,” in International
Workshop on Recent Advances in Intrusion Detection. Springer, 2014,
pp. 109-129.

A. Viswanathan, K. Tan, and C. Neuman, “Deconstructing the assess-
ment of anomaly-based intrusion detectors,” in International Workshop
on Recent Advances in Intrusion Detection. Springer, 2013, pp. 286—
306.

C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting intrusions using
system calls: Alternative data models,” in Security and Privacy, 1999.
Proceedings of the 1999 IEEE Symposium on. IEEE, 1999, pp. 133—
145.

B. B. Kang and A. Srivastava, “Dynamic malware analysis,” in Ency-
clopedia of Cryptography and Security, 2nd Ed., 2011, pp. 367-368.
N. Scaife, H. Carter, P. Traynor, and K. R. Butler, “Cryptolock (and drop
it): stopping ransomware attacks on user data,” in Distributed Computing
Systems (ICDCS), 2016 IEEE 36th International Conference on. 1EEE,
2016, pp. 303-312.

K. Tian, D. Yao, B. G. Ryder, and G. Tan, “Analysis of code heterogene-
ity for high-precision classification of repackaged malware,” in Security
and Privacy Workshops (SPW), 2016 IEEE. 1EEE, 2016, pp. 262-271.
A. Nourian and S. Madnick, “A systems theoretic approach to the
security threats in cyber physical systems applied to stuxnet,” I[EEE
Transactions on Dependable and Secure Computing, 2015.

L. Liu, G. Yan, X. Zhang, and S. Chen, “Virusmeter: Preventing your
cellphone from spies,” in International Workshop on Recent Advances
in Intrusion Detection. Springer, 2009, pp. 244-264.

H. Kim, J. Smith, and K. G. Shin, “Detecting energy-greedy anomalies
and mobile malware variants,” in Proceedings of the 6th international
conference on Mobile systems, applications, and services. ACM, 2008,
pp. 239-252.

C. R. A. Gonzélez and J. H. Reed, “Power fingerprinting in sdr integrity
assessment for security and regulatory compliance,” Analog Integrated
Circuits and Signal Processing, vol. 69, no. 2-3, p. 307, 2011.

S. S. Clark, B. Ransford, A. Rahmati, S. Guineau, J. Sorber, W. Xu,
and K. Fu, “Wattsupdoc: Power side channels to nonintrusively discover
untargeted malware on embedded medical devices.” in HealthTech, 2013.
Y. Liu, L. Wei, Z. Zhou, K. Zhang, W. Xu, and Q. Xu, “On code
execution tracking via power side-channel,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’16. New York, NY, USA: ACM, 2016, pp. 1019-1031.
[Online]. Available: http://doi.acm.org/10.1145/2976749.2978299

R. Callan, F. Behrang, A. Zajic, M. Prvulovic, and A. Orso, ‘“Zero-
overhead profiling via em emanations,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis. ACM,
2016, pp. 401-412.

A. Nazari, N. Sehatbakhsh, M. Alam, A. Zajic, and M. Prvulovic,
“Eddie: Em-based detection of deviations in program execution,” in

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

Proceedings of the 44th Annual International Symposium on Computer
Architecture, ser. ISCA ’17. New York, NY, USA: ACM, 2017, pp. 333—
346. [Online]. Available: http://doi.acm.org/10.1145/3079856.3080223
Y. Han, S. Etigowni, H. Liu, S. Zonouz, and A. Petropulu, “Watch
me, but don’t touch me! contactless control flow monitoring via
electromagnetic emanations,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS *17.
New York, NY, USA: ACM, 2017, pp. 1095-1108. [Online]. Available:
http://doi.acm.org/10.1145/3133956.3134081

S. Ponomarev and T. Atkison, “Industrial control system network intru-
sion detection by telemetry analysis,” IEEE Transactions on Dependable
and Secure Computing, vol. 13, no. 2, pp. 252-260, 2016.

R. Mitchell and R. Chen, “Behavior rule specification-based intrusion
detection for safety critical medical cyber physical systems,” [EEE
Transactions on Dependable and Secure Computing, vol. 12, no. 1, pp.
16-30, 2015.

D. Agrawal and B. Archambeault, “Rao and jr, rohatgi, p.:ﬁAIJthe em
side-channel (s): Attacks and assessment methodologiesdAl,” Crypro-
graphic Hardware and Embedded Systems—CHES, 2002.

D. Genkin, L. Pachmanov, I. Pipman, and E. Tromer, “Stealing keys
from pcs using a radio: Cheap electromagnetic attacks on windowed
exponentiation,” in International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 2015, pp. 207-228.

Y.-i. Hayashi, N. Homma, T. Mizuki, H. Shimada, T. Aoki, H. Sone,
L. Sauvage, and J.-L. Danger, “Efficient evaluation of em radiation
associated with information leakage from cryptographic devices,” IEEE
Transactions on Electromagnetic Compatibility, vol. 55, no. 3, pp. 555—
563, 2013.

U. Rithrmair, X. Xu, J. Solter, A. Mahmoud, M. Majzoobi, F. Koushan-
far, and W. Burleson, “Efficient power and timing side channels for phys-
ical unclonable functions,” in International Workshop on Cryptographic
Hardware and Embedded Systems. Springer, 2014, pp. 476-492.

D. Genkin, A. Shamir, and E. Tromer, “Rsa key extraction via low-
bandwidth acoustic cryptanalysis,” in International Cryptology Confer-
ence. Springer, 2014, pp. 444-461.

Y. Berger, A. Wool, and A. Yeredor, “Dictionary attacks using keyboard
acoustic emanations,” in Proceedings of the 13th ACM conference on
Computer and communications security. ACM, 2006, pp. 245-254.
R. Callan, A. Zajic, and M. Prvulovic, “A practical methodology
for measuring the side-channel signal available to the attacker for
instruction-level events,” in Microarchitecture (MICRO), 2014 47th
Annual IEEE/ACM International Symposium on. 1EEE, 2014, pp. 242—
254.

R. Callan, A. Zaji¢, and M. Prvulovic, “Fase: Finding amplitude-
modulated side-channel emanations,” in ACM SIGARCH Computer
Architecture News, vol. 43, no. 3. ACM, 2015, pp. 592-603.

J. Balasch, B. Gierlichs, and I. Verbauwhede, “Electromagnetic circuit
fingerprints for hardware trojan detection,” in 2015 IEEE International
Symposium on Electromagnetic Compatibility (EMC), Aug 2015, pp.
246-251.

0. SAdll, T. Korak, M. Muehlberghuber, and M. Hutter, “Em-based
detection of hardware trojans on fpgas,” in 2014 IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST), May
2014, pp. 84-87.

K. Sakiyama, M. Kasuya, T. Machida, A. Matsubara, Y. Kuai,
Y. i. Hayashi, T. Mizuki, N. Miura, and M. Nagata, “Physical au-
thentication using side-channel information,” in 2016 4th International
Conference on Information and Communication Technology (ICoICT),
May 2016, pp. 1-6.

G. A. Jacoby, R. Marchany, and N. Davis, “Battery-based intrusion
detection a first line of defense,” in Information Assurance Workshop,
2004. Proceedings from the Fifth Annual IEEE SMC. IEEE, 2004, pp.
272-279.

T. K. Buennemeyer, T. M. Nelson, L. M. Clagett, J. P. Dunning, R. C.
Marchany, and J. G. Tront, “Mobile device profiling and intrusion
detection using smart batteries,” in Hawaii International Conference on
System Sciences, Proceedings of the 41st Annual. 1EEE, 2008, pp.
296-296.

N. Sehatbakhsh, A. Nazari, A. Zajic, and M. Prvulovic, “Spectral pro-
filing: Observer-effect-free profiling by monitoring em emanations,” in
Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM International
Symposium on. 1EEE, 2016, pp. 1-11.

A. Zajic and M. Prvulovic, “Experimental demonstration of electro-
magnetic information leakage from modern processor-memory systems,”

Electromagnetic Compatibility, IEEE Transactions on, vol. 56, no. 4, pp.
885-893, Aug 2014.

[58] N. S. Altman, “An introduction to kernel and nearest-neighbor non-
parametric regression,” The American Statistician, vol. 46, no. 3, pp.
175-185, 1992.

[59] G. Rothermel, S. Elbaum, A. Kinneer, and H. Do, “Software-artifact
infrastructure repository,” UR L http://sir. unl. edu/portal, 2006.

[60] N. Andronio, S. Zanero, and F. Maggi, “Heldroid: Dissecting and
detecting mobile ransomware,” in International Workshop on Recent
Advances in Intrusion Detection. Springer, 2015, pp. 382-404.

[61] https://www.ettus.com/product/details/fUSRP-B200mini, accessed May

3, 2017.

“Open syringe-pump source code and project,” https://github.com/

naroom/OpenSyringePump, last Accessed: 2018-08-01.

“Pid controller soldering iron code and project,” https://github.com/

sfrwmaker/soldering_controller, last Accessed: 2018-08-01.

[64] D. Quarta, M. Pogliani, M. Polino, F. Maggi, A. M. Zanchettin, and

S. Zanero, “An experimental security analysis of an industrial robot

controller,” in 2017 IEEE Symposium on Security and Privacy (SP),

May 2017, pp. 268-286.

“Robotic ~ arm code and project,” https:/lifehacker.com/

build-a-kickass-robot-arm-the-perfect-arduino-project- 1700643747,

last Accessed: 2018-08-01.

“Arduino servo refrence library,” https://www.arduino.cc/en/Reference/

Servo, last Accessed: 2018-08-01.

[62]

[63]

[65]

[66]

Haider Adnan Khan received the B.Sc de-
gree in Electrical and Electronic Engineering from
Bangladesh University of Engineering and Technol-
ogy in 2006, and the M.Sc. in Electrical Engineering
and Information Technology from Karlsruhe Insti-
tute of Technology, Germany in 2011. Since 2016,
he has been a Graduate Research Assistant with the
Electromagnetic Measurements in Communications
and Computing (EMC?) Lab, pursuing the Ph.D.
degree in the School of Electrical and Computer
Engineering, Georgia Institute of Technology focus-
ing on electromagnetic information leakage from computing devices. His
research interests span areas of digital signal processing, machine learning,
and computer vision.

Nader Sehatbakhsh received the B.Sc degree in
Electrical and Electronic Engineering from Univer-
sity of Tehran in 2013 and the M.Sc. in Electrical
Engineering from Georgia Institute of Technology
in 2016. Since 2014, he has been a Graduate Re-
search Assistant with CompArch and Electromag-
netic Measurements in Communications and Com-
puting (EMC?) Labs, pursuing the Ph.D. degree in
the School of Computer Science, Georgia Institute
of Technology focusing on Computer Architecture,
Embedded System and Hardware Security. He won
the best paper award in MIRCO’49 for his work on using EM side-channel
signals for software profiling.

Luong N. Nguyen received the B.Sc. degree in
Electrical and Computer Engineering from the Hanoi
University of Science and Technology in 2013 and
the M.Sc. degree in Electrical and Computer En-
gineering from the Seoul National University in
2016. Since 2016, he has been a Graduate Research
Assistant in the Electromagnetic Measurements in
Communications and Computing (EMC?) Lab, pur-
suing the Ph.D. degree in the School of Electri-
cal and Computer Engineering, Georgia Institute
of Technology focusing on digital circuit design,
software and hardware security, and embedded system. His current research
interests span areas of ASIC design and computer architecture.

Robert L. Callan (S’14-M’17) received the B.Sc.
degree in electrical engineering from the University
of Pennsylvania in 2007, the M.Sc. degree in elec-
trical engineering from the University of Southern
California in 2008, and the Ph.D. degree from the
School of Electrical and Computer Engineering at
the Georgia Institute of Technology in 2016. He
is currently a post-doctoral researcher in the Elec-
tromagnetic Measurements in Communications and
Computing (EMC?) Lab at the Georgia Institute
of Technology focusing on analyzing software using
EM emanations. Previously, he characterized high speed serial interfaces at
IBM and Altera. His research interests span areas of electromagnetics, VLSI,
and computer engineering.

Arie Yeredor (M’99-SM’02) received the B.Sc.
(summa cum laude) and Ph.D. degrees in electrical
engineering from Tel-Aviv University (TAU), Tel-
Aviv, Israel, in 1984 and 1997, respectively. He is
currently an Associate Professor with the School of
Electrical Engineering at TAU, where his research
and teaching areas are in statistical and digital signal
processing and estimation theory. He also held a
consulting position in these research areas with
NICE Systems, Inc., Ra’anana, Israel, from 1990 to
2015. In 2015-16 he has been on Sabbatical Leave
from TAU as a visiting professor at the Georgia Institute of Technology,
Atlanta, GA, USA. Prof. Yeredor serves as a Senior Area Editor for the IEEE
TRANSACTIONS ON SIGNAL PROCESSING, as a member of the IEEE
Signal Processing Society’s Signal Processing Theory and Methods (SPTM)
Technical Committee, and as Chair of the Signal Processing chapter of IEEE
Israel Section. He has been awarded the yearly Best Lecturer of the Faculty
of Engineering Award (at TAU) seven times.

Milos Prvulovic (S’97-M’03-SM’09) received the
B.Sc. degree in electrical engineering from the Uni-
versity of Belgrade in 1998, and the M.Sc. and Ph.D.
degrees in computer science from the University of
Illinois at Urbana-Champaign in 2001 and 2003,
respectively. He is a Professor in the School of Com-
puter Science at the Georgia Institute of Technology,
where he joined in 2003. His research interests are in
computer architecture, especially hardware support
N = for software monitoring, debugging, and security. He

is a past recipient of the NSF CAREER award, and
a senior member of the ACM, the IEEE, and the IEEE Computer Society.

Alenka Zajic (S’99-M’09-SM’13) received the
B.Sc. and M.Sc. degrees form the School of Electri-
cal Engineering, University of Belgrade, in 2001 and
2003, respectively. She received her Ph.D. degree
in Electrical and Computer Engineering from the
Georgia Institute of Technology in 2008. Currently,
she is an Associate Professor in the School of Elec-
trical and Computer Engineering at Georgia Institute
of Technology. Dr. Zaji¢ was the recipient of the
2017 NSF CAREER award, 2012 Neal Shepherd
Memorial Best Propagation Paper Award, the Best
Paper Award at the International Conference on Telecommunications 2008,
and the Best Student Paper Award at the 2007 Wireless Communications and
Networking Conference. Her research interests span areas of electromagnetic,
wireless communications, signal processing, and computer engineering.

