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Abstract—This paper investigates unintended radiated emis-
sions from cellphones to identify operational status of rear/front
camera. We implement a supervised learning method to achieve
our goal. In the training phase, we collect data for possible
combinations of phone model and camera status. Then, we apply
two-phase-dimension-reduction method for better and effective
classification. The first dimension-reduction phase is averaging
magnitudes of frequency components of a sliding window, which
is followed by applying principle component analysis (PCA)
technique to reduce the dimension further. In testing phase, k-
Nearest-Neighbors (k-NN) algorithm is utilized to classify test
data. Finally, we provide examples to show that emanated EM
signals from cellphone cameras can exfiltrate useful information.

Index Terms—Side/Covert Channels, Electromagnetic Emana-
tions, Security, Classification.

I. INTRODUCTION

Legitimate hardware/software activities in a computer sys-
tem can emit signals because of systematic changes while
executing scripts, branches, codes, etc. These unintentional
emissions generate a side channel that can help a sophisti-
cated attacker exfiltrate sensitive information once detected
and processed [1]. Side/covert channel attacks exploit timing
differences in a program execution of different bits [3], [4],
temperature variations [5], power fluctuations while signing
the secret key of a cryptosystem [6]–[9], acoustic signals gen-
erated while printing a document [10], cache-misses [11], [12],
etc. Although these side channels pose significant security
threats, they all require direct access to the system or have
relatively low bit transmission rate.

However, electromagnetic (EM) side channels circumvent
these problems because 1) attacks based on emanated EM
signals only require close proximity, or 2) these channels
have higher bit-transmission rate compared to other physical
side channels [13]. To comprehend the severity of these side
channels, many attack scenarios [?], [14]–[16], and different
leakage quantification methods [17], [18] are introduced. One
interesting application of side channels is shown by Eck in
1985, where he successfully reconstructed the video content
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from video display unit on BBC [19]. He performed the exper-
iments from the ground floor while the video unit was on the
eighth floor. Kuhn in [20] demonstrated the severity of leak-
ages from display units by reconstructing images on cathode-
ray-tube. Although reconstructing the content of video displays
is an open problem for modern devices, i.e., smartphones,
these studies have created considerable interest in monitoring
even more sophisticated devices by exploiting emanated sig-
nals from different units, i.e., camera. For example, identifying
whether the camera of a mobile device is active or not is
an interesting practical application. Many museums prohibit
photography on the premises, yet through the integration of
cameras on mobile devices, cameras are easily accessible and
it is difficult to enforce this rule. Therefore, detecting active
cameras on the premises has become an untraceable task
for the museums. Similarly, detecting unauthorized recording
during movie screenings is an increasingly difficult task. In
addition to those, detecting hidden cameras in a given setting
is another useful application of camera activity monitoring.

In this paper, we investigate the relationship between the
emanated EM signal and the camera status. To achieve this
goal, we first introduce the two-phase-dimension-reduction
method to reduce the data size and prevent complex clustering
operations. Then, we apply PCA to reduce the dimension of
the data further, and to create a model for the proposed su-
pervised learning method. Finally, k-NN is utilized to classify
test signals. Our results demonstrate that accurate estimation
for camera status is possible even from a distance of 5 meters.

The rest of the paper is organized as follows: Section
II introduces the dimension reduction method and model
generation. Section III implements classification method of the
test signals. In Section IV, experimental results are provided
for both far-field and near-field measurements, and Section V
concludes the discussion.

II. SIGNAL ACQUISITION AND TEMPLATE GENERATION

Earlier work shows that cellphones are complex devices
with many sources of electromagnetic (EM) emanations [13].
Since our goal is to identify the status (on/off) of cell phone
cameras as well as the model of the cellphone, we need a
method that only keeps the emanated signals due to the camera
activity while eliminating emanated signals from other parts



of the cell phone. Furthermore, disclosing the status of a
camera and the corresponding cellphone with high accuracy
requires long data instances. Therefore, number of samples
taken while capturing emanated signals is generally very large
and this leads to a very high dimensional input space with
plethora of features. In order to address the challenges caused
by the unrelated EM emanations and the large size of the input
space, we propose a new method called two-phase-dimension-
reduction.

A. Phase-I: Noise and Size Reduction with Windowing

Any transmitted signal is corrupted by channel noise and
interference. Various signal processing techniques can be
applied to minimize these impairments of received signal [22].
Also, sophisticated devices emit EM signals from almost all of
its components that destruct the received signal further [23].

To reduce the effect of interference and additive noise, and
hereby to increase the estimation accuracy, we first capture the
signal for T seconds (the status of the phone is assumed to be
kept the same during this time period). Denoting the sampling
time of the measuring device as Ts, we obtain M = T/Ts
samples for each measurement. M is typically a large number
to process. As mentioned earlier, the corresponding signal is
also exposed to corruptions due the other activities and channel
noise. To handle these problems, we propose to average short
time discrete frequency domain transform (STFT) with a
rectangular window function. Let N be the size of the window,
NS be the number of samples that do not overlap at each STFT
operation, and NR be the number of STFT operations which
is given by

NR = floor

(
M −N
NS

+ 1

)
. (1)

We propose the following transformation for both noise
smoothing and data size reduction:

xi[k] =
1

NR

NR∑
i=1

|Xi[k]| (2)

where xi ∈ RN is a row vector representing the classification
input vector for the ith measurement, and

Xi[k] =

N−1∑
n=0

yi [n+ (i− 1)Ns] exp (−i2πkn/N) (3)

where yi ∈ CM is the ith original received signal from the
measuring device. Please notice that the size of xi is much
smaller than yi, and xi is the averaged magnitudes with
lower frequency resolution. The status of the camera is kept
the same during the measurement but other activities on the
cell phone are varying during the measurements. Therefore,
averaging in (2) reduces the variation due to non-camera
activities. Likewise, decreasing the resolution helps to reduce
the dimension of the input space and the size of the data.

B. Phase-II: Further Size Reduction with PCA

In order to determine the status of a camera, the first solution
that comes to mind is tracking frequency components that
significantly differ upon initialization of camera activity. In
Fig. 1a and Fig. 1b, we provide spectrogram of two cellphones
downconverted by 990 MHz when rear/front camera is on/off.
These two figures are given to demonstrate the possible
scenarios for diverse camera activities. The main observations
from these two figures can be listed as follows:

• Some frequency components become stronger when
rear/front camera is on.

• Different frequency components are activated for differ-
ent cellphone vendors.

• For Alcatel phone, the same frequency components are
activated for both front and rear cameras. However, front
camera produces weaker signals than the rear camera.

• For ZTE phone, different signal components get stronger
for rear and front cameras.

(a) Spectrogram for Alcatel phone when the camera is off, when the
rear-camera is on, and when front-camera is on.

(b) Spectrogram for ZTE phone when the camera is off, when the
rear-camera is on, and when front-camera is on.

Fig. 1: Spectrogram of received signals.

Because various frequency components are activated for
different phones and camera status, tracking all frequency



components can cause overhead on the performance of de-
tection algorithm. Also the frequency components and corre-
sponding thresholds have to be set cautiously for more accurate
results. To overcome these difficulties, as the second step of
our method, we apply principle component analysis (PCA)
which is exploited to reduce data size further while keeping
the variation between classes as much as possible.

Assuming M � N , the method given in Section II-A
decreases the size of data considerably. Likewise, PCA helps to
decrease the data size further by keeping the important features
regarding to clusters. To apply PCA, we first need to generate
the data matrix X which is given by

X =


x̂1

x̂2

...
x̂m

 (4)

where m is the number of measurements and x̂i is the
transformed version of xi given by

x̂i[k] = 10 log10

(
|x[k]|2

)
. (5)

Here, each column of X represents an averaged frequency
component in dB-domain.

The reason behind transforming the input space into dB-
domain is as follows: DC-component magnitudes of the mea-
surements are pretty large compared to other frequency com-
ponents, therefore, dimension reduction with PCA in linear
domain can result in over-weighted contribution from DC
components. This might lead to the loss of the variation among
higher frequency components and consequently result in in-
accurate classification. Hence, applying linear to dB-domain
transformation decreases the dominance of DC-components,
and increases the effect of other frequency components on
PCA output.

Let Y = XTX and its eigen-decomposition be

Y = Λ V ΛT (6)

where (•)T is the Hermitian transpose of its argument. Then,
the size of the collected data is decreased further by projecting
X into a new space X ∈ Rm×K as follows:

X = XΛKVK (7)

where ΛK ∈ RN×K contains K eigenvectors corresponding
to the largest K eigenvalues of Y, and VK ∈ RK×K

is a diagonal matrix whose entries are square-root of the
multiplicative inverse of corresponding eigenvalues. With this
step, the dimension of the feature vectors reduces to only K,
which could be beneficial to implement less complex detection
methods for clustering.

III. TESTING METHODOLOGY TO UNVEIL THE STATUS OF
A CAMERA

In supervised learning, the method that is obtained in
training is utilized during the testing phase to correctly clas-
sify the received signals. In that respect, in Section II, a

methodology is introduced to obtain a model for classifying
camera activities. The model contains three parameters: The
transformed data matrix X , the eigenvector matrix ΛK, and
the diagonal eigenvalue matrix VK. In order to cluster the data
points by using the developed method, we propose to apply
k-Nearest Neighbors (k-NN) algorithm. The overall procedure
for classification can be listed as follows:

• Measure the emanated signal for T seconds assuming the
status of the camera is unchanged in this time interval.

• Apply the method given in Section II-A to reduce the
effect of undesired emanated signals and channel noise,
and decrease the size of the collected data.

• Apply PCA to obtain the model (X , ΛK, VK) that will
be exploited in testing phase.

• Collect the testing signal z with the measuring instru-
ment and apply the noise and size reduction technique
introduced in Section 2.

• Transform z into dB-domain as given in (5) to obtain ẑ.
• Produce the input for k-NN algorithm by projecting the

test signal into the space defined by the model as:

Z = ẑ ΛKVK. (8)

• Apply k-NN algorithm to estimate the status of the
camera by utilizing X and Z .

Although k-NN algorithm is a simple tool to classify the
signals, in the next section, we demonstrate that it is a practical
and effective tool to accurately estimate the test signals with
the given experimental setup and analysis.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

This section provides experimental results and discussion
for identifying camera status. We demonstrate that emissions
due to camera activities can leak information, and this infor-
mation can be exploited for device monitoring purposes.

TABLE I: Tested phones for camera activity classification.
Phone Clock Frequency Core

a) ZTE ZFive 1.4 GHz Quad-Core
b) Alcatel Ideal 1.1 GHz Quad-Core
c) iPhoneSE 1.85 GHz Dual-Core
d) Samsung Centura 800 MHz Single-Core

The setups for experiments are given in Fig. 2. We test the
proposed method for various phones that are given in Table
I in the same order. We also use AAronia PBS H2 near-field
magnetic probe which is placed on top of the rear camera, and
a signal analyzer (Keysight MXA N9020B) as the measuring
device. Unless otherwise noted, the bandwidth for experiments
is fixed to be 30 MHz and the signal is downconverted by 990
MHz.

A. Identifying Camera Status for a Specific Phone with Near-
Field Measurements

The first experiment set is designed to illustrate whether dif-
ferentiating the camera status is possible for a given phone. We
consider the measurement time, T , as 5 ms, the STFT window
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Fig. 2: Experimental setup for near-field measurements with
phones from various vendors.
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Fig. 3: Clusters obtained during training phase for near-field
measurements with phones in Fig. 2, respectively.

length, N , as 4096, sampling time, Ts, as 1.3 × 10−8 (This
value is device-specific), and the number of non-overlapping
samples, NS , as 7680 (This number corresponds to 0.1 ms).

Fig. 3 demonstrates the training models in the same order
as in Table I when the dimension of the data, K, is reduced
to 3. We need to note that the original length of the data

is 384000 (This value corresponds to 5 ms of the received
signal). In these models, ei represents the eigenvector direction
corresponding to ith largest eigenvalue. We take 100 measure-
ments for each possible scenarios. The main outcome here is
that for all phones, the clusters are dense and the separation
between different clusters are very clear. Another interesting
observation is that the behavior of iPhoneSE is different when
rear-camera is on: It also consists of some sub-clusters that
are not encountered for other phones. However, all of these
sub-clusters are explicitly classified and the variations within
each sub-cluster at any direction is pretty small. We also need
to note that Samsung phone has only rear camera, and that is
why the corresponding figure has only two clusters.

For the testing part, we again perform 100 measurements for
each combination of phones and camera activities, and apply
the proposed method to estimate the class of each measure-
ment. For k-NN algorithm, we check 10 nearest neighbors. The
accuracy of the method with the given setup is 100% for each
model with zero false positive. Therefore, for a given phone,
we can successfully determine whether rear/front camera is on.
Also, the method presented here is a zero-overhead monitoring
because no adjustment has been done to hardware or software
of the devices.

B. Identifying Camera Status and Model with Near-Field
Measurements when Rear/Front Camera is On

Observing the explicit separation of clusters for each phone,
we question the possibility of estimating the phone model
based on the signal emanated when rear/front camera is on.
In other words, the training matrix contains measurements
captured when rear or front camera is on for the cellphones
given in Table I. We do not include the data corresponding
to camera-is-off case for training because there are small
differences between signals among different vendors that are
not effective enough to be distinguished by the proposed
method. As much as we cannot determine the model of the
phone when the camera is inactive, it is still possible to
determine that the camera is inactive. In short, if there is a
camera activity from the phones listed in Table I, we can
successfully determine from which phone and camera (rear or
front) the emanated signal comes from. Also, if there are no
active cameras, we can conclude that with zero false positives.

We follow the same procedure in Section II to generate
the model parameters. Again, we collect 100 signals for
each experimental setup. The model of data after noise and
dimension reduction is given in Fig. 4. In this figure, we
provide clusters for each phone when rear/front camera is on
except Samsung phone because it has only one rear camera.
We observe that the clusters are well separated, and the
distance between cluster centroids is larger than any in-group
variation at any direction.

The next step is to collect test signals, and apply noise
and size reduction methods proposed in Section II. In that
respect, we capture 100 test signals for each class, and follow
exactly the same procedure given in Section III. Although
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Fig. 4: Clusters obtained during training phase for near-field
measurements when rear/front camera is on.

some clusters look very close to each other, we obtain 100%
accuracy and zero false negative for each group.

C. Identifying Camera Status with Far-Field Measurements

Near-field measurements provide notably promising results
to identify camera status and phone model. Further to that,
it is even more significant and practical to determine the
camera activity from far-field measurements for zero-overhead
monitoring.

The setup for far-field measurements is given in Fig. 5.
We use a lab-made planar antenna that is designed in our
lab and operates around 1 GHz [24]. The measurements are
done at a distance of 5 meters. We apply the same procedure
to generate the classification model as introduced in Section
II. We observe that the variations within clusters are larger
compared to the near-field measurements. Also, the distance
between cluster centroids is smaller as given in Fig. 6a,
therefore, we expect to have inaccurate estimations. Especially,
when the same frequency components are active for both rear
and front cameras, it is very tricky to determine whether the
active camera is the rear or front one. An example of such a
situation is given in Fig. 6b for experiments done with Alcatel
phone. As it can be noted in Fig. 6b, the same frequency
components are dominant during both rear and front camera
activities, with very slight amplitude differences, which makes
distinguishing those two classes very challenging.

Another critical observation is that the emanated signal is
extremely weak even for near-field measurements when rear
camera of iPhone is on. This extremely weak signal is further
attenuated due to the distance for far field measurements and
consequently it is almost impossible to capture the signal from
5 m distance. Therefore, we update our goal for iPhone as
distinguishing the status of the front camera.

5 m 

Fig. 5: Experimental setup for far-field measurements.

TABLE II: Testing misclassification for each phone.
ZTE Alcatel iPhoneSE Samsung

Error 0% 1.5% 0% 3%

The misclassification rates for each phone are given in Table
II. We observe that the error probabilities are less than 3%,
which supports our initial hypothesis that accurate estimation
of camera status is possible even from some distance.

Lastly, we investigate the effect of phone rotation on the
received signal power. In that respect, we perform experiments
with the setup given in Fig. 5 from a distance of 50 cm. We
assume the zero degree position corresponds to the position
when the phone is parallel to the ground and heads to the
right hand side of the figure. We observe that the power loss
shows dependency on the rotation of phone such that the loss
is minimum when the phone heads up, and maximum when
it is horizontal. Although there are small power variations in
received signal power, we could conclude that emanated signal
is relatively rotation-invariant.

V. CONCLUSIONS

We investigate unintended radiated emissions to identify
whether rear/front camera is on/off for various cellphone mod-
els. Both far-field and near-field measurements are analyzed
to estimate the status of a camera. A supervised learning
methodology is applied to achieve better accuracy results. In
the training phase, we collect data for possible combinations
of phone models and camera activities followed by two-
phase-dimension-reduction method for better and effective
classification. The first dimension-reduction phase averages
magnitudes of frequency components of a sliding window.
Then, we apply PCA technique to reduce the dimension
further, and build a model for the training data. In the testing
phase, k-Nearest-Neighbors (k-NN) algorithm is utilized to
group each test signal based on the model. Finally, we provide
some experimental results. We achieve a perfect accuracy rate
with no false positive in near-field measurements. Also, we
demonstrate that the status of camera can be detected at a
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Fig. 6: Experimental results for far-field measurements.

distance of 5 m, which illustrates the severity of information
leakages due to camera activities.
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