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Abstract—In previous work, we introduced zero-overhead
profiling (ZOP), a technique that leverages the electromagnetic
emissions generated by the computer hardware to profile a
program without instrumenting it. Although effective, ZOP has
several shortcomings: it requires test inputs that achieve extensive
code coverage for its training phase; it predicts path profiles
instead of complete execution traces; and its predictions can
suffer unrecoverable accuracy losses. In this paper, we present
zero-overhead path prediction (ZOP-2), an approach that extends
ZOP and addresses its limitations. First, ZOP-2 achieves high
coverage during training through progressive symbolic execution
(PSE)—symbolic execution of increasingly small program frag-
ments. Second, ZOP-2 predicts complete execution traces, rather
than path profiles. Finally, ZOP-2 mitigates the problem of path
mispredictions by using a stateless approach that can recover
from prediction errors. We evaluated our approach on a set of
benchmarks with promising results; for the cases considered, (1)
ZOP-2 achieved over 90% path prediction accuracy, and (2) PSE
covered feasible paths missed by traditional symbolic execution,
thus boosting ZOP-2’s accuracy.

Index Terms—symbolic execution; path profiling; tracing

I. INTRODUCTION

Program tracing consists of logging selected events during
program execution. Such trace logs are then used for various
tasks, such as computer forensics, debugging, performance
analysis, and user profiling. Typically, program tracing is im-
plemented through instrumentation, that is, by adding probes
to a program that log events as they occur.

Albeit effective, instrumentation can cause issues due to
its intrusive nature. In particular, instrumentation adds run-
time overheads that can be problematic in many scenarios,
including real-time systems, embedded software, and deployed
applications. To address these issues, while still being able to
collect accurate (partial) program traces, in previous work we
developed zero-overhead profiling (ZOP) [1], a technique that
can profile a program without instrumenting it by leveraging
the electromagnetic (EM) emissions generated by the pro-
cessing hardware during execution. ZOP, although effective,
has three main limitations. First, it requires extensive code
coverage, and therefore a thorough set of test inputs, during
its training phase to achieve good accuracy. Basically, in ZOP,
each relevant subpath must be executed, so that its EM signal
can be recorded and later matched. Unfortunately, in real-
world programs, the test cases are frequently few, of poor
quality, and often completely absent. Second, ZOP predicts
acyclic path profiles [2], rather than complete execution traces.

These path profiles count executions of unique, acyclic paths
within the program. Although useful for some tasks, path
profiles summarize away the exact sequence of events that
would instead be logged in a complete path trace. Third, ZOP
can fail to recover from a misprediction. ZOP attempts to
match EM signals by following the control flow graph of the
program being profiled. When a misprediction occurs, ZOP
backtracks until it can find a path that better matches the
signal. Although this approach can avoid mispredictions that
result in infeasible paths, the predicted and actual control flows
can diverge beyond recovery when the EM signals collected
during training do not closely match the signals observed
during profiling for more than a short time.

In this paper, we propose zero-overhead path prediction
(ZOP-2), a novel approach that extends ZOP and addresses
its shortcomings. First, to support the training phase even in
the absence of an extensive set of inputs, we developed a
new input-generation technique based on symbolic execution:
progressive symbolic execution (PSE). PSE overcomes some
of the limitations of traditional symbolic execution by taking
advantage of the fact that program subpaths need not be
observed in the context of a complete execution. More pre-
cisely, initially PSE executes the whole program with symbolic
inputs as done in classic symbolic execution. If this fails to
achieve sufficient coverage for ZOP-2 training, it proceeds
to execute functions with symbolic inputs and unconstrained
global state (similar to UC-KLEE [3]). PSE then continues by
(1) substituting called functions with symbolic stubs and (2)
increasingly unconstrained local state, until a given coverage
objective is achieved. Although this approach can result in
infeasible paths, this is not problematic when the execution of
such paths is used in training—in most (if not all) cases, the
oversampled EM emissions will simply never match a signal
produced during profiling.

Second, we modified the ZOP profiling phase to predict
complete execution traces instead of acyclic-path profiles. In
this way, we made the approach considerably more generable
and applicable in a broader range of scenarios.

Finally, we developed a new signal matching algorithm that
divides the EM signals into sampling windows and matches
them in a stateless fashion (i.e., without following paths
in the control flow graph of the program being profiled).
Although this state-less prediction approach can increase the
occurrence of mispredictions of individual basic blocks, these



mispredictions do not impact future prediction accuracy, which
means that ZOP-2 can easily recover from prediction errors.

To evaluate ZOP-2, we applied it to the three original ZOP
benchmarks and to a new, larger benchmark. Our results show
that ZOP-2 is a promising approach. In particular, they show
that ZOP-2 does produce accurate path predictions, with an
accuracy over 90% for the cases considered. They also show
that PSE is an effective technique, in that it was able to cover
feasible paths missed by traditional symbolic execution, which
contributed to increasing ZOP-2’s accuracy.

The main contributions of this paper are:
• ZOP-2, a zero-overhead whole-program tracing approach.
• PSE, an input generation technique that targets increas-

ingly smaller code fragments until it achieves a given
coverage goal.

• An implementation of PSE, which is publicly available
as a docker image [4] and in archival format [5].

• An empirical evaluation that demonstrates the effective-
ness and potential usefulness of ZOP-2.

II. BACKGROUND

In this section, we provide some necessary background
information on ZOP, our previous technique for zero-overhead
(acyclic paths) profiling, and on symbolic execution. We also
define some terms that we use in the rest of the paper.

A. Zero-Overhead Profiling

Zero-overhead profiling (ZOP) [1] computes acyclic path
profiles [2] for a program P by observing the electromagnetic
(EM) emanations produced by a computing system during
execution of (an unmodified version of) P. ZOP consists of
two main phases: training and profiling. In the training phase,
ZOP runs P against a set of inputs to collect waveforms for the
EM emanations generated by the computing system running
P. In the profiling phase, ZOP (1) runs P, uninstrumented and
unmodified, against inputs whose executions need to be pro-
filed, (2) records the EM emissions produced by the program,
and (3) matches these emissions with those collected during
training to predict which acyclic paths were exercised and how
often. In an evaluation performed on several benchmarks, ZOP
was able to predict acyclic-path profiling information with an
accuracy greater than 94% on average.

Despite these positive results, however, ZOP has some
shortcomings that limit its usefulness and general applicability.
First of all, as we discussed in the Introduction, ZOP requires
an extensive set of inputs in order to build good models in
the training phase. In fact, the empirical results we described
above were obtained by using test suites that achieved com-
plete branch coverage, which are rarely available in practice.
In addition, acyclic path profiles provide useful information,
but they summarize events into histograms and discard in-
formation about the full sequence of events. They therefore
cannot be used for the many tasks for which information about
complete traces is needed.

Finally, due to the way ZOP matches signals, the predictions
it computes can suffer unrecoverable accuracy losses.

B. Symbolic Execution

Symbolic execution (SE) [6] is a technique that executes
a program using symbolic instead of concrete inputs. At any
point in the program’s (symbolic) execution, SE keeps track
of (1) the symbolic state, expressed as a function of the
inputs, and (2) the path condition (PC), a set of constraints
in conjunctive form that consists of the conditions on the
inputs under which the execution reaches that point. The
symbolic state and the PC are built incrementally during SE.
When SE executes a statement s that modifies the value of a
memory location m, it computes the new symbolic value of m
according to s’s semantics and suitably updates the symbolic
state. When SE executes a conditional branching statement c,
it forks the execution, follows both branches, and updates the
PC along each branch by adding an additional conjunct that
represents c’s predicate.

When successful, SE can compute an input that would cause
a given point in the program to be reached. To do so, the PC
for that point would be fed to an SMT (Satisfiability Modulo
Theories) solver, which would try to find an assignment to the
free variables in PC (i.e., the inputs) that satisfies the PC.

C. Terminology

A control flow graph (CFG) for a function f is a directed
graph G = 〈N,E, en, ex〉, where N is a set of nodes that
represent statements in f , E ⊆ N ×N is a set of edges that
represent the flow of control between nodes, and en ∈ N and
ex ∈ N are the unique entry and exit points for the CFG.

A basic block in a CFG is a contiguous sequence of nodes
(i.e., instructions) with no incoming branches except for the
first node in the block and no outgoing branches except for
the last node in the block.

A call graph (CG) is a directed graph G =< M,E >,
where M is the set of functions in the program, and an edge
(fa, fb) ∈ E implies that function fa may call function fb.

III. OUR APPROACH: ZERO-OVERHEAD PATH PREDICTION

Figure 1 shows an overview of ZOP-2, our technique for
zero-overhead path prediction. (Please note that, to avoid
clutter, some elements in the figure are repeated.) As the
figure shows, ZOP-2 consists of two main phases: Training
and Prediction.

The Training Phase takes as input (the source code of)
a Program P , whose complete paths we want to be able
to predict, and generates the EME Model, a model of the
electromagnetic (EM) emissions generated by the program.
Two modules of ZOP-2 take part in this phase: the Input
Generation and Replay module and the EME Model Generator.
Given P , the goal of the Input Generation and Replay module
is twofold. The first goal is to generate Replay Cases: inputs
for P , or fragments thereof, that achieve a given coverage goal,
typically expressed in terms of program subpaths. The second
goal is to replay the generated inputs against the program
(or against a program fragment), so that the EME Model
Generator can record the EM emissions generated during
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Fig. 1: Overview of our ZOP-2 approach.

the replay and generate the EME Model, which links such
emissions to the part of the program that generated them.

The Prediction Phase takes as input the EME Model,
Program P , and a set of Program Inputs for P , and generates
a set of Path Predictions, one for each provided program input.
The path predictions consist of complete execution traces for
P and are computed by the Path Predictor module, which (1)
observes the EM emanations produced by the Target Device
as it runs P against the provided inputs and (2) matches the
observed emanations with those in the EME Model.

In the rest of this section, we describe the four modules of
ZOP-2 in detail.

A. Input Generation and Replay

The training phase of ZOP-2 requires the recording of
sample EM emissions collected from the Target Device (i.e.,
the device that runs the program whose traces we want to
collect). Moreover, for the training to be effective, ZOP-2
needs to collect a comprehensive set of samples. Ideally, the
technique would need to collect one sample for every possible
path in the program, which is clearly impractical. Because
ZOP-2’s signal matching divides the EM emissions for an
execution into smaller sampling windows, however, having
samples of subpaths whose length is comparable to that of the
sampling window is typically enough. The goal of the Input
Generation and Replay module is therefore to generate inputs
that adequately cover a suitably identified set of subpaths
within the program.

The first step performed by this module is a preprocess-
ing of the source code that performs a set of semantics-
preserving transformations aimed to facilitate later source code
manipulation. Specifically, the preprocessing expands macros,
refactors short-circuiting boolean expressions, encloses single
statement blocks in braces, and rewrites each return statement
that involves a complex value as an assignment to a temporary
variable followed by a simple return of that variable.

Next, the module instruments the source code by inserting
markers (i.e., special probes) at selected program points. These
markers partition an execution trace into segments, which
we refer to as m2m paths (marker-to-marker paths). These
m2m paths are the subpaths within the program functions that
we want the inputs to cover; that is, they are the coverage
requirements for the input generation. The level of granularity
of the inserted markers is critical to the effectiveness of the

approach. Subpaths that are too short would be easy to cover
but would result in EM signals that are hard to recognize and
match. Conversely, subpaths that are too long would generate
EM signals that are easy to recognize and match but would be
difficult to cover. Based on our past experience [1], preliminary
experimentation, the way ZOP-2 performs signal matching,
and our domain knowledge, we selected the following points
for inserting markers: entry nodes of functions, exit nodes of
functions, loop heads, and target nodes of goto statements.
Furthermore, because these markers can occasionally result in
excessively long m2m paths, our techniques splits m2m paths
longer than a selected threshold by suitably inserting additional
markers. We selected these marking criterion so that (1)
m2m paths are intra-procedural and do not contain cycles,
(2) any program trace can be represented as a sequence of
contiguous m2m paths, and (3) the length of the signals
generated by the m2m paths is comparable to that of the
sampling window used by the Path Predictor module (see
Section III-C).

Given a complete set of m2m paths, our technique tries
to generate inputs that cover all such paths using an approach
based on symbolic execution. In principle, traditional symbolic
execution can generate inputs for all feasible paths in a
program. However, its effectiveness and scalability are limited
in practice by several issues, and in particular by the path
explosion problem—the fact that the number of feasible paths
is usually exponential in the number of code branches [7].
In fact, traditional symbolic execution has problems covering
even individual statements, let alone m2m paths, that are
located deep in the call graph or hidden behind complex,
looping control flow. To address this problem, and be able
to generate inputs that cover most m2m paths, we defined a
new technique that extends classical symbolic execution and
that we call progressive symbolic execution (PSE).

1) Progressive Symbolic Execution (PSE): The key insight
behind PSE is that a given m2m path mp in program P need
not be observed along a complete path, that is, a path that starts
from P ’s entry and follows a complete, actual execution. If
PSE cannot generate an input that executes mp, it therefore
derives a related program P ′ that contains an equivalent
subpath for which it can find an input. To generate P ′, PSE
operates along two dimensions: it (1) considers increasingly
smallers fragments of the program and (2) replaces calls to
other functions or libraries with symbolic stubs.



1 i n t P ( char *p ) {
2 mark (m1 ) ;
3 i n t x=complex ( p ) ;
4 whi le ( x > 4) {
5 mark (m2 ) ;
6 / / some code
7 }
8 / / some code
9 mark (m3 ) ;

10 }

Listing 1: Original code.

1 i n t P′ ( char *p ) {
2 mark (m1 ) ;
3 i n t x= s y m b o l i c i n t ( ) ;
4 whi le ( x > 4) {
5 mark (m2 ) ;
6 / / some code
7 }
8 / / some code
9 mark (m3 ) ;

10 }

Listing 2: Modified code.

We illustrate this second dimension with the example shown
in Listing 1. Assume that we are interested in covering
m2m path 〈5, 6, 7, 8, 9〉, between markers m2 and m3, and
that the symbolic execution of function complex() either
results in a timeout or cannot be performed because the
code of the function involves theories not supported by the
underlying solver. In such a case, no input covering the
path of interest would be produced. However, it would be
straightforward to generate an input that cover the analogous
subpath 〈5, 6, 7, 8, 9〉 in the derived program P’ in Listing 2,
where the integer value returned by complex() has been
replaced with a symbolic integer.

PSE produces a set of inputs encoded as Replay Cases,
where each replay case is an ordered pair that consists of
a program fragment and inputs for that fragment. It also
constructs, for each replay case, the scaffolding necessary to
run the corresponding code fragment against its input.

The next two sections discuss how PSE (1) generates inputs
that aim to cover all m2m paths identified in a program P and
(2) runs P or fractions thereof against the generated inputs to
support ZOP-2’s training phase.

2) PSE: Input Generation: To try to reach all the
m2m paths in a program, PSE progressively unconstrains
program state in four phases or strategies. (The phases are
progressive in that the symbolic state in each phase is a
superset of the symbolic state in the prior phase.)
uInp (symbolic input state): Execution of the whole program
with symbolic inputs. This is equivalent to traditional symbolic
execution performed from the entry point of the program.
uExt (symbolic external state): Execution of each function
with symbolic input parameters and symbolic global state.
Intuitively, this strategy corresponds to executing a function
as if it could be reached with every possible state and is
equivalent to under-constrained symbolic execution [8].
uStub (symbolic stubs): Execution of each function with
symbolic input parameters, symbolic global state, and all
callees replaced by symbolic stubs (see example in Listings 1
and 2). Symbolic stubs return an unconstrained value and un-
constrain global state and values passed as output parameters.
Intuitively, in addition to executing a function as if it could be
reached with every possible state, this strategy also assumes
that callees can modify the state in every possible way.
uInt (symbolic internal state): Executions of fragments of a
function with symbolic local and global state. Intuitively, this
strategy corresponds to unconstraining the state reachable by

a code fragment, so that the code fragment can be executed
as if it could be reached with every possible state.

The specifics of PSE’s input generation are described in
Algorithm 1. The algorithm takes as input (1) a program, (2)
a set of entry points for the program, and (3) three tuning
timeout parameters, and produces as output a set of pairs
of program fragments and corresponding inputs. (Although
in most cases programs have a single entry point, supporting
multiple entry points allows for applying the same approach to
libraries.) The timeout values specify maximum time budgets
for the progressive unconstraining strategies: t0 applies to
uInp, t1 applies to uExt, and t2 applies to both uStub and
uInt. The output of the algorithm consists of all the replay
cases generated by all progressive phases, which are stored in
the container initialized in line 2.

The algorithm starts by performing the uInp strategy on
each of the program entry points (lines 4-5). The uExt
strategy iterates over each program function as discovered
in a breadth-first traversal of the program call graph and
maintained in a worklist (lines 7-12). We selected this traversal
order to lengthen the average replay trace, as entry from
functions closer to program entry should produce longer traces.
Lines 13-14 ensure that the algorithm only executes uExt if
a remaining m2m path is reachable from the current function
in the call graph traversal. In that case, the algorithm invokes
PSE on the function with the uExt strategy, adds the resulting
replay cases to set cases, and updates the set of remaining
m2m paths (lines 15-17).

Note that, for clarity, we treat the utility function m2mPaths
as polymorphic; that is, the function always returns a set
of intra-procedural m2m paths contained within its single
argument. If the argument is a function, it simply returns the
set of m2m paths in the function. Conversely, if the argument
is a program or a set of functions, it returns the union of the
m2m paths in each function. Finally, if the argument is a basic
block, it returns the set of m2m paths reachable from the block
and within the function containing the block.

If there are remaining m2m paths within the current func-
tion, the algorithm aggressively unconstrains additional pro-
gram state by substituting symbolic stubs for all callees within
the function (uStub strategy). This strategy allows the algo-
rithm to skip over complex callees that may be problematic
for symbolic execution. (Since each function entry and exit is
marked, m2m paths within the callee can be covered separately
from the current function context.) Each replay case produced
in this phase must be considered for retention (lines 21-27).
These includes replay cases that result in a memory fault due
to the increased amount of symbolic state. We retain these
faulting replay cases anyway in case they end up being the
only cases covering a specific m2m path.

When symbolic stubs fail to expose a remaining m2m path,
the algorithm proceeds to the uInt phase, which unconstrains
also the program state at specific points within a function
(lines 28-39). This portion of the algorithm is analogous to
the uStub strategy, except that it traverses the basic blocks



Algorithm 1: Input generation
Input : program: program to analyze

entry points: program entry points
t0: classic symbolic execution timeout
t1: PSE native callees timeout
t2: PSE stubbed callees timeout

Output: result : {< frag, input >}
1 begin
2 cases← ∅
3 remaining ← m2mPaths(program)
4 foreach fn ∈ entry points do
5 cases← cases ∪ execPSE (program, fn, uInp, t0)

6 remaining ← remaining \ coverage(cases)
7 visited← ∅
8 fn worklist← entry points
9 foreach fn ∈ fn worklist do

10 visited← visited ∪ {fn}
11 new fns← callees(fn) \ visited
12 append(fn worklist, new fns)
13 reachable fns← reaching(fn)
14 if remaining ∩ m2mPaths(reachable fns) 6= ∅ then
15 new cases← execPSE (program, fn, uExt, t1)
16 cases← cases ∪ new cases
17 remaining ← remaining \ coverage(new cases)
18 if remaining ∩ m2mPaths(fn) 6= ∅ then
19 faulting ← ∅
20 new cases← execPSE (program, fn, uStub, t2)
21 foreach case ∈ new cases do
22 if remaining ∩ coverage(case) 6= ∅ then
23 if faulted(case) then
24 faulting ← faulting ∪ {case}

25 else if completed(case) then
26 cases← cases ∪ {case}
27 remaining ← remaining \ coverage(case)

28 if remaining ∩ m2mPaths(fn) 6= ∅ then
29 bb worklist← {bb | bb ∈ CFG(fn) sorted by BFS}
30 foreach bb ∈ bb worklist do
31 if remaining ∩ m2mPaths(bb) 6= ∅ then
32 new cases← execPSE (program, bb, uInt, t2)
33 foreach case ∈ new cases do
34 if remaining ∩ coverage(case) 6= ∅ then
35 if faulted(case) then
36 faulting ← faulting ∪ {case}

37 else if completed(case) then
38 cases← cases ∪ {case}
39 remaining ← remaining \ coverage(case)

40 foreach case ∈ faulting do
41 if remaining ∩ coverage(case) 6= ∅ then
42 cases← cases ∪ {case}
43 remaining ← remaining \ coverage(case)

44 result← ∅
45 remaining ← m2mPaths(program)
46 cs worklist← {case | case ∈ cases sorted by trace length}
47 foreach case ∈ cs worklist do
48 if remaining ∩ coverage(case) 6= ∅ then
49 result← result ∪ {case}
50 remaining ← remaining \ coverage(case)

51 return result

within a functions’s CFG instead of the functions within the
call graph of the program. Also in this case, some replay cases
may result in a memory fault and are retained in case they
cover m2m path not otherwise covered.

Before advancing to the next function in the call graph
traversal, the faulting replay cases are examined for coverage
of this function’s remaining m2m paths to decide which ones
to keep (lines 39-43). Because faulting replay cases contain a
record of the faulting basic block and the number of times that

block occurs in the replay trace before faulting, PSE’s replay
can use these replay cases, if needed, and terminate them prior
to the execution of the faulty statement.

In its final part, the algorithm returns a set of replay
cases selected from all the potential replay cases generated.
Longer replay traces preserve more of the processor context,
and thus can generate more authentic EM emissions during
training. Therefore, given a set of replay cases covering a given
m2m path, the algorithm favors the case with the longest trace.
It does so by sorting the candidate replay cases by trace length
and greedily selecting cases to achieve maximum m2m path
coverage (lines 44-50).

Algorithm 1 relies on function execPSE to perform the
different phases of its progressive symbolic execution. We
provide the details of execPSE in Algorithm 2. The inputs
of the execPSE algorithm are (1) the program to symbolically
execute, (2) the program point to be used as the starting point
for the symbolic execution, (3) the strategy to be used, and
(4) the timeout to be enforced.

The algorithm first setss to the initial symbolic state, sets the
first instruction to the first instruction in the start basic block,
and initializes the set of active states with a the single element
s (lines 2-4). It then unconstrains the formal parameters to the
function containing the start basic block (lines 5-6).

The algorithm continues to unconstrain program state ac-
cording to the specified strategy (lines 6-12). The instruction
processing loop (lines 13-33) is the same used in traditional
symbolic execution, except for the way it handles call instruc-
tions (lines 18-33). If either the callee f is an external function,
or the unconstraining strategy is uStub or uInt, the algorithm
(1) creates a new symbolic variable for each formal output
parameter of f and (2) assigns this symbolic variable to the
corresponding actual argument at the call site. Additionally,
the algorithm creates new symbolic values and assignments
for each global variable referenced by f and for f ’s return
value, if present.

3) PSE: Optimizations: To make PSE more scalable, we
have incorporated in our technique several optimizations.

Lazy Initialization: PSE uses lazy initialization [9] to
construct pointer inputs for execution at an arbitrary program
point. Specifically, accessing an unconstrained pointer value
causes PSE to explore potential program paths in which the
pointer (a) is null, (b) points to a newly allocated memory
object of the targeted type, or (c) points to an existing memory
object of the targeted type. To prevent lazily initialized pointers
to lazily initialized pointers from unrolling infinitely, PSE
tracks the depth of lazy memory objects. When the depth
exceeds a configurable threshold, only states for cases (a) and
(c) above are considered.

Pointer Type-Casting: Type-casting between pointer
types is a common practice in C programs. For example, a
pointer may be declared as a char *, accessed, and later
cast to struct foo *. In these cases, the lazily initialized
memory behind the pointer may no longer be large enough
to store memory objects of the new type. To address this
issue, lazily initialized symbolic objects have an immutable



Algorithm 2: execPSE (simplified)
Input : program: program to symbolically execute

start: program point to begin PSE
strategy: uInp | uExt | uStub | uInt
timeout: maximum time to perform PSE

Output: result : {< frag, input >}
1 begin
2 s← initial state[start]
3 fn← containingFn(start)
4 active states← {s}
5 foreach arg ∈ formalArgs(fn) do
6 unconstrain(s, arg)

7 if strategy ∈ {uExt, uStub, uInt} then
8 foreach var ∈ globalvariables do
9 unconstrain(s, var)

10 if strategy = uInt then
11 foreach var ∈ localVars(fn) do
12 unconstrain(s, var)

13 stop← now() + timeout
14 while active states 6= ∅ ∧ now() < stop do
15 s← selectState(active states)
16 inst← nextInstruction(s)
17 switch inst do
18 case Call do
19 f ← targetFunction(inst)
20 if strategy ∈ {uStub, uInt} ∨ f /∈ program then
21 ¡ foreach arg ∈ actualArgs(inst) do
22 if isOutputPointer(arg) then
23 unconstrain(s, value)
24 arg ← value

25 foreach var ∈ globalvariables do
26 if isReferenced(f, var) then
27 unconstrain(var, value)
28 arg ← var

29 if returnType(f) 6= void then
30 unconstrain(s, value)
31 setReturn(s, inst, value)

32 else
33 executeCall(s, f)

maximum physical size and a flexible visible size. A lazy
object’s initial visible size depends on the size of the allocated
type. A subsequent cast to a larger type can increase the visible
size, up to its physical size, whereas a cast to a smaller type
does not decrease it. The visible size is used when reporting
symbolic solutions and when enforcing the inbounds pointer
assumption, which we discuss next.

Inbounds Pointer Assumption: Since out-of-bound
pointer accesses can result in non-deterministic behavior, lazy
initialization ensures that unconstrained pointers either point to
allocated memory or are null. However, there are other ways
to have a potentially out-of-bounds pointer, such as through
array indexing and pointer arithmetic. In PSE, an indexed
operation automatically inserts a path constraint requiring the
resulting pointer to be within the target allocation block. This
approach reduces the path search space while only eliminating
undesirable paths. Faulting or non-deterministic paths have in
fact low utility when used to generate training samples.

Path Explosion Mitigation: Rather than mitigating path
explosion using search strategies, PSE tries to eliminate un-
desirable states early using multiple heuristics. The inbounds
pointer assumption discussed above, for instance, eliminates
many abnormally terminating paths. Loops are also a signifi-

cant cause of path explosion, as symbolic conditions within a
loop body can create, at each iteration, a number of new paths
exponential in the number of branches. To mitigate this issue,
PSE periodically samples the number of active path states in
each loop body. If the number of states in a single loop body
grows across the sample interval by more than a configurable
threshold, those paths are randomly reduced by 90%.

4) PSE: Input Replay: The replay cases (i.e., inputs) gener-
ated by PSE for a program P using its uInp strategy can be run
directly on P . This is not true, however, for the replay cases
generated by PSE using its uExt, uStub, and uInt strategies, for
which PSE must create suitable scaffolding. The reason is that
these replay cases are generated by unconstraining program
state, considering fragments of the program, and replacing
called function with symbolic stubs.

PSE generates the needed replay scaffolding in the same
language as P , and the scaffolding consists of four major parts:
replay bodies, replay stubs, input data, and replay harnesses.

The replay bodies contain the source statements that com-
prise the m2m paths recorded for ZOP-2 training. Bodies for
replay cases generated using the uExt strategy simply consist
of the original function and corresponding callees. Bodies for
replay cases generated using the uStub strategy also consist
of the original source function, but they are linked against
newly created replay stubs that return the right values and
suitably set output parameters and global variables. In addition
to this, bodies for replay cases generated using the uInt strategy
must also be able to (1) start executing from an internal basic
block bb, (2) initialize the local and visible global state at
bb, and (3) exit at the right point in the execution (i.e., after
visiting a termination basic block a specific number of times).
To do so, PSE first creates a copy of the original function
containing the fragment of interest and identifies the statement
stmt from which to start the execution. It then inserts a goto
instruction at the beginning of the current body, so as to cause
the execution to jump to the stmt. Finally, it inserts a call to
a function that suitably initializes local and global state.

The replay stubs correspond to symbolic stubs and provide
suitable values for returns, output parameters, and global
variables. Furthermore, because each called function can be
invoked multiple times, PSE creates ordered sets of values,
so as to be able to produce the right values for the different
invocations. When executing a replay case with symbolic
stubs, PSE substitutes these replay stubs to the original called
functions in the corresponding replay body.

The input data consist of static-initialized data structure
arrays in the original source language produced from the
generated input values in the replay cases. Note that the data
input set for a replay case may not contain complete values for
all the required input variables. For instance, a function may
read the value of an input pointer but only write to the pointed
memory block. In general, since the values not contained in the
input set do not affect the execution, PSE can safely initialize
the missing data items with some default value. Among the
input data, pointer variables require special handling, as the
address space during input generation is different from the



address space during replay. To address this issue, PSE adds
to the replay cases a map of the address space at the time
the case was generated. This map includes the address and
size of each memory object, the allocation type, and a list
of the cast operator types applied to the memory object. PSE
needs the entire address space because pointer values that are
not in the generated input set cannot be assigned a default
value as PSE does with fundamental types. Writing memory
by dereferencing such a pointer would in fact likely result in
an access violation if not in undefined behavior. Given this
map, if the pointer value resolves into a memory object in the
address space of the replay case, PSE calculates its offset and
emits the replay pointer value as an offset into the statically-
initialized data structure for the target object. Otherwise, it is
given a default initializer based on its type.

Finally, the replay harnesses contain one harness for each
replay body and fragment, and a driver that invokes each
replay fragment harness in turn. The fragment harness iterates
through each input data set for the fragment, initializing global
variables, declaring and initializing fragment parameters, and
initializing substituted stubs.

B. EME Model Generator

The goal of the EME (EM Emissions) Model Generator is
to generate the EME Model, which relates EM emissions to
the code in the program that generated them. To do so, this
module collects and analyzes EM emissions while replaying
the inputs (i.e., replay cases) generated by PSE.

Because the control flow path induced by these inputs is
known, so is the sequence of markers executed while replaying
the inputs. Moreover, the marker probes log the processor
clock cycle, so our technique knows at which clock cycles each
m2m path started and ended and can use the marker sequence
and the corresponding timestamps to annotate the collected
EM emissions. More precisely, the EME Model Generator
is able to mark the collected emissions so as to identify the
starting and the ending point of each m2m path.

This information is stored in the EME Model, which is then
used in the prediction phase to compute which (complete)
paths are being traversed by unknown executions.

C. Path Predictor

This module is a fundamental part of ZOP-2, as it is the
component that actually produces path predictions using the
EME Model generated during the training phase.

As unknown inputs are provided to the program P for which
ZOP-2 built the EME Model, and P runs on the Target Device,
the Path Predictor collects the EM emissions produced by the
device, which represent the test signal. It then splits this test
signal into small, non-overlapping, and fixed-length segments,
referred to as sampling windows.

Similar to what happens for the length of the m2m paths,
the size of the sampling window can considerably affect the
accuracy of the path prediction algorithm. On the one hand,
if the window size is too small, the signal matching has low
reliability, especially in the presence of measurement noise. On
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Fig. 2: EM emission matching approach.

the other hand, if the size is too large, a single window may
contain multiple m2m paths and require more training samples
to be effective. Because of these tradeoffs, we performed
preliminary experimentation to identify a good combination
of lengths for m2m paths and window sizes.

Once the test signal is split into sampling windows, the Path
Predictor searches, for each sampling window, the best match
in the EME Model based on the least Euclidean distance [10],
as intuitively shown in Figure 2. Our technique then uses the
best matching sample in the EME Model, together with the
annotations added by the EME Model Generator, to predict
which m2m path contains the sampling window. A concate-
nation of all the so identified m2m paths is used to predict
the entire control flow path corresponding to the observed,
unknown execution.

In comparison to our original ZOP algorithm, which used
a depth-first search (DFS) through the program’s CFG while
matching signals, this prediction mechanism matches each
signal window independently (i.e., there is no “state” of the
search). This approach is preferable to a DFS because this
latter is prone to error propagation; any misprediction is often
followed by a series of consecutive mispredictions, which
amplifies the initial error and may result in the algorithm
getting lost [1]. Furthermore, mispredictions in the original
ZOP can also result in an exponential growth in the amount of
backtracking the algorithm needs to perform, which can limit
the scalability and applicability of the algorithm, especially in
the case of large applications.

Because the stateless path prediction algorithm in ZOP-2
matches and predicts each window independently, it is free
from error propagation. Moreover, unlike ZOP, ZOP-2’s path
prediction is embarrassingly parallel and could thus be easily
distributed to increase its efficiency.

IV. EMPIRICAL EVALUATION

To evaluate the effectiveness of our technique, we imple-
mented it in a prototype tool and performed an empirical



TABLE I: Benchmark statistics.

Benchmark LOC Basic Blocks M2M Paths

replace 495 245 229
schedule 464 175 153
print tokens 579 178 153
mDNS 24,815 3,939 5,763

evaluation on a set of benchmarks. In our evaluation, we
addressed the following research questions:
RQ1: Does ZOP-2 provide accurate path predictions?
RQ2: How does ZOP-2 compare to ZOP?
RQ3: To what extent does state unconstraining help coverage?

A. Implementation Details

We implemented the modules of ZOP-2 discussed in Sec-
tion III. We used CIL [11] and clang [12] to preprocess source
code. We used a combination of clang and NetworkX [13] for
control flow graph analysis. We implemented PSE by extend-
ing the KLEE [14] symbolic execution engine. We also relied
on LLVM [15] and on the STP constraint solver [16], Our
implementation of PSE is publicly available as a self-contained
docker image [4]. We implemented our path predictor module
in Matlab 2018b [17].

B. Evaluation Setup

To answer our research questions we selected four bench-
marks. The first three were used to evaluate ZOP in previous
work [1]. The fourth benchmark, a real-world mDNS server,
shows the scalability of our approach, as it is two orders of
magnitude larger than the other benchmarks. Table I provides
size metrics for our benchmarks. As the target device, we used
an Altera Cyclone II FPGA with a Nios IIe processor. Using
an FPGA lets us leverage various debugging features and I/O
pins to better understand program behavior at the individual-
cycle level. Unfortunately, however, it also considerably limits
the size of the benchmarks we can consider.

Using the timeout parameters described in Section III-A2,
we defined three variants of PSE. This allowed us, together
with the use of vanilla KLEE, to evaluate the effects of
different input generation techniques on ZOP-2’s accuracy:
CS: Classic symbolic execution. Vanilla KLEE [18].
UC: Under-constrained symbolic execution. UC-KLEE prox-

ied by performing PSE at the function level.
PG: PSE with all unconstraining strategies enabled.
FN: PSE without the uExt strategy. (Basically, this parame-

terization skips under-constrained symbolic execution by
introducing symbolic stubs and considering sub-function
fragments right away, which makes the analysis consid-
erably faster at the cost of generating shorter paths.)

C. RQ1: Prediction Accuracy

To answer RQ1, we first generated replay cases (i.e., input
sets) for the four benchmarks and for the four input generation
strategies considered: CS, UC, FN, and PG. Second, we
used ZOP-2 to train EME Models for each benchmark and

TABLE II: Mean path prediction accuracy (%).

Benchmark CS UC FN PG

replace 90.05 93.89 90.31 93.89
schedule 94.27 94.31 94.45 94.44
print tokens 77.71 93.35 78.72 93.36
mDNS 98.94 98.97 98.95 98.95

input set. Then, for replace, schedule, and print tokens, we
randonly selected 100 inputs from the tests provided in the SIR
repository [19]. For mDNS, we used Avahi [20] to generate 9
inputs (i.e., mDNS queries) that target different host addresses
and ask for different services, including incorrect queries. (We
manually checked that the inputs exercise a different aspect of
the mDNS protocol.) Finally, we used ZOP-2 to perform path
prediction using the generated EME Models.

Table II reports the path prediction accuracy for the cases
considered, computed by measuring the edit distance [21]
between true and predicted paths. The prediction error is the
edit distance over the length of the path, and the prediction
accuracy is 1 minus the prediction error.

As the table shows, for all four benchmarks the prediction
accuracy tends to be generally fairly high. The highest accu-
racy is achieved with either UC or PG in three of four cases,
with the fourth case (schedule) showing a very close result for
FN and PG. Interestingly, as we will show in section IV-E, PG
achieves higher coverage but does not always result in higher
prediction accuracy. The reason for this is that the increased
accuracy from a fully populated waveform model is offset by
an increased possibility of a misprediction when the sampling
window straddles a the entry or exit of a symbolic stub.
Approaches to match sub-window EM signals could address
this issue and further improve the results for PG.

Also interestingly, ZOP-2 achieves high prediction accu-
racy for mDNS regardless of the input generation strategy
involved.¡ Further analysis of the results showed that this
happens for different reasons, with the main ones being that (1)
all the paths the program takes when receiving a valid mDNS
packet are similar because traces are largely dominated by
loops with a large number of iterations, and (2) all the paths
the program takes when receiving an invalid mDNS packet
are extremely short. This skews the results considerably and
makes it so that any input generation strategy that produces
even just a few valid and invalid packets result in reliable EME
Models, and thus high accuracy in the production.

To better understand how path prediction accuracy varies
across inputs, consider the box-and-whisker plot in Figure 3,
which shows detailed results for PG. (The plot for UC is fairly
similar.) For each benchmark (x-axis), the figure shows the
range of prediction accuracy (y-axis). The boxes represent the
1st and 3rd quartiles, with an interior band at the median. The
whisker ends represent the lowest and highest points within
1.5 of the interquartile range. Dots signify outliers.

Although Figure 3 shows consistently high path prediction
accuracy, it also shows that there is room for improvement. For
example, accuracy above 96% for the schedule benchmark is



Fig. 3: Detailed path prediction accuracy for PG.

an outlier. In general, some limitations of the prediction tech-
nique that can affect the results (e.g., the one we mentioned
earlier related to the use of a fixed sampling window). Fur-
thermore, we found that different m2m paths may sometime
result in instruction sequences that are very similar to each
other, even if they execute different parts of the program, and
thus generate EM emissions that are also very similar to each
other [22]. For example, two different m2m paths may have
the exact same mix of store and ALU operations. For another
example, switch statements are commonly compiled into jump
tables, which leads to multiple paths generating EM emissions
that are difficult distinguish (a case that happens often for
print tokens and mDNS and causes a drop in accuracy).

D. RQ2: Comparison with ZOP

ZOP and ZOP-2 produce to some extent apples and oranges,
as ZOP ’s path profiles and ZOP-2 ’s complete traces are
not directly comparable. To generate complete traces with
ZOP we would have to extend the approach—and basically
re-invent ZOP-2. We can however compare the path profile
prediction accuracy of ZOP with that of ZOP-2 by extracting
acyclic-path profiles from complete traces. Table III shows
these results, computed for the traces generated using UC and
PG and for the three benchmarks for which we have ZOP
results. As the table shows, ZOP-2’s accuracy is lower than
but comparable to that of ZOP for replace and schedule (less
than one percentage point), and slightly lower for print tokens
(around 6.5 percentage points).

The main reason for this slight decrease in accuracy lies
in the fact that ZOP used a stateful model that selects the
best match from m2m paths reachable from the currently
predicted marker. This strategy reduces mispredictions, but is
problematic when a misprediction does occur (as we discussed
in Section III-C). Conversely, ZOP-2’s stateless prediction
suffers no additional penalty for mispredictions, which makes
it effective for predicting complete paths, but can result in a
larger number of individual sub-paths being mispredicted.

E. RQ3: Coverage

To answer RQ3, we measured the m2m path coverage
achieved on all the benchmarks by the four input generation

TABLE III: Acyclic-path profiles prediction accuracy (%).

Benchmark ZOP ZOP-2 (UC) ZOP-2 (PG)

replace 94.70 94.11 94.11
schedule 95.10 94.71 94.96
print tokens 97.90 91.36 91.33

techniques considered. Table IV shows the results, together
with the total number of m2m paths determined by static
analysis. The PG and FN replay cases produced identical
coverage, so their results are shown together.

As the table shows, PG/PN achieved higher m2m path cov-
erage than UC, which in turn achieved higher coverage than
CS. This result is not surprising, as increasing symbolic state
should necessarily lead to higher coverage. A more interesting
question is how many additional feasible m2m paths were
covered by PG/PN. Unfortunately, we cannot compute this
information automatically, as it is an undecidable problem,
and doing it by hand would be extremely time consuming
and error prone. We can however compute a lower bound for
this information by checking how many of the m2m paths
covered by the evaluation inputs in our study (i.e., in the
actual executions that we used to evaluate prediction accuracy)
were missed by the generated input sets used for training; a
decreasing number of uncovered m2m paths would necessarily
indicate an increased number of feasible paths covered. Ta-
ble V reports this information and clearly shows that PG/FN
(i.e., PSE) consistently covers additional feasible subpaths that
UC does not cover, and so does UC with respect to CS. This
result provides initial indication that it is worth pursuing more
aggressive state unconstraining approaches when generating
inputs. However, more research and experiments are needed
to demonstrate that client techniques can indeed benefit from
the additional coverage achieved.

V. THREATS TO VALIDITY

In this section, we briefly discuss the main threats to
the validity of our empirical evaluation and steps we took
to miti¡gate them. The main threat to internal validity is
the potential for defects in our implementation. In mitiga-
tion, we based our implementation on KLEE, a reliable and
stable symbolic execution engine. We also carefully tested
our implementation of PSE, which is available for public
inspection [4]. Threats to external validity include the size and
number of our benchmarks. As discussed in Section IV-B, the
maximum size of a potential benchmark was unfortunately
constrained by the limitations of the embedded processor
used for our evaluation. (Programs larger than mDNS could
not be loaded onto the FPGA board.) Similarly, long signal
recording, measurement, analysis, and human checks limited
the number of benchmarks. Other threats to external validity
are the way we selected inputs, especially for mDNS, and
the possible lack of generalizability of our results to other
devices. We are cognizant of these threats and plan to address
them in future work by performing additional experiments on
additional platforms.



TABLE IV: Coverage comparison among CS, UC, and PG/FN.

M2M Paths
Benchmark total CS UC PG/FN

replace 229 168 (73.4%) 179 (78.2%) 206 (90.0%)
schedule 153 119 (77.8%) 136 (88.9%) 149 (97.4%)
print tokens 153 115 (75.2%) 132 (86.3%) 143 (93.5%)
mDNS 5763 509 (8.8%) 2454 (43.3%) 4147 (72.0)%

VI. RELATED WORK

Prior approaches to program tracing required instrumenta-
tion of the monitored system or runtime support. Software
instrumentation is unfortunately expensive (e..g, they can incur
31% overhead for (acyclic) path profiling alone [2]). Recent
processor designs, such as Intel Processor Trace, can reduce
this overhead to as little as 5% [23], but they require a
sophisticated processor, still entail non-zero overhead, and
consume considerable storage capacity and throughput.

The key concepts of classical symbolic execution, as pro-
vided in [24], have been implemented for input generation in
many prior tools [9], [18], [25]–[32]. Our input generation
work builds on this rich body of research on symbolic execu-
tion and automated test generation.

Our PSE technique is closely related to UC-KLEE [33],
which performs under-constrained symbolic execution from
an arbitrary function call. This degree of under-constraining
has been shown to be effective for patch validation and defect
detection [3]. However, unlike PSE, UC-KLEE misses some
subpaths needed for complete ZOP-2 training.

Chopped symbolic execution [34] shares with our work the
goal of reaching code buried deep in the call graph, but takes
an orthogonal approach; it employs program slicing to exclude
uninteresting portions of the code from symbolic execution,
while maintaining soundness. For ZOP-2 training, the only
uninteresting code is dead code, so this approach would not
be applicable in our context.

Since symbolic execution is susceptible to path explosion,
numerous approaches have been defined to address this issue.
Guided path search heuristics select paths for exploration
either randomly [18], [35] or based on the predicted likelihood
of reaching a given coverage target [18], [25], [35]. Other
approaches reduce the number of paths to search by removing
equivalent paths [36], removing paths that cannot reach new
code [37], or merging state on selected paths [38]. PSE could
benefit from (suitably adapted versions of) these techniques.

Lazy initialization is an important feature of generalized
symbolic execution [9], as it allows the handling of un-
constrained pointers or references. Various tools have im-
plemented lazy initialization for symbolic execution in Java
(e.g., [9], [39], [40]), C/C++ (via LLVM IR [3]), and object
code [41]. Because this technique can inflict a significant
performance penalty, researchers have proposed optimizations
for Java-based symbolic execution [42]–[44]. However, these
optimizations would be difficult to implement without Java’s
memory manager and strict type safety. UC-KLEE [33] uses
a version of lazy initialization that models unconstrained
pointers as either NULL or pointing to a new memory object.

TABLE V: Missing m2m paths in the training inputs.

Benchmark CS UC PG/FN

replace 3 2 0
schedule 7 2 0
print tokens 9 3 0
mDNS 96 18 0

We augment this model with existing memory locations that
were either allocated with or typecast to the type of entity
being lazily initialized.

Unintentional EM information leakage has been tradition-
ally exploited by attackers for cryptographic key extraction
from target systems. More recently, researchers have leveraged
EM side channels for hardware Trojan detection [45], [46],
malware detection [47], control flow integrity assessment [48],
and software profiling [1], [49]. Sehatbakhsh and colleagues
exploit spectral peaks in EM signals for loop-level profiling
of program executions, while the approach by Callan and
colleagues [1] can predict acyclic path profiles. Unlike this
previous work, our approach can not only profile program
executions at the basic-block level, but also predict the entire
control flow path with high accuracy.

VII. CONCLUSION AND FUTURE WORK

We presented ZOP-2, a new approach that can collect
complete execution traces accurately and with zero overhead
by leveraging EM emanations. ZOP-2 can greatly benefit and
support several important developer tasks, such as debugging
applications, tuning performance, and profiling users. Our
evaluation results show that ZOP-2 is indeed effective and
can produce accurate execution traces without requiring any
program instrumentation.

In future work, we will enhance our signal processing
technique so as to improve its performance when operating
on small code fragments and when m2m paths and sampling
windows are not aligned. We will also investigate the use
of additional signal processing techniques that will allow
us to handle more sophisticated processor architectures and
perform evaluations on larger benchmarks. Although stateless
signal matching allows ZOP-2 to recover from mispredictions,
it also causes some additional mispredictions. We believe
that a mediated use of control flow information may allow
for increasing accuracy while still permitting recovery after
mispredictions. Finally, we will study applications of ZOP-2
and PSE in different contexts, including (1) for malware
detection, when the observed hardware executes unsanctioned
code, and (2) for fault detection, where the additional coverage
provided by state unconstraining may reveal faulty behaviors
missed by other input-generation techniques.
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