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ABSTRACT
Establishing trust for an execution environment is an important

problem, and practical solutions for it rely on attestation, where an
untrusted system (prover) computes a response to a challenge sent

by the trusted system (verifier). The response computation typically

involves calculating a checksum of the prover’s program, which the

verifier checks against expected values for a “clean” (trustworthy)

system. The main challenge in attestation is that, in addition to

checking the response, the verifier also needs to verify the integrity

of the response computation itself, i.e., that response computa-

tion itself has not been tampered with to produce expected values

without measuring the verifier’s actual code and environment. On

higher-end processors, this integrity is verified cryptographically,

using dedicated trusted hardware. On embedded systems, however,

constraints prevent the use of such hardware support. Instead, a

popular approach is to use the request-to-response time as a way

to establish confidence. However, the overall request-to-response

time provides only one coarse-grained measurement from which

the integrity of the attestation is to be inferred, and even that is

noisy because it includes the network latency and/or variations due

to micro-architectural events. Thus, the attestation is vulnerable to

attacks where the adversary has tampered with response computa-

tion, but the resulting additional computation time is small relative

to the overall request-to-response time.

In this paper, we make a key observation that the existing ap-

proach of execution-time measurement for attestation is only one

example of using externally measurable side-channel information

and that other side-channels, some of which can provide much

finer-grain information about the computation, can be used. As a

proof of concept, we propose EMMA, a novel method for attestation

that leverages electromagnetic side-channel signals that are em-

anated by the system during response computation, to confirm that

the device has, upon receiving the challenge, actually computed

the response using the valid program code for that computation.

This new approach requires physical proximity, but imposes no

overhead to the system, and provides accurate monitoring during
the attestation. We implement EMMA on a popular embedded system,

Arduino UNO, and evaluate our system with a wide range of attacks

on attestation integrity. Our results show that EMMA can successfully
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detect these attacks with high accuracy. We compare our method

with the existing methods and show how EMMA outperforms them

in terms of security guarantees, scalability, and robustness.
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1 INTRODUCTION
Establishing trust for an execution environment is an important

problem and practical solutions for it rely on attestation, a secu-
rity primitive that allows a trusted system (verifier) to verify the

integrity of program code, execution environment, data values, etc.

in an untrusted system (prover). Attestation typically relies on a

challenge-response paradigm [38], where the prover is asked to cal-

culate a checksum over verifier-requested parts of a program/data

memory contents. The response computation typically involves

measurement (e.g., checksum) of the prover’s execution environ-

ment, which the verifier checks against expected values for a “clean”

(trustworthy) system. The verifier considers the prover’s integrity

to not be compromised if (i) the checksum provided by the prover

matched with the expected value computed by the verifier, AND
(ii) the computation that produced the response itself has not been

tampered with, e.g., to falsify the expected values without actually

computing them from the verifier’s actual code/data.

In high-end modern processors, the assurance that the response

computation itself was not tampered with is typically provided

by using a hardware-supported Trusted Execution Environment

(TEE) [2, 15, 16, 23], which uses dedicated hardware (e.g., SGX, TPM,

etc.) within the prover. In low-end processors and/or embedded

systems, however, form factor, battery life, and other constraints

prevent the use of hardware-supported enclaves or other hardware

supports. Instead, a popular approach, Software Attestation [12,

19, 27, 35, 36, 38], is to compute the checksum in software, using

ordinary execution on the prover, and to leverage measurement of

the request-to-response time as a way to establish some level of

confidence about the integrity of the response computation itself.

https://doi.org/10.1145/3352460.3358261
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To implement this method, the verifier utilizes the challenge-

response paradigm by asking the embedded system (prover) to

compute a checksum of its program memory, while measuring the

response time to prevent the adversary from computing a correct

response, e.g., by temporarily restoring the program memory while

the response is computed or by forwarding the challenge to an-

other system that computes the response, etc. The prover passes

the attestation test only if it provides the correct response to the

challenge (i.e., Responseprover = Responseexpected ) without violating
the timing requirement (i.e., tresponse < tthreshold )[38].

Unfortunately, the overall request-to-response time provides

only one coarse-grained measurement, and this method is not able

to monitor the prover during the attestation without imposing a

significant performance and cost overhead to the system. This, in

turn, makes the software attestation schemes vulnerable to attacks

which have very low-latency compared to the overall response

time (i.e., tattack << tthr ). Moreover, due to the network limitations

and/or micro-architectural events, this request-to-response time

may be noisy since it includes the round-trip network latency and/or

variations caused by themicro-architectural events (e.g., cachemiss)

which consequently, causes a further increase in tthr (to tolerate the
variance and reduce the false positive rate), and hence, potentially

makes these schemes even more vulnerable to low-latency attacks.

In this paper, we introduce EMMA, a new approach for attestation

of embedded devices that leverages the side effects of the prover’s

hardware behavior, but without requiring any specific support from

that hardware. Our scheme is based on this key insight that the
existing approach of execution-time measurement for attestation is
only one example of using externally measurable side-channel infor-
mation, and that other side channels, some of which can provide

much finer-grain information about the response computation, can

be used. In particular, instead of the overall challenge-to-response

timing, EMMA uses electromagnetic (EM) side-channel signals unin-
tentionally emanated by the system during attestation. To create

EMMA, we first study the possible attack scenarios on attestation

methods, and then design EMMA such that it fully addresses these

vulnerabilities. Also, to increase the accuracy (and reduce false-

positives), we first investigate the different sources of variations

(e.g., micro-architectural events), and then carefully design EMMA
such that it effectively minimizes these variations while tolerating

uncontrollable sources of variations (e.g., environmental). Using

an extensive set of measurements, we will show EMMA’s ability to

achieve high accuracy under different attack scenarios while being

robust against different sources of environmental variations.

We will show how EMMA can be implemented using an inexpen-

sive setup to monitor an embedded device, and how it can be scaled

to monitor multiple devices with very low cost overhead per de-

vice (<$10). We envision that EMMA can be used to attest a group of

embedded systems that are mostly dedicated to a specific task. This

includes but not limited to a network of sensors or peripherals that

are connected to a main controlling unit, cyber-physical systems in

hospitals and/or factories, industrial IoT (IIoT) systems, etc. In these

scenarios, the cost (per device) and complexity of deploying EMMA is
relatively low because it requires no changes to the monitored de-

vice, and thus creates no regulatory, safety, or disruption concerns

for the system. More importantly, it has zero-overhead on the moni-

tored system while physically separated from the monitored device.

In a practical scenario, EMMA can leverage an already existing infras-

tructure for controlling the CPS such as industrial control systems

(ICS), SCADA, etc. which further simplifies its implementation and

reduces the costs. Furthermore, we envision EMMA is being useful
in other scenarios such as checking the integrity of legacy systems

which are notoriously difficult to manage and verify, providing a

secure execution environment on sensor nodes and/or IoT devices

for secure code update, error recovery, key exchange, etc. Finally,

EMMA can be used as a portable setup to occasionally monitor one

or a small group of devices. In this scenario, EMMA can be used as a

low-cost, powerful tool to debug under-the-test systems.

Followings are the main contributions of this paper:

• A new attestation method based on electromagnetic emanations

of the prover,

• A proof-of-concept implementation of this attestation method,

which we call EMMA,
• Evaluation of EMMA on four different types of attacks and its

comparison with the state-of-the-art,

• Further analysis on EMMA for its applicability on other platforms

and its robustness against variations.

The rest of this paper is organized as follows. § 2 provides a brief

background on EM side-channel signals and software attestation.

It also overviews the threat model, possible attack models, and our

assumptions and considerations in designing EMMA. § 3 describes
EMMA in details. § 4 presents our evaluations including results for

four different attacks. In § 5, we evaluate the robustness of EMMA.
§ 6 discusses the related work. Finally, § 7 concludes this paper.

2 BACKGROUND, ATTACKER MODELS, AND
ASSUMPTIONS

Software Attestation. The main goal of attestation is to dynami-

cally establish a dynamic root of trust (DRT) [7, 10, 27] on an un-

trusted platform. After successful attestation, the code and data

within this DRT is assumed to be unmodified, and this can be lever-

aged to measure the integrity of other parts of the untrusted system

(e.g., checking the integrity of an arbitrary piece of code by com-

puting the hash using the code that is within the dynamic root of

trust), and/or initiate execution of other code in the system without

concerns about tampering with their initial execution environment.

In software attestation, the DRT is instantiated through the verifi-
cation function, a self-checking function that computes a checksum

over its own instructions and sends it to the verifier. To establish

trust, this checksum has tomatchwith the expected value, and other

measurable properties of the checksum calculation itself must pass

certain tests. The function typically consists of (i) an initialization

phase, (ii) a main computation loop, and (iii) an epilogue.

In the existing frameworks, the measured property is the request-

to-response time, which is assumed to correspond to the execution

time of the checksum computation, and the test consists of checking

if the response time was fast enough. In this work, the measured

property is the prover’s EM emanations during the checksum com-

putation, and the test consists of verifying that signal against a

model of emanations for a legitimate checksum computation.
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Attack Models. To attack an attestation framework, the attacker

has two options: (i) to forge the checksum value using classic check-

sum collision attacks [41, 42]. This attack, however, can be easily

defeated using a sufficiently long checksum [36]. (ii) more realisti-

cally, to modify the checksum code to compute the correct check-

sum, or to hide the malware without violating the requirements

(e.g., tr < tth). To launch such an attack the adversary has two

options: (1) she can modify the checksum calculation main loop to

calculate the checksum on another region of the memory which

stores the unmodified copy of the code. This attack is called mem-
ory copy [36–38] attack. (2) she can modify the prologue/epilogue

phases by (a) forwarding the challenge to another device which

called proxy attack [27], or (b) by removing the malicious code

before calculating the checksum and hiding it in other parts of the

memory which called rootkit attack [11].

The main challenge for the adversary is that while changing the

checksum calculation is more effective and feasible, any change

(even single instruction) in the checksum computation phase will

be significantly magnified due to a large number of iterations of the

loop. Thus, the adversary will be faced with a fundamental choice

between having either a large but short-term malicious activity

in the epilogue/prologue, or alternatively, a small, but long-term

malicious activity in the checksum phase. Hence, an ideal detection

framework should be able to detect single-instruction modifications

in the checksum loop, and tiny changes in the epilogue/prologue

phases. In the next section we will present how EMMA is designed
to satisfy these requirements.

Electromagnetic Side-Channel Signals. In practice, every elec-

tronic device generates unintended electromagnetic (EM) signals,

as changes in current flows within the device are converted (accord-

ing to Faraday’s law) into EM signals that emanate from the device.

In a processor, program activity governs most of the electronic

activities, so its EM signal is highly related to program execution.

There have been several proposals for analyzing EM signals,

mainly in time-domain, using different techniques such as machine

learning, signal processing, etc. [8, 17, 28, 30]. Alternatively, recent

methods [20, 31, 34] proposed a different approach by analyzing

the EM signals in the frequency-domain. These methods are mainly

based on this key observation that spectrum of the EM signal em-

anated during the execution of periodic activities (e.g., loops) have

a strong peak at the frequency of the processor’s clock (fclk ), and
also spikes at frequencies fclk ± fl , fclk ± 2fl , etc ., where fl corre-
sponds to the per-iteration time, T , of the current loop (fl = 1/T ).
These additional spikes are a result of the clock-frequency EM

emanations being amplitude-modulated by the periodic program

activity. The main advantage of this approach over time-domain

methods is that instead of analyzing a fairly noisy signal in the

time-domain, the “average” behavior of the signal can be analyzed

accurately in frequency-domain which, in turn, significantly im-

proves the signal-to-noise ratio and simplifies the analysis. Analyz-

ing in frequency-domain, however, comes with a consequential loss

in temporal resolution since, fundamentally, to achieve a “good”

frequency resolution, a wider time window should be used which,

in turn, reduces the temporal resolution (this problem is also known

as Gabor-Heisenberg uncertainty principle). This is particularly

important in side-channel signals for cases where a short-term

change (e.g., a malicious activity to hijack the control-flow, or a

short-term unauthorized activity) should be detected by analyzing

the side-channel (EM) signal.

Given these challenges, to build an effective framework for uti-

lizing EM signals for attestation, two requirements should be met:

(i) to protect the system against short-term attacks, i.e., attacks on

prologue/epilogue phases (e.g., proxy attacks [27]), the detection
framework should be able to analyze the signal with fine time-

resolution (i.e., a time-domain analysis), and (ii) to detect small

changes during the main checksum computation’s loop, the de-

tection framework should be able to detect small changes in the

per-iteration time of the loop (i.e., a frequency-domain analysis).

Unfortunately, existing side-channel analysis frameworks [8, 20, 31]

are unable to satisfy both conditions.

To achieve that, in this paper we develop an EM-Monitoring

algorithm that can (a) analyze the signal in time-domain to detect

even small changes before/after the main checksum computation

loop begins/ends, and (b) check whether the attestation process

(during the checksum computation) matches with a known-good

model (to ensure that this process is not modified by an adversary)

by using a frequency-domain analysis.

Threat Model and Assumptions. We assume that the adversary

has installed malicious code on the target embedded system, with

full control over the hardware and software of the device, including

the ability to arbitrarily modify program and data memory, or any

other memories available on the device. The attack succeeds if the

device passes the attestation despite the presence of a malicious

code. Note that attestation does not depend on how malicious code

was originally installed on the device, and methods for doing so

are abundantly represented in the research literature, although we

do not discuss them in detail in this paper.

Unlike most prior software-based methods, we assume that the

prover (attested device) can send messages to and collude with other

faster malicious peers, e.g., to use them as proxies for calculating

the checksum faster. Also, the attacker can modify the clock speed
of the embedded system. Finally, we assume that the verifier has

full information about the prover’s architecture (e.g., address space,

memory architecture, etc.).

3 EM-MONITORING ATTESTATION
(EMMA)

Overview. At the high-level, EMMA is designed such that it is able

to extract the exact begin and end time of the checksum calcula-

tion, along with the accurate per-iteration execution time of the

main checksum loop. An overview of the EMMA framework is shown

in Figure 1. This framework consists of a Verifier, V , (e.g., a trusted
PC) and a Prover, P , (e.g., an embedded system). The Verifier in-

cludes, or is connected to, a monitoring system (EM-Mon) that can

receive and analyze the EM signals unintentionally emanated by

P . Attestation begins with V preparing a challenge locally ( 1 ).

The challenge includes a seed value (which will be used later to

initialize a Pseudo-Random Number Generator (PRNG) in P ), an

address range, the total number of iterations for checksum loop, a

random value to initialize the checksum in P , and a random nonce.
The challenge is then sent to the P via a communication link ( 2 )
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Figure 1: Overview of EMMA framework.

which invokes the verification function, attest() by causing an

interrupt on P . This function runs at the highest prover’s processor

privilege level with interrupts turned off.

Upon sending the challenge to P , V also starts the “monitoring

process” ( 3 ) on EM-Mon. Through analysis of EM signals em-

anated from P , EM-Mon determines three critical values about P ’s

checksum computation and reports an error if any of them deviates

from a known-good model (reference model). These tasks/values

include (i) the delay between reception of the challenge and start

of the checksum loop, and the signal signature during this initial-

ization phase. (ii) the checksum loop’s EM signature (i.e., frequency

of spikes). (iii) the total attestation time on V .
These values/tasks are primarily chosen because, fundamentally,

there are two critical durations in the execution of the attestation

process on the prover: (a) the time that is taken between receipt of

the command for performing attestation and the start of the actual

checksum process (because an adversary could contact another

device during this period, or quickly hide the malicious code before

starting the procedure), and (b) the time taken for the checksum

process itself (because an adversary could try to do “extra work”

during checksumming to hide the malicious code).

After sending the challenge, the verifier, independently, calcu-

lates the “expected” checksum on its own (known-good) copy of

the embedded system’s program memory ( 4 ). At the same time,

the self-checking verification function starts with initializing its

local variables based on the received challenge ( 4 ), and then it

starts the “checksum calculation”, Checksum() ( 5 ). This function
is an optimized loop which in each iteration, it reads a memory line

in a pseudo-random fashion, and updates the checksum based on

the content of that address. The address range and the total number

of iterations of the loop are determined by the challenge.

Once Checksum() is finished, P forms a response ( 6 ) that in-

cludes the calculated checksum and the random nonce which ini-

tially was sent by V , and sends this response to V ( 7 ). The original

nonce acts as an identification and helps to increase the overhead

for a proxy attack (see § 4). Finally, V compares the information

received from P with its pre-computed checksum and the original

challenge and compares the results from EM-Mon to the expected

ones. If they all match, one trial of attestation protocol will finish

successfully ( 8 ). At this point the dynamic root of trust has been
established; thus, the verification function can either invoke an

executable, and hence, provides a TEE, or invoke a hash computa-

tion function to compute the hash value over the prover’s memory

contents (entirely or partially). This hash value can then be sent

back to the verifier, which in turn, provides the current state of

the prover to the verifier. Note that all of these functionalities are

still part of the verification function; thus, they have been used in

computing the checksum, which means it is guaranteed that the

hash function or invoking the executable is also untampered with.

Verification Function (attest()). This function has three parts:

a prologue or initialization phase, checksum computation, and an

epilogue which is responsible for sending the response back to the

verifier and invoking the executable or hash computation function.

To defeat possible attacks against attestation, this function should

be carefully designed to have low runtime variation. Knowing this

fact, from the computer-architecture perspective, attest() has to

be designed such that (a) the prologue and epilogue phases are fairly
deterministic and sufficiently long such that a simple time-domain

analysis can be used to find a potential deviation (due to malicious

activities caused by the attacker). (b) the computation loop should

have minimum per-iteration variation and non-parallelizable.

In addition to considering these runtime requirements, the check-

sum computation function should be secured against “static” at-

tack scenarios namely pre-computation and replay attacks [36, 37],

where the attacker leverages previous challenge-response pairs

to calculate the new response. To avoid these attacks, the check-

sum computation should be a function of the challenge (to prevent

replay attacks), and the memory address generation in each it-

eration should be done in a pseudo-random fashion (to prevent

pre-computation attack).

Using these two criteria (i.e., runtime and security requirements),

we design our attestation algorithm (mainly based on prior work [27,

35–38]) to satisfy these conditions. Algorithm 1 shows the check-

sum’s pseudo-code. We will first describe the algorithm and then

provide a brief formal security analysis of the code to prove that

the checksum computation is also cryptographically secure.

Checksum Algorithm. The main checksum loop consists of a

series of alternatingXOR andADD instructions. This series has the

property of being strongly-ordered [37]. A strongly-ordered function

is a function whose output differs with high probability if the oper-

ations are evaluated in a different order. Using a strongly-ordered

function requires an adversary to perform the same operations

on the same data in the same sequence as the original function

to obtain the correct result; thus none of the operations can be

re-ordered or removed. Furthermore, using this sequence prevents

parallelization and out-of-order execution since, at any step, the

current value is needed to compute the succeeding values.

We use a 160-bit long checksum to keep all the registers busy and

to significantly reduce the checksum collision probability [36]. The

checksum is stored as a vector in a set of 8/16-bit general purpose

registers (blocks) depending on the architecture of the processor

(i.e., AVR, ARM, etc.). To traverse the memory in a pseudo-random

fashion, we use a PRNG. Similar to previous work, we use a 16-bit
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Algorithm 1 The checksum computation algorithm used in EMMA.

1: Initialization:

2: RNum = seed
3: SetMASK based on beдinAddress and endAddress
4: Offset = beдinAddr
5: cSum = seed
6: Checksum: // checksum main loop (Checksum())

7: for i=1 to totIter do
8: for j=1 to 10 do
9: RNum = RNum + (RNum2 ∨ 5)mod 2

16

10: memAddr =memAddr ⊕ RNum
11: memAddr = (memAddr ∧MASK) + Offset
12: cSumj = cSumj + (Mem[memAddr ] ⊕ cSumj−1)

13: cSumj = cSumj + (i ⊕ PC)
14: cSumj = cSumj + (RNum ⊕memAddr )
15: cSumj = cSumj + (SR ⊕ cSumj−2)

16: end for
17: end for

T-function [22] to generate these random numbers. Each partial

checksum block is also dependent on (a) the last two calculated

partial sums; to avoid parallelization and pre-computation attack,

(b) a key; to avoid replay attack, (c) current memory address (data

pointer) and PC (if available depending on the architecture); to

avoid memory copy attack, (d) the content of the program memory;

to avoid changing the attestation code, and (e) the Status Register
(SR) to check the status of the interrupt-disable flag. In § 4, we will

show different attack scenarios and discuss why all these properties

are needed to prevent different attacks.

To avoid variations due to possible branch mis-predictions, in the

actual implementation of the checksum, the inner loop is unrolled

to calculate all the partial sums in one iteration. To avoid variations

due to cache misses, the MASK is generated such that the data

access address range fit into an L1 cache (if any). Note thatMASK
is a function of the received challenge (see line 3) thus it is the

verifier (trusted user) responsibility to generate correct challenge

to set theMASK properly. Also, to cover the full address space, the

verifier can send multiple challenges with different address ranges.

Further, the attestation code itself is compactly designed so that it

fits into an instruction cache. The detailed implementation of this

code on an Arduino Uno will be shown in § 4.

Security Analysis. Based on the framework proposed in [5], in

general, to analyze the security of any software attestation frame-

work, two core components should be analyzed: memory address

generator (Gen) and the checksum computation/compression func-

tion (ChK ).
To be cryptographically secure, the addresses, ai , generated by

Gen should be “sufficiently random” [5]. To achieve that, ai should
be computationally indistinguishable from uniformly random values

within a certain time-bound, tmin , (assuming that P̃ does not know

the seed in advance). In practice, P̃ can use an arbitrary seed value

to compute all the possible addresses on its own, making them easily

distinguishable from random values. However, it can be shown that

to maintain the security [5], it is only required that P̃ cannot derive

any meaningful information about ai+1 from ai and the seed with-

out investing a certain minimum amount of time, tcompute ≥ tGen .
Specifically, we assume that an algorithm with input s that does
not executeGen cannot distinguish ai+1 = Gen(ai ) from uniformly

random values. This property holds true for the T-functions as

shown in [22], since either the adversary needs to spend the same

amount of time as Gen to compute the next address or, alterna-

tively, pre-record all possible (addr, nextAddr) pairs. For a 16-bit

T-function, saving all the pairs requires more than 128KB memory,

which means to access this data in run-time, the attacker needs to

access either L2 or the main memory, thus tcompute = tmem . In our

design (line 9 in Algorithm 1) tGen is only a few cycles (<5) which

is clearly much less than tmem > 20 in typical low-end processors.

The purpose of the checksum function,ChK , is to map the mem-

ory state of the prover,P , to a smaller attestation response, r , which
reduces the amount of data to be sent from P to the verifier V . A
mandatory security requirement on Chk is that it should be hard
for P̃ to replace the correct input, S , to Chk with some other value,

S ′ , S , that yields the same attestation response r (i.e., second
pre-image resistance of cryptographic hash functions). However,

unlike the hash functions where the adversary may know the cor-

rect output (and searches for the second output), in the software

attestation schemes the adversary does not even know the correct

(first) response. The reason is that, as soon as P̃ knows the correct

response, he could send it to V , and would not bother to determine

a second pre-image. As a resut, this leads to a much weaker second
pre-image resistance requirement for attestation frameworks.

Using this fact, our checksum is designed such that it significantly

reduces the chance of the collision while being computationally

hard for a second pre-image attack. This can be proven, as shown

in [26], that ChK used in this paper provides an almost full cover-

age (i.e., almost all possible numbers in the [0, 216 − 1] range for

a 16-bit partial checksum), which, in turn, makes ChK resistant to

(blind) pre-image attacks. In fact, using the framework in [5], the

probability of a checksum collision in our framework (for 160-bit

checksum and totIter = 100) is < 10
−40

.

EM-Monitoring. The EM-Mon component ensures that the at-

testation computation in V is not tampered with. Figure 2 shows

this monitoring framework. Using an antenna (e.g., a magnetic

probe) and a signal acquisition device (e.g., a software-defined-

radio), the EM signal is captured and received as a time-series ( 1 ).

As mentioned in § 2, depending on the required analysis, either

time-domain or frequency-domain analysis is selected ( 2 ) where

for analyzing the prologue and epilogue, time-domain is used, and

for the computation loop, frequency-domain analysis is used (the

decision is made by the current state of the FSM which will be

discussed in the following).

For frequency-domain analysis, the signal is then transformed

into a sequence of Short Frequency-Domain Samples (SFDS) using

a Short-Time Fourier Transform (STFT). This transformation con-

sists of dividing the EM signals into consecutive, equal-length, and

overlapping segments of size t and then computing the STFT from

each of these segments to obtain the corresponding SFDS ( 2 and

3 -bottom). Segment size, t , has to be chosen such that it provides a

balance between the time resolution and EM-Mon’s computational
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Figure 2: Overview of EM monitoring framework.

needs. Also, t should be long enough to capture several iterations

of the checksum loop to model the average behavior of the loop.
Each block in the main checksum loop on Arduino Uno takes about

20 machine cycles, and calculating the entire 160-bit checksum

takes ≈ 400 cycles (about 25µs). Therefore, in this paper, we use

1ms segment size with 80% overlap (i.e., each segment equals to 40

iterations), and consecutive segments differ only in 8 iterations.

While these numbers provide adequate time-resolution for the

checksum computation loop, it is not sufficient to detect small

changes before/after the main loop. Thus, time-domain analysis

is used in these regions where the signal is first low-pass filtered

and normalized using mean subtraction and scale normalization

( 3 -top), and then segmented into consecutive, equal-length, and

overlapping segments of size t ( 4 -top). We used t = 24 samples

in our setup. Consecutive segments differ only in one sample (we

used an SDR with 2.4 MHz sampling-rate), to maximize the time-

resolution (the time-resolution in this setup is about 6 cycles vs.

3200 cycles for the frequency-domain analysis).

For frequency-domain analysis, each SFDS then goes into the

findPeaks() module ( 4 -bottom) where n spikes are selected and

later used as “signatures” for each SFDS. In findPeaks(), the first
step in finding a spike is that for each frequency, f , that is of in-
terest in an SFDS, we first compute the corresponding normalized

frequency as fnorm = (f − fclk )/fclk , where fclk is the clock fre-

quency for that SFDS. This normalized frequency is expressed as

an offset from the clock frequency so that a shift in clock frequency

does not change fnorm with it and is normalized to the clock, so it

accounts for the clock frequency’s first-order effect on execution

time. We call this technique “clock-adjustment”. The criteria for

selecting spikes are choosing the n largest amplitude local max-

ima (peaks), excluding the spike for the clock, that are not part of

the noise. To find the noise, we record the spectrum once without

executing the attestation function and save all the spikes that are

3-dB above the noise floor as noise. For our evaluations, we select
n = 7, to capture the checksum loop’s fundamental frequency and

its second and third harmonics (in both sidebands). The frequency

of the clock is also reported to prevent attack scenarios where the

clock speed is increased to hide malicious activities.

To check the correctness of the execution, the time-domain seg-

ments generated by findNorm() or the frequency peaks (a vector of
size n) generated by findPeaks() should be compared to a known

“reference model” that is achieved during the secure execution of

attest() ( 5 ). Note that the reference model needs to be created

only once. For time-domain signals, the reference model is a dic-
tionary of segments each of which with size of t = 24 (note that

the entire initialization phase takes about 500µs, i.e., the dictionary
size is about 5000 elements). For the frequency-domain, the model

is a vector of size n which stores the frequency bins of the compu-

tation loop’s spikes. We assume that either the manufacturer or the

end-user is able to achieve a correct reference model.

We use Pearson-correlation for frequency-domain, and cross-

correlation for time-domain as the distance metric. In time-domain,

the entire signal can be reconstructed by concatenating the best-

match segments in the dictionary. The reconstructed signal is then

compared to the original signal (i.e., the signal obtained during

the actual execution of the initial phase) using mean-square-error

(MSE) method. Finally, to decide whether the signal “matches” with

the correct execution, a simple moving average (SMA) filter is used.

The SMA is mainly used to remove short-term runtime noises (i.e.,

when only a few samples deviate from the model due to environ-

mental/measurement noise). If the outcome of the SMA always

stays below a a threshold (tht = 0.1), the signals are matched. In
frequency-domain analysis, the signal is matched if the correlation

coefficient is larger than th = 0.8. Based on these distance compar-

isons, findDistance() outputs two boolean values (isMatched_t,
isMatched_f) showing whether the signal matches with either the

initialization or the computation phase or none of them.

The final stage of EM-Mon is a Finite-State Machine (FSM 6 ).

The default state for the FSM is when EM-Mon is waiting for the

attestation to start (state = 0). Upon receiving a challenge from V ,
FSM switches to state = 1, starts a timer called challengeTimer,
and starts the time-domain analysis. During this phase, FSM throws

an error if findDistance() reports “not-matched” (for time-domain

analysis). FSM switches to state = 2 once findDistance() re-

ports “match” for the frequency-domain analysis (i.e., this is when

the computation loop begins). Also, the FSM throws an error if

challengeTimer is larger than a threshold. Checking this value

ensures that the system can be protected against proxy, code com-
pression, and return-oriented rootkit attacks, where the attacker

needs to spend some (non-negligible) time to set up the attack

before actually starting the Checksum().
Note that this is an important and unique feature of EMMA since

existing methods are all unable to measure this delay (even when
they are directly connected to the verifier by a cable), and can only

measure the time between sending the challenge and receiving the

checksum value.

The output of findDistance() becomes zero (for the frequency-

domain analysis) when the checksum loop completes, so the FSM

switches to state = 3, and checks the challengeTimer once again.

This check ensures that the total execution time of attestation does

not exceed a threshold which is defined by initTime+perIteration×
totIter , where perIteration is the checksum loop per-iteration time,

totIter is the total number of iterations for calculating the check-

sum, and initTime is a constant.
Lastly, in state = 3, EM-Mon starts a timer called checksumTimer

and waits for an acknowledge from V that the checksum is received.

At this point, if checksumTimer is larger than a constant, FSM

again throws an error. Otherwise, it successfully switches back to

state = 0 and waits for the new attestation challenge. This check

ensures that the adversary can not spend any extra time after the

checksum calculation is finished and before actually sending the

checksum to V . Note that in all cases, FSM can only transit from

state n to n + 1 to enforce the correct ordering in attestation.
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4 EXPERIMENTAL EVALUATION
Measurement Setup. To evaluate the effectiveness of our method,

we used a popular embedded system, Arduino Uno, with an AT-

MEGA328p microprocessor clocked at 16MHz. To receive EM sig-

nals, the tip of a small magnetic probe [1] was placed about 10 cm

above the Arduino’s microprocessor (with no amplifier). To record

the signal, we used an inexpensive compact software-defined radio

(RTLSDRv3 [33]) cost about 30$. We recorded the signals at 16 MHz

with a 2.4 MHz sampling rate. Note that all of our measurements

were collected in the presence of the other sources of EM interfer-

ence including an active LCD that was intentionally placed about

15 cm behind the board. A set of TCL scripts were used to control

the attestation process. The real-time EM-Monitoring algorithm

was implemented in MATLAB2017b.

Implementation. Arduino Uno uses an ATMEGA328p micropro-

cessor, an Atmel 8-bit AVR RISC-based architecture, with a 16KB

Program memory and a separate Data memory (unlike most other

architectures where a single memory is used for both data and for

executable instructions). This micro-controller has 32 8-bit general

purpose registers where the last 6 registers can be combined in

groups of two, and form three 16-bit registers (namely X , Y , and
Z ). The Z register can be used to access/read the program memory

using LPM Z assembly instruction. Note that, unlike most of the

micro-controller architectures, AVR does not provide direct access

to the Program Counter (PC) register, so the value of the PC cannot

be used during checksum calculation.

Checksum is saved as a vector in 20 8-bit registers (r0 − r19).
Z register (r31 : r30) is used for reading the program memory

(memAddr ), Y register is used to store the random number gener-

ated by PRNG. Inputs from the challenge are pushed to the stack

prior to invoking attest(), and later are read in the initialization
phase. r25 : r24 are used to save theMASK value. r23 : 21 is used to
save the nonce , and r20 is used to store the content of the memory.

Finally, X is used for saving the current index (i). In our framework,

each partial checksum calculation (cSUM) takes 20 cycles. Hence,

adding an extra one-cycle instruction (e.g., an ADD) to the partial

checksum block should increase the per-iteration time (and the

corresponding spike in the frequency domain) by about 5%. The

initialization phase takes about 500µs to receive the challenge via a

Serial communication protocol.

Attacks. We evaluate the security of EMMA by implementing differ-

ent attacks on a software-based attestation framework and showing

that EMMA can indeed detect these attacks, and protect the system

against them. These attacks can be divided into (i) attacks to the

main checksum loop (shown as L-1 and L-2), and (ii) attacks to the

epilogue/prologue phase (EP-1 and EP-2) as described in § 2.

L-1:Memory-CopyAttack: Themost straightforward attack against

software-based attestation methods is the memory-copy attack,
where the adversary has created a copy of the original code else-
where in memory, and the checksum code is modified to use that

range of addresses instead of the original ones. Since the chal-

lenge sent by V could request to read any memory line in the

496 572 648 724 800 876 952 1028
Frequency (KHz)

-145

-140

-135

-130

-125

dB

benign
memory-copy

Noise

Noise

Figure 3: EM spectrum during checksum computation for
the original code (gray) and Memory-Copy attack code (red).
The x-axis is the frequency offset relative to the processor’s
clock frequency.

program memory address space, potentially including the suppos-

edly “empty” memory space where the “clean” copy of the original

code is kept, to avoid detection this modified code must check

addresses that are used during checksum computation, and then

perform accesses without modification for unmodified memory

ranges, redirect them to “clean” copies for modified memory ranges

or use override values for supposedly empty ranges that now actu-

ally contain the attacker’s data (including “clean” copes of original

values from program and data memory).

This checking and redirection of memory requests introduce

overheads during checksum computation. Specifically, the adver-

sary needs to changememAddr register (register Z in our imple-

mentation) to point to another address in the memory (at least one

added instruction). Moreover, since we are usingmemAddr in the

checksum calculation, the value itself has to be changed back to the

correct value (another instruction). Note that, in our implementa-

tion, since accessing the program memory is only possible through

Z , the adversary’s only option is changing Z . Even for program/-

data location that are unchanged by the adversary, the checksum

code must suffer overheads of checking (a compare and a branch in-

struction) that the address falls in a range that still contains original

instructions/data. Overall, to implement this attack, the adversary

has to add at least two instructions per check-summed location.

One countermeasure to defeat this attack is to fill the unused

memory regions with random values only known to the verifier [43].

Castelluccia et al. [11], however, showed that this defense can be

circumvented using a simple compression attack where the unused

parts of memory are compressed and stored in non-executable re-

gions. Hence, to provide a stronger security guarantee, in this paper

we relax the assumption that “free” space is filled with random val-

ues and allow all “free” memory locations to be filled with the same

value (e.g., 0xFF). This allows the attacker to store malicious code in

an empty region of programmemory, and to modify checksum com-

putation so that LPM Rd, Z (i.e., load from program memory) for

that region of the memory is replaced with SER Rd (set Rd to 0xFF).

In our experiments, an LPM instruction uses 2 more cycles than

SER does, thus removing 2 cycles from the 4-cycle performance

penalty introduced by the compare-and-branch check, that is still

needed to determine which region of program memory is being
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(a) attack-free, (b) memory-shadow attack, and (c) memory
copy attack code.

addressed. The reduced additional latency makes the modification

of the checksum computation more difficult to detect.

To evaluate our framework, we implemented the Memory-Copy

attack, and we trained EMMA on (only one) attack-free instance

of attestation. We then applied EMMA to both attack-afflicted and

attack-free instances of the attestation. The spectra of the resulting

signals (Figure 3) show the spikes that correspond to the original

checksum computation loop, and also the spikes that correspond to

the modified checksum computation (red), which are shifted closer

to the processor clock’s frequency because the per-iteration time

of the loop has increased. Figure 4 shows the spike’s frequency

for 20 attestation instances, 10 attack-afflicted, and 10 attack-free,

showing a consistent difference among them. We find that EMMA
successfully labels all these instances, i.e., all attack-afflicted in-

stances are labeled as attack-afflicted (successful detection), and

all attack-free are labeled as attack-free (no false positives). The

“measurement-limit” line refers to the threshold that was used in

EMMA for the labeling decision.

L-2: Memory-Shadow Attack: Castelluccia et al. [11] showed that
instead of adding a branch and compare instructions to compare

the address, the adversary can reduce the number of added cycles

by one (i.e., 2 instead of 3) by copying the malicious code into a

specific “free” area of the program memory (assuming it is not filled

with random values) and called it Memory-Shadow Attack.

This attack leverages the fact that most of the program memory

available on an embedded system is usually empty. In this case, if

the second half of the program memory (addresses withMSB = 1)

is empty, all accesses to the last quarter of the memory (addresses

11x ...x ) could be redirected to the third quarter (addresses 10xx ...x )
by just flipping one bit in the address. The last quarter of the pro-

gram memory would then be shadowed and could be used to hide

the malicious code. To implement this attack, the adversary sim-

ply needs to check the highest bit, and if it is one, sets the second

highest bit to zero. This can be implemented in an AVR ISA with

two instructions “sbrs r31, 7” and “cbr r31, 6” which takes two

cycles; thus, the overall number of added cycles will be three which

is only one cycle more than the actual checksum loop (recall that

the adversary does not need to read from the memory so that gives

him an extra two cycles).
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Figure 5: The probability of detecting memory-shadow at-
tack for EMMA and prior work.

To further show that adding even an extra cycle to the main loop

would shift the frequency of the loop, Figure 4 shows the frequency

shift for adding a simple one cycle ALU instruction where we added

aCBR (clearing a single bit in a register) instruction to themain loop.

This confirms that the adversary cannot add any instructions to the

main loop of the code since any instruction in AVR ISA adds at least

one cycle of overhead hence can be detected by EMMA, a very strong
security guarantee. Furthermore, similar to memory-copy attack,

we used 10 trials for this attack and showed that its frequency is

well below the actual frequency of the main loop (see Figure 4).

Similar to memory-copy, here we also got 0% false positive and

100% true-positive rate accuracy.

To further compare EMMA with prior work, Figure 5 shows the

detection probability for Memory-Shadow attack as a function of

number of checksum loop iterations. Intuitively, higher number

of iterations magnifies the overhead of adding extra instructions

(cycles) to the loop thus it gets easier to detect. However, to limit

runtime variations, number of iterations is limited by the size of

L1 and/or instruction cache. Also, more iterations requires longer

computation time which, in turn, increases the overhead (power,

device availability, etc.). Thus, ideally the detection framework

should be able to detect attacks with small number of iterations to

minimize these overheads and the increase accuracy. As shown in

Figure 5, EMMA detects attacks that involve as few as 100 iterations,

which is 20x smaller than what can be detected by EDDIE [31], and

more than two orders of magnitude smaller than the fastest timing-

based approach. The main reason for this dramatic improvement in

sensitivity, compared to EDDIE, is that EMMA leverages Pearson cor-

relation as a distance metric instead of using non-parametric tests

used in EDDIE [31]. Compared to the timing-based methods, EMMA
can provide fine-grain per-iteration monitoring which enables it to

detect small changes. Note that given the attacker knows that EMMA
requires about 100 iterations to detect the change, the attacker can

design a new attack to selectively run the memory-shadow attack

in some iterations. While the attacker can modify the code in that

way, achieving that functionality itself needs adding a branch-and-
compare instruction (i.e., to check the iteration number), which, in

turn, causes an overhead and hence will be detected by EMMA.

EP-1: Rootkit-Based Attack: Another class of attacks leaves the
original checksum loop unchanged, but adds work before and/or
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Figure 6: Spectrogram of the attestation code in normal (left) and rootkit-attack (right) runs. Note that the slight differences in
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after it, e.g., by hiding/removing the modified code before the check-

sum computation and restoring it after the (unmodified) checksum

computation. These types of attacks are extremely difficult to de-

tect for existing timing-based schemes since the time overhead

introduced by these attacks are typically hundreds of microseconds

which is less than 1% of the overall execution time of the attestation

procedure. Moreover, frequency-only detection methods (e.g., ED-

DIE [31], Zeus [20]), are also unable to efficiently detect these

attacks if the changes is smaller than the minimum time-resolution

of the method (typically around 1 ms). However, for EMMA, these
attacks are not difficult to detect, as they add many cycles of work

between when the checksum computation is supposed to start and

when it actually starts, thus a proper time-domain analysis such as

the one used in this paper can be applied to detect potential attacks.

As an example of such attacks, we implement the Rootkit-Based

Attack [11], which leverages Return-Oriented Programming (ROP)

technique [39]. In this attack, a hook (jump) replaces the first in-

struction in the attestation. The initiation of attestation results in

a jump to the malware’s hiding functionality, which deletes the

attacker’s code (including itself) from program memory, but leaves

a series of ROP gadgets so that, after the (unmodified) attestation

code sends its response, the malware is re-installed on the device.

The deleting procedure is the most time-consuming part of the

attack, where the adversary needs to copy the malware hiding func-

tionality and the modified checksum loop to the data-memory, and

replace themwith the original code. Figure 6 shows the spectrogram

of the attestation procedure with and without the rootkit-based

attack. As can be seen in the figure, for the normal behavior of the

attestation code, initialization takes about 500µs which includes

receiving the challenge and invoking attest(). Note that based
on the initialization time, we set the threshold for challengeTimer
to 2ms or 8 samples (i.e. the maximum delay between sending the

challenge and starting the checksummain loop is smaller than 2ms).
As illustrated in Figure 6, in the presence of rootkit attack though,

there is an extra phase between the initialization and the start of the

main checksum loop that takes about 8ms , which is larger than the

timer’s threshold and thus triggers an error caused by checking the

challengeTimer. Moreover, we found that even without using the

timer, the time-domain analysis can successfully detect the attack
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Figure 7: The probability of detecting the proxy attack for
EMMA and state-of-the-art.

since the time-domain signatures for the rootkit were very different

than that of in receiving the challenge.

To evaluate EMMA against this attack, similar to previous attacks,

we used 10 trial runs for the attack, and found that EMMA can suc-

cessfully detect all the instances of the attack.

EP-2: Proxy Attack: In a proxy attack, instead of calculating the

checksum on its own system, the prover contacts another often

faster device (the proxy) to compute the correct checksum within

the time limit, which enables malware on the device to go unde-

tected. In this case, similar to a rootkit-based attack, the adversary

needs some time after receiving the challenge to properly set up

the attack. For proxy, this time is used for sending (forwarding)

the challenge and any other necessary information (e.g., nonce)

required to correctly compute the checksum in the proxy.

The major limitation in the existing methods for detecting proxy

attacks is that the adversary can simply hide this attack if tsend <<
tthreshold . EMMA, however, is not limited by the overall attestation

time and can distinguish the initialization phase from checksum

calculation very accurately.

Figure 7 shows the probability of detecting this attack (as a func-

tion of tsend ) and compares it with other existing methods. As can
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be seen in this figure, EMMA can detect up to 2 orders of magni-

tude smaller attacks compared to existing work. This is particularly

important in scenarios such as IoT devices where the device is con-

nected to the network and the attacker can leverage proxy attacks

very easily. Our evaluations show that for low-end devices such

as Arduino, the fastest time the attacker can achieve to forward

the challenge to another (colluding) device is about 800 µs (using
a WiFi module) which is well within the detectable range of EMMA
To evaluate EMMA against this attack, we used 10 trial runs for the

proxy attack, and found that EMMA can successfully detect all the

instances of the attack while having no false positives (while for

other methods the accuracy is well below 80%).

5 FURTHER SENSITIVITY RESULTS AND
ANALYSIS

Scalability to Other Platforms. To show EMMA is applicable to

other systems with a different processor and/or architecture, and

can be used at different frequency ranges, we tested our checksum

main loop, Checksum() (an un-optimized form), on three other em-

bedded systems: a TI MSP430 Launchpad with a processor clocked

at 16MHz, an STM32 ARM Cortex-M Nucleo Board also clocked at

16MHz, and an Altera’s Nios-II soft-core implemented on a Startix

FPGA board clocked at 60MHz. The criteria for choosing these

boards were to pick the embedded systems that are popular and

widely used, and have different architectures than Arduino.

Running the same attestation code on these boards, we then con-

firmed that by using the same setup used in § 4, EM-Mon receives

EM signals similar to that of for Arduino board (i.e., spikes at the

frequency of the loop), and further, we confirmed that our detection

algorithm can successfully detect when this loop starts and when

it ends by adding the training information (i.e., the position and

the number of spikes) for each board to our framework. Finally, to

further show that even single added instruction to the loop’s code

is detectable by EMMA, we added a single-cycle “ADD” instruction

to the checksum’s assembly code for each of the mentioned boards

(i.e., similar to memory-shadow attack)). We then used EMMA, to la-

bel malware-free and malware-afflicted (i.e., runs with the extra

instruction) checksum runs (10 each) for all the three boards. Our

results showed that, in all cases, EMMA successfully detected the

malicious runs.

Scalability to More Complex Systems. We tested our frame-

work on a more complex embedded system, A13-OLinuXino Single-

Board-Computer [32]. This board has an ARM A8 in-order core

clocked at 1GHz, with 2 level of caches, a branch predictor, and a

prefetcher. It also runs a Debian Linux OS. We ran our checksum

loop on this board and measured the beginning/end time and the

loop’s per-iteration time.

Our measurements showed that while having caches, a branch

predictor, and a prefetcher introduces some variation in the per-

iteration execution time of the loop, in practice this variation is not

significant. For the cache, since the checksum code is small, it fits

completely inside the CPU’s L1 instruction cache. Furthermore, the

memory region containing the verification function is small enough

to fit inside the CPU’s L1 data cache. Thus, once the CPU caches are

warmed up, no more cache misses occur. The time taken to warm

up the CPU caches is a very small fraction of the total execution

time. As a result, the variance in the execution time caused by cache

misses during the cache warm-up period is negligible.

For the branch predictor, we observed that in our code, the branch

mis-prediction only happens in the last iteration (recall that the

inner loop was enrolled), when the checksum computation is fin-

ished; thus, it does not have any impact on the execution time of

the checksum loop. Furthermore, due to the memory’s random

access pattern in the checksum loop, the prefetcher’s accuracy is

inevitably low.

To further analyze the effect of having cache, branch predictor,

and prefetcher on the timing, we used gem5 [6] simulator, to sim-

ulate the checksum code on an in-order ARM core machine with

similar configurations to that of A13-OLinuXino board. Our results

showed that for a 1.2KB size checksum code, our code accessed the

cache about 7000 times, out of which only 21 accesses were L1 miss

(i.e., >99.5% hit-rate), and only about 800 more cycles (mostly due

to L2 misses) were added to the overall execution time (i.e., <0.01%).

Note that this extra delay only happens inside the checksum loop,

and does not affect the delay for the proxy and/or rootkit attacks

since those attacks happen before the beginning of the checksum.

Furthermore, our results showed no mis-prediction for the branch

predictor, and <1% prefetching accuracy for the checksum loop.

To evaluate EMMA, we ran the same experiment (adding an extra

“ADD” instruction) discussed in the previous section, and found

that our detection algorithm successfully detected all instances of

the attack with no false positive.

Overall, the goal of evaluating EMMA on multiple different boards

was showing that the ability to use EM signals for monitoring the

attestation procedure is a result of a fundamental connection be-

tween repetitive program behavior and the spectra of resulting

side-channel signals, and is not dependent to a specific architecture.

Furthermore, these experiments confirmed that EMMA is scalable to

other platforms.

Scalability on Monitoring Multiple Devices. To show the abil-

ity of EMMA on monitoring multiple devices at the same, we used

EMMA to monitor eight Arduino devices. For each device, we used

a hand-made coil (cost around $3) as the measurement probe and

taped it to the board (on the center of the board). We then used

SMA cables and 2-way channel splitter/combiner (cost around $4),

to connect all the probes to a single SDR (cost $30). The SDR is

connected to a computer where EMMA was implemented. We then

repeated the measurements in the previous section, by attesting

these devices one-by-one. In all the experiments, we saw no sig-

nificant degradation in the accuracy, and in all cases we were able

to detect the attack with perfect accuracy which validates that the

ability of EMMA to monitor multiple devices at the same time. Note

that we further increased the devices to 16, but observed a much

higher noise and significantly lower SNR, which prevented us from

successfully perform the attestation.

Based on these experiments, with the current setup, EMMA is able

to monitor up to 8 devices with no performance loss. The entire

setup cost for monitoring is about $80 (i.e., $10 per device), which

makes the system a practical approach for monitoring security-

critical devices. Furthermore, multiple EMMA setups can be used to

monitor a large group of devices where a C&C server can manage
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the whole process and send and receive the results from individual

EMMA setups.

Robustness and Variations Over Time. To test the robustness

of our algorithm over time and against environment variations (e.g.,

temperature, interference, etc.), we repeat the attestation procedure

at one-hour intervals, over a period of 24 hours, while keeping the

Arduino board and the receiver active throughout the experiment,

to observe how the emanated signals vary over time as device tem-

perature (and room temperature) and external radio interference

such as WiFi and cellular signals change during the day and due to

the day/night transition. At each hour we ran the attestation once

(without any malicious behavior). The training data was collected

before the first hour of the experiment. The goal was to show how

the false positive (FP) rate changes over time. We observed a signif-

icant increase in FP rate after hour 2 when we were not using the

clock-adjustment feature (see § 3). However, adding this feature,

EMMA achieved perfect accuracy (i.e., 0% FP). The major reason for

this dramatic degradation in accuracy was due to the fact that the

clock-rate for Arduino began to drift after about one hour of con-

tinuous usage. Without associating this drift to our algorithm, EMMA
was unable to correctly predict that the shift in the frequency of

the checksum main loop was due to the clock drift, and not because

of a potential malicious activity.

6 RELATEDWORK
Remote Attestation schemes can be categorized into three methods:

software-based, hardware-based, and hybrid.

Software-based approaches require no hardware overhead on

the prover. There is a large body of work in software-based attes-

tation schemes. Seshadri et al. [38] introduced SWATT to verify

the software of an embedded device. SWATT relies on a checksum

function that computes a checksum over the entire memory con-

tents and is constructed to force an attacker to induce overhead to

compute the correct checksum. Furthermore, Seshadri et al. pro-

posed an extension to SWATT by enabling verification of a small

amount of memory on a sensor (ICE/SCUBA [36]). Li et al. [27]

proposed a similar approach to verify the integrity of peripherals’

firmware and showed that they can detect several known attacks,

especially proxy attacks. However, this scheme also suffers from

unwanted delays in communication between the prover and verifier

and requires a low-latency low-contention network.

Castelluccia et al. [11] pointed out weaknesses in the specific

SWATT and ICE-based schemes, and showed that all of these

schemes are vulnerable to rootkit-based attacks, which also im-

plemented and analyzed in this paper. We showed that using EM

side-channel signals, we are able to not only precisely monitor the

per-iteration behavior of checksum loop but also find when this

loop begins and ends which enables us to detect the attacks shown

in [11]. However, all the existing SW methods are not able to detect
the exact begin/end time and/or per-iteration time of the checksum

loop which makes them vulnerable to the attacks proposed in [11].

Hardware-based approach relies on a secure hardware (e.g.,

Trusted Platform Module [21, 25, 29, 40], SGX [14], TrustZone [4],

etc.), which often present in powerful devices such as desktops, lap-

tops and smartphones, and it is often impractical for medium- and

low-end embedded systems due to costs and complexity overheads.

Hybrid-based techniques [9, 18, 23, 24, 44] are based on hard-

ware/software co-design, and aims to reduce the hardware and cost

overhead on the prover, however, they still incur some overhead to

the system. Compared to these schemes, EMMA incurs no overhead

to the system while providing a strong security guarantee.

Also related to this work, are schemes that use side-channel
signals (e.g., EM or power) to profile or monitor a system [3, 8,

13, 20, 28, 31, 34]. Most notably, EDDIE [31] leveraged EM signals

for malware detection in IoT devices, using a classifier based on

a statistical distribution test. Similarly, ZEUS [20] used spectral

components of the signal as a feature, and a neural network as a

classifier, to detect a control-flow deviation in a PLC. While these

two methods also used EM side-channel for malware detection

there are several key differences between our approach and these

schemes. Themajor difference between thismethod and the existing

methods is that, in addition to leverage spectra to detect anomaly,

EMMA also leverages time-domain analysis. As shown in Figure 7,

this is particularly important to detect stealthy attacks such as

proxy. Furthermore, instead of detecting deviations from normal

behavior in an arbitrary application, the target in our design is

a purpose-designed piece of code (checksum computation) that

has very stable timing, and thus a sharp spectral signature, so

the anomaly detection can be much more sensitive (comparing to

EDDIE and/or ZEUS). Another difference is that we are also using

the loop’s per-iteration time and overall duration to estimate its

iteration count, and deviation in this iteration count is also used for

anomaly detection in EMMA. And of course here the EM monitoring

is used in combination to a challenge-response attestation rather

than as a stand-alone mechanism for detecting malware.

7 CONCLUSIONS
This paper proposed EMMA, a novel method for hardware/software

attestation on embedded systems. Unlike existing approaches, EMMA
uses electromagnetic side-channel signals generated by the embed-

ded system as the communication channel between the verifier

and prover which provides a more accurate scheme to monitor

the prover during the attestation and completely eliminates the

timing tight constraints in the existing methods. We described our

attestation framework which can attest an embedded system in

real-time. To evaluate our system, we implemented EMMA on a pop-

ular embedded system, Arduino UNO, and evaluated our system

with a wide range of known attacks. Our evaluations showed that

EMMA can provide an excellent security guarantee in the presence

of these attacks while prior work failed to detect some (or all) these

attacks with high accuracy. Further, we showed how EMMA can be

scaled to attest multiple devices and support other embedded sys-

tems platforms, and demonstrated its robustness against different

sources of variability.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for their

valuable feedbacks. This work has been supported, in part, by NSF

grant 1563991 and DARPA LADS contract FA8650-16-C-7620. The

views and findings in this paper are those of the authors and do

not necessarily reflect the views of NSF and DARPA.



MICRO-52, October 12–16, 2019, Columbus, OH, USA Sehatbakhsh, et al.

REFERENCES
[1] AARONIA. 2016 (accessed Nov. 6, 2018). Datasheet: RF Near Field Probe Set DC

to 9GHz. http://www.aaronia.com/Datasheets/Antennas/RF-Near-Field-Probe-

Set.pdf.

[2] Tigist Abera, N. Asokan, Lucas Davi, Jan-Erik Ekberg, Thomas Nyman, Andrew

Paverd, Ahmad-Reza Sadeghi, and Gene Tsudik. 2016. C-FLAT: Control-Flow

Attestation for Embedded Systems Software. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’16). ACM,

New York, NY, USA, 743–754. https://doi.org/10.1145/2976749.2978358

[3] Carlos R. Aguayo González and Jeffrey H. Reed. 2011. Power Fingerprinting

in SDR Integrity Assessment for Security and Regulatory Compliance. Analog
Integr. Circuits Signal Process. 69, 2-3 (Dec. 2011), 307–327. https://doi.org/10.

1007/s10470-011-9777-4

[4] ARM. 2009. ARMSecurity Technology- Building a Secure System using TrustZone

Technology. ARM Technical White Paper 2009 (2009).
[5] Frederik Armknecht, AhmadReza Sadeghi, Steffen Schulz, and Christian Wachs-

mann. 2013. A Security Framework for the Analysis and Design of Soft-

ware Attestation. In Proceedings of the 2013 ACM SIGSAC Conference on Com-
puter & Communications Security (CCS ’13). ACM, New York, NY, USA, 1–12.

https://doi.org/10.1145/2508859.2516650

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh

Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.

Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit.
News 39, 2 (Aug. 2011), 1–7. https://doi.org/10.1145/2024716.2024718

[7] Ferdinand Brasser, Kasper B. Rasmussen, Ahmad-Reza Sadeghi, and Gene Tsudik.

2016. Remote Attestation for Low-end Embedded Devices: The Prover’s Perspec-

tive. In Proceedings of the 53rd Annual Design Automation Conference (DAC ’16).
ACM, New York, NY, USA, Article 91, 6 pages. https://doi.org/10.1145/2897937.

2898083

[8] Robert Callan, Farnaz Behrang, Alenka Zajic, Milos Prvulovic, and Alessandro

Orso. 2016. Zero-overhead Profiling via EM Emanations. In Proceedings of the
25th International Symposium on Software Testing and Analysis (ISSTA 2016). ACM,

New York, NY, USA, 401–412. https://doi.org/10.1145/2931037.2931065

[9] Xavier Carpent, Karim ElDefrawy, Norrathep Rattanavipanon, and Gene Tsudik.

2017. Lightweight Swarm Attestation: A Tale of Two LISA-s. In Proceedings of the
2017 ACM on Asia Conference on Computer and Communications Security (ASIA
CCS ’17). ACM, New York, NY, USA, 86–100. https://doi.org/10.1145/3052973.

3053010

[10] X. Carpent, G. Tsudik, and N. Rattanavipanon. 2018. ERASMUS: Efficient re-

mote attestation via self-measurement for unattended settings. In 2018 Design,
Automation Test in Europe Conference Exhibition (DATE). 1191–1194. https:

//doi.org/10.23919/DATE.2018.8342195

[11] Claude Castelluccia, Aurélien Francillon, Daniele Perito, and Claudio Soriente.

2009. On the Difficulty of Software-based Attestation of Embedded Devices.

In Proceedings of the 16th ACM Conference on Computer and Communications
Security (CCS ’09). ACM, New York, NY, USA, 400–409. https://doi.org/10.1145/

1653662.1653711

[12] Binbin Chen, Xinshu Dong, Guangdong Bai, Sumeet Jauhar, and Yueqiang Cheng.

2017. Secure and Efficient Software-based Attestation for Industrial Control

Devices with ARMProcessors. In Proceedings of the 33rd Annual Computer Security
Applications Conference (ACSAC 2017). ACM, New York, NY, USA, 425–436. https:

//doi.org/10.1145/3134600.3134621

[13] Shane S. Clark, Benjamin Ransford, Amir Rahmati, Shane Guineau, Jacob Sor-

ber, Kevin Fu, and Wenyuan Xu. 2013. WattsUpDoc: Power Side Channels to

Nonintrusively Discover Untargeted Malware on Embedded Medical Devices. In

Proceedings of the 2013 USENIX Conference on Safety, Security, Privacy and Interop-
erability of Health Information Technologies (HealthTech’13). USENIX Association,

Berkeley, CA, USA, 9–9. http://dl.acm.org/citation.cfm?id=2696523.2696532

[14] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptology
ePrint Archive 2016 (2016), 86.

[15] R. d. Clercq, R. D. Keulenaer, B. Coppens, B. Yang, P. Maene, K. d. Bosschere, B.

Preneel, B. d. Sutter, and I. Verbauwhede. 2016. SOFIA: Software and control

flow integrity architecture. In 2016 Design, Automation Test in Europe Conference
Exhibition (DATE). 1172–1177.

[16] G. Dessouky, S. Zeitouni, T. Nyman, A. Paverd, L. Davi, P. Koeberl, N. Asokan,

and A. Sadeghi. 2017. LO-FAT: Low-Overhead control Flow ATtestation in

hardware. In 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC).
1–6. https://doi.org/10.1145/3061639.3062276

[17] Thomas Eisenbarth, Christof Paar, and Björn Weghenkel. 2010. Building a Side

Channel Based Disassembler. In Transactions on Computational Science X, Ma-

rina L. Gavrilova, C. J. Kenneth Tan, and Edward David Moreno (Eds.). Springer-

Verlag, Berlin, Heidelberg, 78–99. http://dl.acm.org/citation.cfm?id=1985581.

1985585

[18] Karim Eldefrawy, Aurélien Francillon, Daniele Perito, and Gene Tsudik. 2012.

SMART: Secure and Minimal Architecture for (Establishing a Dynamic) Root

of Trust. In NDSS 2012, 19th Annual Network and Distributed System Security

Symposium, February 5-8, San Diego, USA. San Diego, USA. http://www.eurecom.

fr/publication/3536

[19] R. W. Gardner, S. Garera, and A. D. Rubin. 2009. Detecting Code Alteration by

Creating a Temporary Memory Bottleneck. IEEE Transactions on Information
Forensics and Security 4, 4 (Dec 2009), 638–650. https://doi.org/10.1109/TIFS.

2009.2033231

[20] Yi Han, Sriharsha Etigowni, Hua Liu, Saman Zonouz, and Athina Petropulu.

2017. Watch Me, but Don’T Touch Me! Contactless Control Flow Monitoring via

Electromagnetic Emanations. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’17). ACM, New York, NY, USA,

1095–1108. https://doi.org/10.1145/3133956.3134081

[21] Rick Kennell and Leah H. Jamieson. 2003. Establishing the Genuinity of Remote

Computer Systems. In Proceedings of the 12th Conference on USENIX Security
Symposium - Volume 12 (SSYM’03). USENIX Association, Berkeley, CA, USA,

21–21. http://dl.acm.org/citation.cfm?id=1251353.1251374

[22] Alexander Klimov and Adi Shamir. 2004. New Cryptographic Primitives Based on

Multiword T-Functions. In Fast Software Encryption, Bimal Roy and Willi Meier

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–15.

[23] Patrick Koeberl, Steffen Schulz, Ahmad-Reza Sadeghi, and Vijay Varadharajan.

2014. TrustLite: A Security Architecture for Tiny Embedded Devices. In Proceed-
ings of the Ninth European Conference on Computer Systems (EuroSys ’14). ACM,

NewYork, NY, USA, Article 10, 14 pages. https://doi.org/10.1145/2592798.2592824

[24] J. Kong, F. Koushanfar, P. K. Pendyala, A. R. Sadeghi, and C. Wachsmann. 2014.

PUFatt: Embedded platform attestation based on novel processor-based PUFs.

In 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6. https:

//doi.org/10.1145/2593069.2593192

[25] XenoKovah, Corey Kallenberg, ChrisWeathers, AmyHerzog,MatthewAlbin, and

John Butterworth. 2012. New Results for Timing-Based Attestation. In Proceedings
of the 2012 IEEE Symposium on Security and Privacy (SP ’12). IEEE Computer

Society, Washington, DC, USA, 239–253. https://doi.org/10.1109/SP.2012.45

[26] Li Li, Hong Hu, Jun Sun, Yang Liu, and Jin Song Dong. 2014. Practical Analy-

sis Framework for Software-Based Attestation Scheme. In Formal Methods and
Software Engineering, Stephan Merz and Jun Pang (Eds.). Springer International

Publishing, Cham, 284–299.

[27] Yanlin Li, Jonathan M. McCune, and Adrian Perrig. 2011. VIPER: Verifying the

Integrity of PERipherals’ Firmware. In Proceedings of the 18th ACM Conference
on Computer and Communications Security (CCS ’11). ACM, New York, NY, USA,

3–16. https://doi.org/10.1145/2046707.2046711

[28] Yannan Liu, LingxiaoWei, Zhe Zhou, Kehuan Zhang, Wenyuan Xu, and Qiang Xu.

2016. On Code Execution Tracking via Power Side-Channel. In Proceedings of the
2016 ACM SIGSACConference on Computer and Communications Security (CCS ’16).
ACM, New York, NY, USA, 1019–1031. https://doi.org/10.1145/2976749.2978299

[29] Mohammad Mannan, Beom Heyn Kim, Afshar Ganjali, and David Lie. 2011.

Unicorn: Two-factor Attestation for Data Security. In Proceedings of the 18th ACM
Conference on Computer and Communications Security (CCS ’11). ACM, New York,

NY, USA, 17–28. https://doi.org/10.1145/2046707.2046712

[30] Mehari Msgna, Konstantinos Markantonakis, and Keith Mayes. 2013. The B-

Side of Side Channel Leakage: Control Flow Security in Embedded Systems. In

Security and Privacy in Communication Networks, Tanveer Zia, Albert Zomaya,

Vijay Varadharajan, and Morley Mao (Eds.). Springer International Publishing,

Cham, 288–304.

[31] Alireza Nazari, Nader Sehatbakhsh, Monjur Alam, Alenka Zajic, and Milos

Prvulovic. 2017. EDDIE: EM-Based Detection of Deviations in Program Ex-

ecution. In Proceedings of the 44th Annual International Symposium on Com-
puter Architecture (ISCA ’17). ACM, New York, NY, USA, 333–346. https:

//doi.org/10.1145/3079856.3080223

[32] Olimex. 2016 (accessed Dec. 1, 2018). A13-OLinuXino-MICRO User

Manual. https://www.olimex.com/Products/OLinuXino/A13/A13-OLinuXino-

MICRO/open-source-hardware.

[33] RTL-SDR. 2016 (accessed April 2019). v3. https://www.rtl-sdr.com/rtl-sdr-quick-

start-guide/.

[34] Nader Sehatbakhsh, A. Nazari, A. Zajic, and M. Prvulovic. 2016. Spectral profiling:

Observer-effect-free profiling by monitoring EM emanations. In 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). 1–11. https:

//doi.org/10.1109/MICRO.2016.7783762

[35] Arvind Seshadri, Mark Luk, and Adrian Perrig. 2011. SAKE: Software Attestation

for Key Establishment in Sensor Networks. Ad Hoc Netw. 9, 6 (Aug. 2011), 1059–
1067. https://doi.org/10.1016/j.adhoc.2010.08.011

[36] Arvind Seshadri, Mark Luk, Adrian Perrig, Leendert van Doorn, and Pradeep

Khosla. 2006. SCUBA: Secure Code Update By Attestation in Sensor Networks.

In Proceedings of the 5th ACM Workshop on Wireless Security (WiSe ’06). ACM,

New York, NY, USA, 85–94. https://doi.org/10.1145/1161289.1161306

[37] Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van Doorn,

and Pradeep Khosla. 2005. Pioneer: Verifying Code Integrity and Enforcing

Untampered Code Execution on Legacy Systems. In Proceedings of the Twentieth
ACM Symposium on Operating Systems Principles (SOSP ’05). ACM, New York,

NY, USA, 1–16. https://doi.org/10.1145/1095810.1095812

http://www.aaronia.com/Datasheets/Antennas/RF-Near-Field-Probe-Set.pdf
http://www.aaronia.com/Datasheets/Antennas/RF-Near-Field-Probe-Set.pdf
https://doi.org/10.1145/2976749.2978358
https://doi.org/10.1007/s10470-011-9777-4
https://doi.org/10.1007/s10470-011-9777-4
https://doi.org/10.1145/2508859.2516650
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2897937.2898083
https://doi.org/10.1145/2897937.2898083
https://doi.org/10.1145/2931037.2931065
https://doi.org/10.1145/3052973.3053010
https://doi.org/10.1145/3052973.3053010
https://doi.org/10.23919/DATE.2018.8342195
https://doi.org/10.23919/DATE.2018.8342195
https://doi.org/10.1145/1653662.1653711
https://doi.org/10.1145/1653662.1653711
https://doi.org/10.1145/3134600.3134621
https://doi.org/10.1145/3134600.3134621
http://dl.acm.org/citation.cfm?id=2696523.2696532
https://doi.org/10.1145/3061639.3062276
http://dl.acm.org/citation.cfm?id=1985581.1985585
http://dl.acm.org/citation.cfm?id=1985581.1985585
http://www.eurecom.fr/publication/3536
http://www.eurecom.fr/publication/3536
https://doi.org/10.1109/TIFS.2009.2033231
https://doi.org/10.1109/TIFS.2009.2033231
https://doi.org/10.1145/3133956.3134081
http://dl.acm.org/citation.cfm?id=1251353.1251374
https://doi.org/10.1145/2592798.2592824
https://doi.org/10.1145/2593069.2593192
https://doi.org/10.1145/2593069.2593192
https://doi.org/10.1109/SP.2012.45
https://doi.org/10.1145/2046707.2046711
https://doi.org/10.1145/2976749.2978299
https://doi.org/10.1145/2046707.2046712
https://doi.org/10.1145/3079856.3080223
https://doi.org/10.1145/3079856.3080223
https://www.olimex.com/Products/OLinuXino/A13/A13-OLinuXino-MICRO/open-source-hardware
https://www.olimex.com/Products/OLinuXino/A13/A13-OLinuXino-MICRO/open-source-hardware
https://www.rtl-sdr.com/rtl-sdr-quick-start-guide/
https://www.rtl-sdr.com/rtl-sdr-quick-start-guide/
https://doi.org/10.1109/MICRO.2016.7783762
https://doi.org/10.1109/MICRO.2016.7783762
https://doi.org/10.1016/j.adhoc.2010.08.011
https://doi.org/10.1145/1161289.1161306
https://doi.org/10.1145/1095810.1095812


EMMA: Hardware/Software Attestation Framework for Embedded Systems Using Electromagnetic Signals MICRO-52, October 12–16, 2019, Columbus, OH, USA

[38] A. Seshadri, A. Perrig, L. van Doorn, and P. Khosla. 2004. SWATT: softWare-

based attestation for embedded devices. In Proceedings of the IEEE Symposium on
Security and Privacy. 272–282. https://doi.org/10.1109/SECPRI.2004.1301329

[39] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-

into-libc Without Function Calls (on the x86). In Proceedings of the 14th ACM
Conference on Computer and Communications Security (CCS ’07). ACM, New York,

NY, USA, 552–561. https://doi.org/10.1145/1315245.1315313

[40] Amit Vasudevan, Jonathan McCune, James Newsome, Adrian Perrig, and Leen-

dert van Doorn. 2012. CARMA: A Hardware Tamper-resistant Isolated Execution

Environment on Commodity x86 Platforms. In Proceedings of the 7th ACM Sym-
posium on Information, Computer and Communications Security (ASIACCS ’12).
ACM, New York, NY, USA, 48–49. https://doi.org/10.1145/2414456.2414484

[41] Xiaoyun Wang, Dengguo Feng, Xuejia Lai, and Hongbo Yu. 2004. Collisions for

Hash Functions MD4, MD5, HAVAL-128 and RIPEMD. http://eprint.iacr.org/

2004/199 no lai-xj@cs.sjtu.edu.cn 12647 received 16 Aug 2004, last revised 17

Aug 2004.

[42] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. 2005. Finding Collisions in

the Full SHA-1. In Advances in Cryptology – CRYPTO 2005, Victor Shoup (Ed.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 17–36.

[43] Yi Yang, Xinran Wang, Sencun Zhu, and Guohong Cao. 2007. Distributed

Software-based Attestation for Node Compromise Detection in Sensor Networks.

In Proceedings of the 26th IEEE International Symposium on Reliable Distributed
Systems (SRDS ’07). IEEE Computer Society, Washington, DC, USA, 219–230.

http://dl.acm.org/citation.cfm?id=1308172.1308237

[44] T. Zhang and R. B. Lee. 2015. CloudMonatt: An architecture for security health

monitoring and attestation of virtual machines in cloud computing. In 2015
ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA).
362–374. https://doi.org/10.1145/2749469.2750422

https://doi.org/10.1109/SECPRI.2004.1301329
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1145/2414456.2414484
http://eprint.iacr.org/2004/199
http://eprint.iacr.org/2004/199
http://dl.acm.org/citation.cfm?id=1308172.1308237
https://doi.org/10.1145/2749469.2750422

	Abstract
	1 Introduction
	2 Background, Attacker Models, and Assumptions
	3 EM-Monitoring Attestation (EMMA)
	4 Experimental Evaluation
	5 Further Sensitivity Results and Analysis
	6 Related Work
	7 Conclusions
	Acknowledgments
	References

