REMOTE: Robust External Malware Detection
Framework by Using Electromagnetic Signals

Nader Sehatbakhsh, Alireza Nazari, Monjur Alam, Frank Werner, Yuanda Zhu, Student Member, IEEE,
Alenka Zajic Senior Member, IEEE, and Milos Prvulovic Senior Member, IEEE,

Abstract—Cyber-physical systems (CPS) are controlling many critical and sensitive aspects of our physical world while being
continuously exposed to potential cyber-attacks. These systems typically have limited performance, memory, and energy reserves,
which limits their ability to run existing advanced malware protection, and that, in turn, makes securing them very challenging.

To tackle these problems, this paper proposes, REMOTE, a new robust framework to detect malware by externally observing
Electromagnetic (EM) signals emitted by an electronic computing device (e.g., a microprocessor) while running a known application, in
real-time and with a low detection latency, and without any a priori knowledge of the malware. REMOTE does not require any resources
or infrastructure on, or any modifications to, the monitored system itself, which makes REMOTE especially suitable for malware
detection on resource-constrained devices such as embedded devices, CPSs, and Internet of Things (loT) devices where hardware
and energy resources may be limited. To demonstrate the usability of REMOTE in real-world scenarios, we port two real-world
programs (an embedded medical device and an industrial PID controller), each with a meaningful attack (a code-reuse and a
code-injection attack), to four different hardware platforms. We also port shellcode-based DDoS and Ransomware attacks to five
different standard applications on an embedded system. To further demonstrate the applicability of REMOTE to commercial CPS, we
use REMOTE to monitor a Robotic Arm. Our results on all these different hardware platforms show that, for all attacks on each of the
platforms, REMOTE successfully detects each instance of an attack and has < 0.1% false positives. We also systematically evaluate
the robustness of REMOTE to interrupts and other system activity, to signal variation among different physical instances of the same
device design, to changes over time, and to plastic enclosures and nearby electronic devices. This evaluation includes hundreds of
measurements and shows that REMOTE achieves excellent accuracy (< 0.1% false positive and >99.9% true positive rates) under all
these conditions. We also compare REMOTE to prior work EDDIE [1] and SYNDROME [2], and demonstrate that these prior work are

unable to achieve high accuracy under these variations.

Index Terms—Cyber-Physical-Systems, loTs, Intrusion Detection, Side-Channels, Embedded System Security, Electromagnetic.

1 INTRODUCTION

MBEDDED systems and its derivatives — Cyber-Physical

Systems (CPS), Internet of Things (IoT) devices, and
Programmable Logic Controllers (PLC) — are proliferating
in numbers and importance. By 2025, these “smart” devices
are expected to be a USD 6.2 trillion market globally (this
is 8% of the entire world’s 2016 GDP), and most of that is
expected to be in healthcare (USD 2.5 trillion) and manu-
facturing (USD 2.3 trillion) [3], [4]. While the “smart” world
can provide many benefits for industries and individuals,
it, unfortunately, comes with new opportunities for cyber-
attacks. For example, by 2020, it is estimated that more than
25% of known attacks in enterprises will involve the CPS
while less than 10% of IT security spending will be on CPS,
indicating that there is an emerging need for more attention
on CPS and embedded systems security [5].

There is a wide range of embedded systems and CPS
security targets: cameras, cars, industrial PLCs, critical in-
frastructures such as the power grid (power distribution,
nuclear and other power-plants, etc.), hospitals and em-
bedded medical devices, etc. Many of these targets have

e N.Sehatbakhsh, A.Nazari, M.Alam, M.Proulovic were with the College of
Computing, School of Computer Science, F. Werner, Y. Zhou, and A. Zajic
were with Department of Electrical and Computer Engineering, Georgia
Institute of Technology, Atlanta, GA, 30332.

E-mail: nader.sb@gatech.edu

already been attacked (e.g., DDoS attacks [6] in DNS services
occurred by Mirai malware-infected CPS, Persiarai [7], etc.).

Because these devices use various and customized hard-
ware and software, they may not be upgraded or updated as
often as general-purpose systems, and software updates are
even less frequent for devices where extensive verification
or regulatory approval is needed. This makes embedded
systems, CPSs, and IoTs challenging to keep up-to-date with
the ever-evolving landscape of possible vulnerabilities and
threats [8]. Furthermore, existing techniques for malware
detection, such as those based on scanning for malware
signatures [9], sandboxing [10], hardware-support [11], [12],
[13], machine learning [14], and dynamic analysis [15], im-
pose significant computational and cost overheads, so they
are difficult to adapt to devices that often have severe per-
formance, resource, power, and cost constraints. Moreover,
the low-complexity nature of most of these devices makes it
easier to obtain full access to the device and then disable or
even coopt its monitoring functionality.

To circumvent the difficult problem of implementing
effective malware detection on the resource-constrained
device (e.g., a CPS) itself, a recently proposed approach
called EDDIE [1] (and its adoption in SYNDROME [2])
leverages electromagnetic (EM) emanations from the device
to externally monitor it without requiring any support from,
resources on, or changes to, the monitored device itself.
While those have demonstrated the feasibility of efficient

detecting malware on a CPS [1], [2], they did not consider
a number issues that are key for practical adoption. We
will show that without considering these issues, EDDIE
and SYNDROME will fail to achieve high accuracy under
different sources of variabilities and a new system should
be designed to be robust against these issues.

In this paper, we propose a new framework, REMOTE
(Robust External Malware Detection Framework by Using
Electromagnetic Signals), that is designed to address prac-
tical issues for monitoring of resource-constrained devices
(e.g., embedded devices, IoTs, CPS, etc.), which include:

e Source Code and Infrastructure Availability: applica-
tion’s source code, measurement, and /or instrumentation
infrastructure might be unavailable,

o Hardware and Software Variability: the hardware might
be based on different processor architectures and/or the
device may use different operating systems or even not
have one (bare-metal),

e Physical Limitations: enclosures may prevent direct ac-
cess to the device, e.g., to place a power or EM probe very
close to its processor and/or even system board,

o Environmental Noise: when using analog signals for
monitoring, the environment may change the emanated
signal and/or add interference to the received signal.

To develop REMOTE, we first understand how these
issues may affect the EM signal, by carefully designing a
signal measurement campaign on different systems, at dif-
ferent distances, under different environmental conditions.
We then analyze these signals to understand in what ways
they change and what they have in common. Using insights
from this analysis, we design REMOTE to be robust to signal-
related issues and to only rely on signal analysis (not the
source code, instrumentation, etc.) for its training.

To emphasize practical applicability, our evaluation uses
several real-world cyber-physical-systems: a medical em-
bedded device called Syringe-Pump, a controller for the tem-
perature of a soldering iron, an IoT device while executing
a set applications from a standard embedded benchmark
suite, and finally, a commercial industrial robotic arm. We
implement these applications on a variety of well-known
CPS/embedded devices including an Arduino UNO board,
Altera’s FPGA Nios II soft-core, and two Linux mini-
computers: OlimexA13 and TS-7250. For monitoring these
applications, we also implement several meaningful attacks.
For Syringe-Pump, we implement a Code Reuse Attack
by exploiting a buffer-overflow vulnerability that already
existed in its open-source code. For the PID controller,
we implement a Stuxnet-like Advanced-Persistent Attack
where we assume the adversary has the ability to inject
malicious instructions into the source code itself and modify
the firmware of the system. Furthermore, we implement a
Shellcode Injection Attack (i.e., gain shell access by over-
flowing a vulnerable buffer) on several applications from a
standard embedded benchmark suite, MiBench [16], which
represents usual activities of embedded/Internet-of-Things
systems in the market. After hijacking the control-flow and
invoking the shell, either a DDoS payload of the IoT botnet
Mirai or encryption activity of a Ransomware payload is
launched by the shell. We picked these two malwares since
DDoS and Ransomware have become widespread threat

2

and popular malware in recent years. We then show how

REMOTE can find all the instances of these attacks with

excellent accuracy. Lastly, for the Robotic-arm system, we

use a commercial device (LewanSoul LeArm 6DOF [17]) and
implement a Firmware-modification/Zero-day attack where
we assumed that the libraries are compromised.

Specifically, the contributions of this paper are:

o Black-box training model and a new distance metric: un-
like existing approaches, our method can be trained and
monitors the execution without requiring any access to
the source code. Moreover, based on the insights from [1],
[18], we propose a new distance metric that is robust
against several kinds of variability. (§ 3)

¢ Robustness: unlike state-of-the-art, our method is de-
signed to be robust against a variety of hardware (e.g.,
ISA), software (e.g., OS), and environmental (e.g., tem-
perature) variability. (§ 5)

« Real attacks and security analysis: we present a variety
of real attacks including a code-reuse attack, an APT, a
zero-day, and a shellcode injection attack. (§ 4)

We envision that REMOTE can be used in scenarios where
the security of the device is critical, e.g., devices that con-
trol critical infrastructures, military systems, hospital equip-
ment, etc. In these scenarios, the cost for deploying REMOTE
is very low compared to the cost of the monitored system,
and the complexity of deploying REMOTE is relatively low
because it requires no changes to the monitored device and
thus creates no regulatory, safety, or disruption concerns for
the system since it is implemented on a separate system.
Moreover, to further simplify the implementation and re-
duce the cost, especially in industrial scenarios, REMOTE
can be implemented as a part of the existing (industrial)
control infrastructure (e.g., Supervisory Control and Data
Acquisition (SCADA) systems, Industrial Control Systems,
etc.) that controls the embedded systems in the network.
For example, REMOTE is very suitable for scenarios like an
industrial robotic arm or a CPS in a power-plant where it can
be implemented as a dedicated system to monitor the critical
system. Alternatively, REMOTE can be used as a mobile setup
(e.g., in a factory line) where it occasionally is utilized to
monitor one or set of devices with similar tasks.

The rest of this paper presents some relevant background
and the threat model (§ 2) , describes the overall REMOTE
framework (§ 3), presents malware prototypes and an eval-
uation of REMOTE (§ 4), demonstrates the importance of
the robustness-oriented aspects of REMOTE (§ 5), discusses
related work (§ 6), and finally presents conclusions (§ 7).

2 BACKGROUND

External Intrusion Detections (EMD). To externally moni-
tor a system, a variety of side-channel signals could be used.
Traditionally, side-channel signals were only used for ex-
tracting sensitive information through different techniques
such as “template” attack [19] and/or differential power
analysis (DPA) [20]. However, recently, especially due to
advancements in machine learning and DSP algorithms,
there has been a growing interest in using different side-
channel signals for profiling and monitoring systems. The
overall idea is that, because there is a correlation between
the side-channel signals and the application that is being

executed, these signals can be used to build a reference model
for the normal behavior of the system, and then during
monitoring, the receiving signal can be compared with the
model, and a possible malicious activity will be detected if
the signal and model are significantly different. It is also
important to mention that similar approach (i.e., leveraging
a reference/golden model to detect anomalies by using side-
channel signals) can be used to detect another important
class of attacks: hardware Trojans [21], [22], [23], [24], [25].

Among different types of physical side-channel signals,
power and electromagnetic (EM) are more popular due to
their availability and simplicity of measurements. While
both can be used as a source for an external malware
detector (and/or hardware Trojans), fundamentally, the ad-
vantage of using EM signals over power consumption is that
EM signals usually have much more bandwidth than power
traces mainly because, unlike power side-channel, EM em-
anated signals do not go through the existing, and often
unwanted, (low-pass) filtering circuitry on the board thus
the received EM side-channel contains both high-frequency
and low-frequency information. Moreover, EM signals can
be measured from some distance and can be received from
multiple and/or localized sources so it provides unique
information about a specific part of the system.

Agrawal et al. [26] observed that the amount of circuit
activity inside a processor in each clock cycle depends on
the program the processor is currently executing, so the
EM signals produced by the clock are “unintentionally”
amplitude modulated (AM) by program activity'. This results
in EM emanations at the frequency of the processor clock,
where clock signal acts as a carrier signal, and program ac-
tivity acts as the modulator. This modulated clock-frequency
signal is usually powerful, and at frequencies that avoid
most human-made sources of noise (e.g., hundreds of MHz)
so that it can be received at some distance with a reasonably
high signal-to-noise ratio.

Recently, Callan et al. (ZOP [27]) used this observation to
achieve fine-grained profiling of programs as they execute,
avoiding the distortion of profiling results that is intro-
duced by traditional (instrumentation-based or interrupt-
intensive) approaches but with signal matching that is very
computationally intensive.

More recently, Sehatbakhsh et al. (Spectral Profiling [18])
made an additional observation that much of the activities
in an application, especially in less complex processors (e.g.,
CPS), are repetitive and happened in loops, and that for
such activity the spectrum will have a peak at frequency
fi= %, where T is the average duration of one iteration of
the loop. Since the program activity is not an ideal sinusoid,
harmonics of this signal (at frequencies 2f;, 3 f3, ...) will also
produce peaks. When this is combined with the modulated-
clock observation, in the EM spectrum, a strong peak will
be present at frequency f.x (the clock), and the modulation
of the clock by periodic program activity will produce
additional peaks at frequencies fox £ fi, for £ 2f1,.... The
authors used this observation to achieve efficient (usable in
real-time) loop-level profiling of program execution without
instrumentation-induced distortion of the results.

1. Agrawal et al. [26] also discussed that the signal can be angle-
modulated, however, they showed that detecting AM-modulated signals
are quite simpler and more effective

3

Even more recently, Nazari et al. (EDDIE [1]) leveraged
the loop-created spectral peaks around the clock frequency
to detect malware and other deviations from expected pro-
gram execution. Specifically, they used lightweight instru-
mentation during training to identify which part of the sig-
nal corresponds to which loop in the program. The authors
then determined peaks that can be used to identify each
loop, and analyzed the source code to identify the valid
loop-to-loop transitions that are possible in the program.
During monitoring, a statistical test was used to check
whether the behavior of each monitoring-time peak matches
the peak’s behavior from training on a candidate region,
and an anomaly was reported if none of the regions that
are allowed to execute at that point match the currently
observed spectrum. Similarly, Han et al. (ZEUS [28]) showed
that similar approach could be used in PLCs.

Our approach is also based on the observations from
ZOP and Spectral Profiling, but is the first approach de-
signed to be robust to variations in hardware, software,
and environment, and also to work without source code
and instrumentation even during training. REMOTE is also
the first EMD approach to be systematically tested under
real-world CPS and malware that targets them, on multiple
kinds of devices, on many instances of the same device with
cross-training (train on one instance then monitor others),
over time, and under varying measurement conditions. Fur-
thermore, unlike ZOP, Spectral Profiling, EDDIE, and ZEUS,
that only studied synthetic attacks, in this work we will show
that REMOTE is able to detect end-to-end attacks with high
accuracy and low latency.

Compared to the existing hardware (internal) malware
detectors [11], [13], [29], [30], [31], [32], the main advantage
of EMD is that it does not require instrumentation and
thus does not create any performance overhead (due to
requesting interrupts) on the monitored system. Moreover,
hardware malware detectors (HMD) are typically less
resilient to evasion [33], [34] since they only leverage
low-level features in the system which can be modified by
an adversary who has full control on the device. EMDs,
however, rely on physical characteristics (e.g., temperature,
power, electromagnetic, etc.) of the device which are
significantly more difficult to control and modify. The
main advantage of HMDs over EMDs is that they do
not require physical proximity to the device for the signal
measurements, and also, the measured signal is significantly
less noisy since it has much less interference. Depending on
measurement/instrumentation setup in EMDs and HMDs,
both methods can achieve similar malware detection
granularity (in terms of malware execution time), however,
other limitations (e.g., overhead, cost, noise, etc.) can decide
which method is more suitable for a specific system.

Threat Model. REMOTE is a novel runtime anomaly detection
framework. For detecting the malicious activities, REMOTE
has no a priori knowledge about the nature of the attack
or its EM signature(s) and only relies on the signatures for
the monitored application itself. We assume that REMOTE
always has the correct reference models for malware-free
signatures of the monitored applications and these models
are stored in REMOTE and can not be compromised. Note
that collecting the reference model needs to be done only

once. We assume that this can be provided by the device
manufacturer and/or the software developer. However, care
should be taken if the model needs to be updated once the
monitor is already deployed. The user needs to make sure
that the device is not compromised (e.g., by establishing
trust through other methods such as attestation) before using
it to update the reference model. The main advantage of
REMOTE over malware detectors that are implemented as
part of the monitored system is that the REMOTE monitor
is an entirely separate system, so it cannot be subverted by
the same attack that succeeds in completely taking over the
monitored system. Providing this air-gap eliminates the pos-
sibility of the monitor infection by the same attack vectors.
As discussed in § 1, we envision that REMOTE be imple-
mented as a part of the central control system that controls
the entire system and hence it would be protected by the
several layers of security (e.g., firewalls, intrusion detection,
etc.) typically in place in industrial control systems.

Further, our assumption in this paper is that the adver-
sary has prior knowledge of the CPS and the program(s)
being executing on the system (including existing vulnera-
bilities) and can manipulate the system by sending arbitrary
inputs, or even has access to reprogram the system or
modify the firmware.

3 REMOTE
3.1 Spectral Samples (SS)

At a high level, REMOTE has two phases: training and
monitoring. In both phases, the EM signal is first trans-
formed into a sequence of spectral samples (SS) by using
short-time Fourier transform (STFT), which divides the sig-
nal into equal-sized segments (windows), where consecutive
segments overlap to some degree. STFT then applies the
Fast Fourier Transform (FFT) to each window to obtain its
spectrum. In our measurements, we use a 1ms window size?
with 75% overlap between consecutive windows, which
provides a balance between the computation complexity
and frequency/time resolution. The rest of the training and
monitoring operates on this sequence of spectra, where each
spectrum (i.e., the spectrum of one window) is referred to
as a Spectral Sample (SS).

3.2 Distance Metric for Comparing SSs

In both training and monitoring, REMOTE will need to
compare SSs to each other, and for that, it requires a distance
metric — a way to measure the “distance” between SSs in a
way that corresponds how likely/unlikely they are to have
been produced by execution of the same code. This distance
metric should be sensitive to the aspects of the signal that
change when executing different code, but insensitive to
aspects of the signal that change between physical instances
of the same device or over time on the same device instance.
To achieve this, we create a new distance metric, Clock-
Adjusted Energy and Peaks (CAPE).

Based on the insights from prior work [1], [18], [28],
the frequencies of the peaks in the signal around the clock
frequency are an excellent foundation for constructing a

2. the window size should be determined based on sampling rate,
clock frequency, and the required time resolution.

4

distance metric that is sensitive to which region of code
is executing. Unfortunately, our experiments have shown
that the clock frequency can vary over time and among
device instances, and a change in clock frequency also
changes the frequencies of loop-related peaks around it.
One difference is that, because the peaks’ frequencies are
all relative to the carrier frequency, any shift in the clock
frequency also shifts the frequencies of the loop-related
peaks by the same amount. The second change is caused
by the relationship between clock frequency and program
performance. Specifically, as the clock frequency increases,
the program executes faster, leading to a lower per-iteration
time T, higher frequency of the loop (f; = 1/T in § 2), and
thus moving the loop-related peaks away from the clock’s
frequency. Similarly, lower clock frequency moves the loop-
related peaks closer to the clock frequency.

Thus the first step in computing our CAPE distance
metric is to, for each frequency f that is of interest in an
SS, compute the corresponding normalized frequency as
frnorm = %, where F;, is the clock frequency for that
SS. This normalized frequency is expressed as an offset from
the clock frequency so that a shift in clock frequency does
not change f,orm with it and is normalized to the clock,
so it accounts for the clock frequency’s first-order effect on
execution time.

To make CAPE robust to weak signals and/or signals
that have no well-defined peaks, we first consider the over-
all signal power (sum of magnitudes in the spectrum) of
the signal outside the vicinity of the clock. The power of a
poorly-defined peak is spread across a range of frequencies
— visually it is a wide and not-very-tall “hump” rather
than a narrow and tall “peak”. When comparing two SSs
that are different but each contain only “humps” and no
sharp peaks, if we only consider whether the SSs have
power concentrations at the same (clock-adjusted) frequen-
cies, the overlap among their “humps” causes these SSs to
match much better than they otherwise should, and this can
prevent detection of malware-induced changes in signals.
Moreover, under poor signal-to-noise conditions (e.g., when
the signal is received at a distance) sharp peaks are likely
to still stand out of the noise, so due to random variation
in noise, some “humps” end up below the noise level and
some do not. For two SSs that should be the same (except
for the noise), this causes poor matches, and this can lead
to false positives. Thus to make our CAPE distance metric
more robust against weak/noisy signals, we use a new in-
sight, called “non-clock-energy” test, that non-clock power
varies very little among SSs that do belong to the same
region, and that increases/decreases in a loop’s overall per-
iteration time concentrate less/more power toward the clock
frequency in an SS. Therefore, SSs whose non-clock power
differs by more than 0.5 dB are considered dissimilar by
CAPE, and no further comparison between them is needed.

If the two SSs pass the “non-clock-energy” test, REMOTE
compares them according to the (clock-adjusted) frequencies
of their most prominent peaks. Specifically, we take N
highest-magnitude frequency bins from the spectral sample
(SS) that are each (i) not part of the NoiseList, and (ii)
not within D spectral bins of a higher-amplitude spectral
bin. The number N is determined differently for training
and monitoring, as will be described shortly. The NoiseList

contains frequencies of signals that are present regardless
of which specific region of the application is executing.
For finding the NoiseList, we record the EM signal several
times and average them while no program is being executed
(the system is idle). We then choose 10 random SSs in the
recorded signal, and then for each SS, sort it and find all
the spikes that are at least 5dB above the noise floor and
put them in the NoiseList. We empirically find that choosing
10 points is sufficient to find all the strong peaks since it
can accurately capture the transient behavior of the envi-
ronmental noise. It is also important to point that, using this
method, our detection algorithm is robust to interference
from nearby devices (that are not identical to the monitored
device), as their clock and other frequently-occurring peaks
will end up on the NoiseList. The reason for ignoring D
spectral bins that are too close to even-higher-magnitude
ones is that a very prominent peak in the spectrum typically
has “slopes” whose magnitude can exceed the magnitude
of other peaks, and we found that REMOTE is more robust
when its decisions are based on separate peaks rather than
just a few (possibly even one) very strong peaks and a
number of frequency bins that belong to their “slopes”.

Finally, REMOTE combines the information about the
frequencies of the peaks in the two SSs into a single value
that represents the distance among the SSs. For each peak in
one SS, REMOTE finds the closest-frequency peak the other.
If the frequency difference is large enough, the peak votes
for a mismatch, and the ratio of the mismatch votes to the
number of all (mismatch and match) votes is used as the
distance metric between the two SSs.

3.3 Black-Box Training

To train REMOTE, signals are collected as the unmodified
monitored device emanates them. However, care should be
taken to achieve good coverage of the software behaviors,
e.g., by using the same methods that are used to test pro-
gram correctness. The problem of achieving good coverage
tends to be easier for many applications in the CPS domain,
especially those where correct operation is critical, because
correctness concerns and the need for easy verification of
correct operation motivates developers to produce code
that has relatively few code regions, and with very stable
patterns for how the execution transitions between them. In
such cases, normal use of the device is likely to provide good
coverage of the application’s code regions after a while.
After signals are obtained and converted into SSs, a key
part of training is to associate SSs with the code regions
they correspond to. To achieve this without using instru-
mentation or other on-the-monitored-device infrastructure,
REMOTE relies on a general observation that a given region
of code tends to produce EM signals whose SSs are similar
to each other, while the SSs from different regions tend to
differ from each other to various degrees. This observation
allows us to group SSs according to similarity, and for
that we use Hierarchical Density-Based Spatial Clustering
of Applications with Noise (HDBSCAN), a technique that
performs clustering without any a priory knowledge about
which cluster (region) each sample (SS) corresponds to, and
with no a priori knowledge about the number of clusters (re-
gions). Like other clustering algorithms, HDBCASN needs

Finite-
State-
Machine

Cape
Clustering

FFT/SS
Computation

Spike
Selection

Fig. 1. REMOTE’s monitoring flow-chart.

a distance metric, and in REMOTE that distance metric is the
new CAPE metric defined in § 3.2, using N = 10 peaks.
Using this variation-robust metric allows training signals to
be collected over time (e.g., over many hours), and/or on
multiple device instances.

Because HDBSCAN clustering is based solely on simi-
larity among SSs, its result may not precisely correspond to
actual regions of the code, e.g., one region may produce
more than one cluster if there are several distinct ways
in which the region can execute, or two regions may end
up in the same cluster if their execution produces very
similar signals. Neither of these possibilities is a problem
for REMOTE, and in fact, they result in improved sensitivity
and performance. If separate clusters for distinct behaviors
were forced into a single cluster, the resulting unified cluster
would allow a wide variety of SSs to match - all the valid
SS options and also everything that lays in-between in the
distance-space used for clustering. By creating a separate
cluster for each distinct possibility, REMOTE will detect
anomalies that produce SSs that are not valid but lay in-
between the valid ones. Conversely, when multiple regions
are clustered together, they have very similar (practically
indistinguishable) signals and it is more efficient and robust
to treat them as one cluster. During monitoring, a Finite-
State Machine (FSM) is used to keep track of the current
region of the code. For each test, REMOTE compares the new
SS to either the current region or any valid “next region” that
has been seen during training.

3.4 Monitoring

During monitoring, REMOTE receives the signal and con-
verts it to SSs in the same way it was done in training
(same window size and overlap). After that, REMOTE can
be viewed as a classifier that places each spectral sam-
ple (SS) into either one of the known categories (clusters
identified during training) or into the “unknown” category
that represents anomalous behavior, according to our CAPE
distance metric (Fig. 1 shows the flow-chart of REMOTE's
monitoring algorithm). Specifically, a candidate region is
rejected if its distance metric is above 50% (fewer than half of
the peaks match). If all candidates are rejected, the observed
SS is categorized as “unknown,” otherwise it is categorized
into the candidate category with the lowest CAPE distance
metric. The number of peaks used for each cluster is no
longer fixed at 10 — instead, it is identified for each cluster
during training. We start with ten peaks, but then remove

1) Arduino device with LCD connected
on top of it

2) Step motor to move the syringe.

3) Syringe
4) Magnetic Probe for receiving EM signal

5) Software-defined Radio for recording
the signal.

Signal
Processing Unit

Attack Detection Shut Down

Syringe Pump

Arduino Uno Stepper

— S e
Motor yringe

those that occur in fewer than 10% of the SS in the cluster. If
this results in removing all peaks, we still retain the two
most frequently occurring (among SSs from that cluster)
peaks. This helps matching accuracy when the SSs in a
cluster have few prominent peaks and a number of very
weak peaks — in such cases it is more robust to use only
the overall non-clock energy and the prominent peaks for
matching than to use the peaks that may “disappear into
the noise” due to changes in distance, antenna position, etc.

However, if the overall decision to report malware is
based on only one SS, brief occurrences of strong transient
noise can result in false positives. To avoid that, REMOTE
only reports an anomaly if N consecutive SSs are classified
as “unknown.” The value of N should be chosen depending
on the EM noise characteristics of the environment, but we
found that IV between 3 and 5 tends to work well in all our
experiments. We use N=5 because it biases REMOTE toward
avoiding false positives, while still maintaining an excellent
detection latency (/N=5 corresponds to only 1.25 ms detec-
tion latency in our setup). As mentioned in § 3.3, an FSM
is used to count N, report an anomaly, and to keep track
of current valid region of code to ensure that the program
follow a correct ordering of regions.

Finally, we found that in the presence of an OS, inter-
rupts and other system activity that occurs during an SS can
make that SS dissimilar to those from training. For example,
an interrupt that lasts <1ms can affect four consecutive SSs
(recall that we use 1ms windows with 75% overlap), so a
naive solution would be to add 4 to N (number of consecu-
tive “unknown” SSs that are needed to trigger anomaly re-
porting). Using N = 9 indeed eliminates interrupt-induced
false positives, but also prevents detection of attacks that are
brief. Unfortunately, real-world malware (e.g., the attack on
Syringe-pump that will be described in § 4) can introduce
only a short burst of activity into the otherwise-normal
activity of the application. Fortunately, our experiments
indicate that spectral features of interrupt activity are simi-
lar to each other, so during training interrupt activity can
be clustered. During monitoring, REMOTE includes these
clusters as candidates, allowing it to tolerate interrupts
without becoming tolerant of similar-duration deviations
from expected execution.

Fig. 3. The near-field setup (left) consists of a small EM probe or a
hand-made magnetic probe (not shown) placed 5 cm above the system’s
processor. A horn antenna placed 1 m away from the board for far-field
measurements (right). In all cases, a software-defined radio smaller and
lighter than most portable USB hard drives, is used to record the signal.

4 EXPERIMENTAL RESULTS

In this section, we evaluate our framework using three set of
experiments to show the effectiveness of REMOTE to detect
different types of attack on variety of devices.

In the first set of experiments, we use two real-world
CPS. The first CPS we use is an embedded medical device
called Syringe-Pump which is a representative of a medical
cyber-physical system. The second system is a PID controller
that is used for controlling the temperature of a soldering
Iron. This type of system could also be used to control
the temperature in other settings, such as a building or an
industrial process, and thus is representative of a large class
of industrial CPS/IoT systems.

For the second set of experiments, we use five ap-
plications from an embedded benchmark suite called
MiBench [16] running on an IoT/embedded device, which
are a representative of the computation that is needed in
that market (e.g., automotive, industrial systems, etc.)

Finally, for the third part of our evaluations, we chose a
robotic arm (LewanSoul LeArm 6DOF) [17], which is a rep-
resentative of commonly-used CPS existing in the market.

4.1 Measurement Setup

The measurement setup is shown in Fig. 3. Depending on
the distance, either a hand-made magnetic coil or a horn
antenna is used to receive EM signals (no amplifier is used).

For all measurements, we use a cheap (<$30) software-
defined radio (SDR) receiver (RTL-SDRv3) to record the sig-
nal. Using this radio, the entire cost for the near-field mea-
surement setup (including the radio and a hand-made coil)
is only around $35, and for the far-field measurement setup
is around $100-200 (depending on the antenna). Further cost
advantages can be gained if REMOTE is used in settings
where multiple similar devices (with similar vulnerabilities)
are used, so a single (or a few) devices can be monitored
by REMOTE (especially in far-field scenario), with random
changes to which specific devices are monitored at any
given time. Fig. 2 shows the entire setup including the mon-
itored device (Syringe-Pump in this figure) and REMOTE.
Note that all of our measurements were collected in the
presence of other sources of the electromagnetic interface
(EMI) including an active LCD that was intentionally placed
about 15 cm behind the board. A set of TCL scripts are used
to control the monitored system and the SDR (to record the
signal). The entire REMOTE algorithm is implemented on a
PC using Matlab2017-b.

4.2 File-less Attacks on Cyber-Physical-Systems

The first part of our evaluations presents the results for two
real-world CPS which are implemented on four different
devices (shown in Table 1). To attack these devices we
implement two end-to-end file-less attacks namely a code-
reuse attack and an APT attack (advanced-persistent-threat).

The first attack we implement in this paper is a Code
Reuse [35], [36] attack on a medical CPS called Syringe-
Pump. Syringe-Pump is a medical device designed to dis-
pense or withdraw a precise amount of fluid, e.g., in hos-
pitals for applying medication at frequent interval [37]. The
device typically consists of a syringe filled with medicine, an
actuator (e.g., stepper motor), and a control unit that takes
commands (e.g., amount of fluid to dispense/withdraw)
and produces controls for the stepper motor. The systems
must provide a high degree of reliability and assurance
(typically by using a simple MAC) since imprecise or un-
wanted dispensing of medication, or failure to administer
medication when needed can cause significant damage to
the patient’s health. In our evaluation, we use the Open
Source Syringe-Pump from [38] also implemented in [2].

Our code-reuse attack involves overflowing the input
buffer in reading the serial input function, which normally
reads the input, sets a flag to indicate that new input
is available, and returns. Exploiting this vulnerability, the
return address in the stack is overwritten by a chain of
gadget’s addresses to launch an attack.

Since the security-critical part of this system is moving
the syringe, a desirable goal for an attacker is being able
to call the MoveSyringe() function, which is responsible for
syringe movement, at an unwanted time while skipping the

TABLE 1
Boards used in this paper to evaluate REMOTE.

Device Processor Clock-rate 0S
Arduino Uno ATMEGA-328p 16MHz No
DEO-CV .

Altera FPGA Nios-Il softcore 50MHz No
TS-7250 ARM9 200MHz Debian
A13-OLinuXino | ARM Cortex A8 1GHz Debian

7

input checking part, Delay() function, which is responsible
to check the authenticity of the command (otherwise the
attacker needs to hack into the C&C server to send the
commands which may not be a feasible task).

We use ROPGadget [39] for finding the proper chain of
gadgets to put the address of MoveSyringe() in a register and
branching to that function (from the readInput() function to
skip the checking part). After branching to MoveSyringe()
and executing it, PC jumps back to the main function and
resumes normal behavior of the application.

Fig. 4 shows a spectrogram of the Syringe-Pump appli-
cation in (top) malware-free run, and (bottom) when the
CR attack happens. As seen in the figure, the Syringe-Pump
application has three distinct regions with clearly different
EM signatures: printing debug info and reading inputs, a
delay/checker function which checks the message authen-
ticity (using a simple MAC), and an actual movement of the
syringe. The major difference between these two figures is
the reverse order of “Delay” and MoveSyringe() parts in ma-
licious run (bottom). In normal behavior, REMOTE expects to
see readInput — Delay — MoveSyirnge however, in CR
attack, since the return address of the readInput function is
overwritten by the adversary, the code immediately jumps
to MoveSyringe() and skips the “Delay” part, thus in the
spectrogram, the third region (MoveSyringe()) is seen before
“Delay” (bottom), which violates the correct ordering of
regions and will be reported as “malicious” by REMOTE.

Our evaluation uses one attack per run in 25 runs with
REMOTE successfully detecting each of these attacks (see
Table 2). We then performed 25 attack-free runs and found
that REMOTE produced no false positives (see Table 2). To
further evaluate our system, we performed 1000 malware-
free runs and 1000 malicious run on one device (Arduino)?
for 24 hours. For these 2000 runs, REMOTE successfully
found all the 1000 instances of malicious run and reported
997 out of 1000 malware-free runs as normal (i.e., only 3 out
of 1000 false positive = 0.3%).

Note that, depending on the size of injection, the MoveSy-
ringe() in Syringe-Pump could be very brief in time (e.g.,
around 3 ms as can be seen in Fig. 4-left), and we found that
without correctly handling the interrupts on Olimex and
TS platforms (which have an operating system), we would
either get very high false positives (due to interrupts), or
high false negatives (by using large N to ignore short-term
activity). However, as also discussed in § 3.4, by adding
training-time samples for interrupts, we can use small N,
while having 0% false positives (see § 5.1).

Furthermore, we also repeated our measurement for
Syringe-Pump for both 50 cm and 1 m distances (using a
9 dBi horn antenna [40] connected to the SDR) and in both
cases, we also get perfect accuracy. It is also important to
mention that the detection latency (i.e., the time attack starts
until REMOTE detects it), for all four devices is <2 ms.

An alternative method for attacking Syringe-Pump is
by changing the InjectionSize (i.e., Data-only attacks). This
also can be done using a CR attack. REMOTE is able to
protect Syringe-pump against such attack since changing
the InjectionSize will change the duration (i.e., the number of

3. To limit the amount of measurements and time for processing it,
we picked only one of the four devices.

| lchecking
inputs

i Delay

Moving
¥ syringe

‘NOiSE n L L L L L
-800 -600 -400 -200 O 200 400 600 800
Offset to Clock Frequency (KHz)

Time (ms)

0

25

| lchecking
inputs

50|

750

100 [Malicious activity caused by CR
attack that

calls an extra "moveSyringe ()"

i Delay

125

Moving

150 ¢ 1Y Syringe

{=> Normal "moveSyringe ()" activity

-800 -600 -400 -200 O 200 400 600 800
Offset to Clock Frequency (KHz)

Fig. 4. Spectrogram of the Syringe pump application in malware-free (left) and malware-afflicted (right) runs. Note that the differences in colors
between the two spectrograms correspond to differences in signal magnitude which are caused by different positioning of the antenna. Such
variation is common in practice and has almost no effect on REMOTE’s functionality because REMOTE was designed to be robust to such variation.

SSs) of MoveSyringe(). Since REMOTE is checking the signal
in the granularity of SS, it can count the SSs which belong
to MoveSyringe() activity and compare it to the expected
number of SSs. To check how well REMOTE can detect such
an attack, we check the number of SSs for MoveSyringe()
for all the 25 attack-free runs and compare it to the actual
InjectionSize. In all the instances, REMOTE reports the correct
number of SSs. Note that we are not detecting EM ema-
nations (RF) signal produced by the motor movement but
the change in the code execution when “data-only” attack
is performed. i.e., we observe the signal at clock frequency
of the board and observe software changes, while motor
movement signature occurs at much lower frequencies.

However, if the change is less than one SS or if the
expected InjectionSize is unknown, REMOTE is not able to
detect the change. Overall, there is a tradeoff between the
size of SS and REMOTE’s ability to detect small changes.
Thus to improve the effectiveness of the system, either a
higher sampling-rate setup can be used (smaller SS hence
smaller detection granularity) or REMOTE can be combined
with other existing methods (e.g.,, Data Confidentiality
and Integrity (DCI) methods [41]) to protect the system
against different types of data-only attacks. Finally, it is
important to mention that However, as shown in this work
(for this attack and other attacks in this section), meaningful
attacks typically have much larger signature (i.e., order of
milliseconds) than the current detection limit in REMOTE
(200 microseconds).

The second attack is an advanced-persistent-threat
(APT) attack on an industrial CPS (called Soldering-iron).
A well-known example of such attack for CPS is Stuxnet.
Soldering-iron is an industrial CPS that allows users to
specify a desired temperature for the iron and maintains it
at that temperature using a proportional-integral-derivative
(PID) controller. This type of controller could also be used to
control the temperature in other settings, such as a building
or an industrial process, and thus is representative of a
large class of industrial CPS. This application is significantly
larger than the Syringe-Pump - with 70,000 instructions in
its code and 1,020 static control-flow edges [38].

The application starts by initializing all the components
(e.g., PID controller, Iron, etc.). It then begins to control the
Iron’s temperature: it checks all the inputs (e.g., knob, push

[N}

e

6
7
8
9
10
11
12
13
14

15
16
17

buttons, etc.) and then based on them decides to decrease
or increase the temperature, prints new debug information
on its display, etc. and then repeats this ad infinitum. The
security-critical function is where the temperature of the
iron is set keepTemp(). This function uses an iterative process
(a PID controller) to change or keep the temperature of the
iron. The critical variable is temp_hist — it holds the last
two temperatures of the iron and is used to calculate the
difference between the current temperature of the iron and
these two last temperatures.

To implement a Stuxnet-like malware on this application,
we assume that the attacker can reprogram the device. The
attacker’s goal is to change a critical value under some
conditions, which in turn can cause damage to the overall
system. A possible modification to the code is shown in
Example 1 (lines 8-10), where based on one or several
conditions (e.g., in our evaluation it checks the model of the
device that is stored in memory), the temperature history
can be changed. The key insight is that the added instruc-
tions will cause the spectral spikes during execution of the
main loop to be shifted to lower frequencies (more time per
iteration) as shown in Fig. 5 for the A13-OLinuXino device.

To evaluate how well REMOTE can detect this type of
attack, we use 7 runs in training, and use 25 runs without
malware and 25 runs with malware to evaluate the monitor-
ing algorithm. Our results show REMOTE can successfully

// The main loop
void loop () {
intl6_t old_pos = read(&rotEncoder); // finding
the position of the control knob
bool iron_on = isOn(&iron); // iron is the
object for the soldering iron

// adding malicious activity

if (some_condition){
iron.temp_hist[0] maliciousValO;
iron.temp_hist[1] = maliciousVall;
// where these values can be read from a file,
memory or they could be random

} // end of malicious activity

byte bStatus = intButtonStatus(&rotButton); //
reading input button

showScreen (pCurrentScreen) ;

keepTemp(&iron) ; }
Example 1. A code fragment from the main loop of the soldering iron
application and a possible injected malicious activity.

TABLE 2
Accuracy of REMOTE for several different systems and attack scenarios using various boards and applications.
Device . Device G F
(attack) Syringe-pump (code-reuse attack) attack) Soldering-iron (APT attack)
Board Arduino Nios-II TS-board OLinuXino Board Arduino Nios-II TS-board OLinuXino
Accuracy True Pos. [False Pos| True Pos.[False Pos/ True Pos. [False Pos.| True Pos.[False Pos| Accurac True Pos. [False Pos) True Pos.[False Pos|True Pos.[False Pos/True Pos.[False Pos|
>99.9%| <0.3% [>99.9%] <0.1% [>99.9%| <0.1% [>99.9%| <0.1% Y [599.9%] <0.1% [>99.9%]| <0.1% |>99.9%| <0.1% |>99.9%] <0.1%
Device Device . . S
attack) Embedded/loT (shellcode attack) attack) Robotic-arm (firmware modification)
App bitcount basicmath qsort susan fft Board LewanSoul LeArm 6DOF
Accurac True Pos. [False Pos|True Pos. [False Pos| True Pos.[False Pos| True Pos.[False Pos] True Pos.|[False Pos| Accurac True Pos. [False Pos.
¥ [599.9%| <0.1% [>99.9%| <0.1% |>99.9%] <0.1% | 100% | <0.1% |>99.9%]| <0.1% 4 >98.2% | <0.2%
-130 ; ‘ ; ; ‘ '
F o= 1-008 giz F = 94 KHz square-root, etc.). We also chose gsort because it has lots
r of memory accesses, and picked susan and fft since they
1351 F . =241 MHz]| are good representatives of common and popular activities
o in embedded system domain (i.e., image processing and
kel

-140 1

145t

1.006 1.007 1.008 1.009 1.010 1.011
Frequency (GHz)

1.005

Fig. 5. Adding malicious activity to the main loop of the Soldering-iron
application (red: without malware, blue: with malware).

detect all the instances of the attack (a 100% true positive
rate) (see Table 2).

4.3 Shellcode Attack on loTs

Another popular class of attacks on CPS/IoTs are shellcode
attacks where the adversary executes a malicious applica-
tion (payload) through exploiting a software vulnerability. It
is called “shellcode” because it typically starts a command
shell (e.g., by executing (/bin/sh) binary) from which the at-
tacker can control the compromised machine, but any piece
of code that performs a similar task can be called shellcode.
Once the attacker takes the control, she can execute any
injected code such as a Denial-of-Service attack.

In this paper, we implement this attack by invoking a
shell (/bin/sh) via a buffer overflow exploit. We then run two
malicious payloads on the invoked shell: a DDoS bot, and
a Ransomwmare. These attacks typically target devices with
operating systems. In this work, we implement them on an
IoT device with an ARM core (A13-OLinuXino), which is a
representative of state-of-the-art IoTs.

The attacks are implemented on five representative pro-
grams from MiBench suite (bitcount, basicmath, gsort, su-
san, and fft). We chose these applications among all the
MiBench applications (this benchmark is designed to rep-
resent typical behaviors of embedded system: e.g., Security,
Telecomm., Network, etc.) mainly because bitcount is a good
representative of the applications that have several different
distinct regions (our HDBSCAN clustering found 9 for this
application) and has lots of different activities including
nested-loops, recursive functions, interacting with memory,
etc. basicmath is chosen because it is a good representative of
unstable/weak activities since the activities in each region
are very dependent on values (it is calculating different
fundamental mathematics operations such as integration,

telecomm.). In all these application, first a buffer-overflow
vulnerability is exploited, and using a shellcode, a shell
with same privileges as the original application is invoked.
A malicious payload (i.e., DDoS or Ransomware) is then
executed in this shell.

For the DDoS, we port the C&C and the bots from the
Mirai open source to run on our IoT. The DDoS payload ex-
ecution begins right after the shell is invoked and ends after
sending 100 SYN packets. The application then resumes its
normal activity. We use a PC on the local network as the
target of the DDoS attack (SYN flood), and we verify on that
PC that the attack is taking place. As another payload, we
also implement a simple Ransomware prototype payload
that uses AES-128 with CBC mode to encrypt data. This
encryption represents the bulk of the execution activity
created by Ransomware.

As in previous cases, we use 7 runs for training and then
use 25 runs without malware and 25 runs with each mal-
ware (i.e., DDos and Ransomware) for all five applications.
Our results (see Table 2) show REMOTE can successfully
detect all the instances of the attack (a >99.9% true posi-
tive rate) while none of the malware-free runs incorrectly
identified as malware (0% false positive rate). We found
that invoking a shell itself is visually detectable on our IoT
device since it takes around 8 ms (about 32 SSs), and sending
100 SYN packets adds about 4 ms to that (see Fig. 6 (left) for
DDoS and (right) for Ransomware).

4.4 APT Attack on Commercial CPS

The final system in our evaluation is a Robotic-arm. Robotic
arm is often used for manufacturing and, typically, a crit-
ical component of any modern factory. It usually receives
inputs/commands for a user and/or sensors and move
objects based on these inputs. There is a growing concern
in security of these CPSs since they are typically connected
to the network and are exposed to cyber-threats [42]. In this
work, we use a commercial robotic arm (LewanSoul LeArm
6DOF [17]) which uses an Arduino board as a controller and
a Bluetooth module to receive command. For this system, we
implement an APT attack (firmware modification), where
we assume that the reference libraries (e.g., library for Servo,
Serial, etc.) are compromised (this can be also considered
as a zero-day vulnerability). Note that, we assume that
REMOTE s training contains the “unmodified” version of

480 20
485
490

—~495

) » 60

5 H

o 500 Y

S £

= 505 =

510

515

520
1.007 1.008 1.009 1.01 1.011 1.012 1.013 1.014 1.015
Frequency (Hz) x10°

10

40 1

80r

100 [

Region#1

|
i 4
. a 9 Y e Lo
invoking
|y Shell

- |Ransomware

i Region#2

1.007 1.009 1.011 1.013 1.015

Frequency (GHz)

Fig. 6. A run (left) where exploit, shellcode, and a 100-packet payload are injected into the execution between the original loops. A run (right) where
exploit, shellcode, and a Ransomware payload are injected into the execution between the original loops.

100 -~
R4
/',
>
%
801 e
>
= -
2 60} <
= -
3 s
o Ve
S 40t o
= s
J/
e —Remote
20 Ve --—-Eddie
."’
e
-/—’
0
0 20 40 60 80 100

False Positive (%)

Fig. 7. Accuracy of REMOTE with its mechanism for addressing interrupt
activity (solid blue line) and EDDIE [1] (red dashed line). The results are
for the SyringePump software running on the Olimex board.

these library (baseline reference data). In this attack, we
modify a subroutine (writeMicroseconds()) in Arduinos Servo
library [43] by adding an extra if/else condition to
change the speed of Servo motor randomly and reprogram
the system with this compromised library, assuming that
the adversary is interested in causing a malfunction in arms
movement in real-time occasionally.

We use 7 runs for training and then use 1000 runs
without and 1000 runs with the firmware modification. Our
results (see Table 2) show REMOTE can successfully detect
the instances of the attack with very high accuracy(>98.2%
true positive rate) while only less than 0.2% of the malware-
free runs incorrectly identified as malware.

5 FURTHER EVALUATION OF ROBUSTNESS
5.1 Interrupts and System Activity

Among the platforms we tested, the longest-duration sys-
tem activity “inserted” (via an interrupt) into the application
activity tends to take a few milliseconds, and it appears
to be associated with display management/update because
disabling lightdm [44], the display manager, eliminates
these interrupts (but other kinds of interrupts still occur).
In contrast, in bare-metal devices interrupts (when there
are any) tend to be around a microsecond in duration.
Fig. 7 shows the (perfect) ROC curve (solid blue line) for
SyringePump on Olimex (and Debian Linux OS) when using

100
IS
o 75
T
o
2 50
.“%
o
T 25
3 mRemote = Eddie/Syndrome |
=
0 ||
TS-50cm TS-1m

Fig. 8. True positive rate (with 0% false positives) of REMOTE with
its non-clock-power feature when comparing SSs (dark blue) and ED-
DIE [1)/SYNDROME [2] (light red). The results are for basicmath running
on the TS board.

REMOTE as described in § 3. We then prevented REMOTE
from forming interrupt-activity clusters during training, and
used the EDDIE’s scheme, and that has resulted in a severely
degraded ROC curve (red dashed line) where many false
positives are detected when 4 consecutive clusters are found
to be “unknown” (N = 4 is § 3.4), and where increasing N
reduces the false positives but also the true positives. This
confirms that our approach of addressing system activity di-
rectly in REMOTE is significantly contributing to REMOTE’s
ability to detect malware while not reporting false positives
due to system activity.

5.2 Hardware Platforms and Distance

As mentioned in § 1, packaging and other limitations may
require the EM signal to be received from some distance,
which significantly weakens the signal. To evaluate the
impact of distance on REMOTE, we receive the signal from
distances of 5 cm, 50 cm, and 1 m away from each of
the tested devices. To limit the amount of data that is
recorded, we use only two representative programs from
MiBench suite (bitcount and basicmath, described in § 4.3),
and only two representative malware behaviors - one that
adds a relatively small number of instructions inside a loop
(Stuxnet-like), and another where similar malicious activity
is done all-at-once outside of loops (DDoS-like).

For each device and each application, we use 25
malware-free runs and 25 runs for each of the two malware
activities (75 x 3 runs for each of the platforms) to obtain the

100 -
s
—
90T Vs
_______ /
3 8or /
[e
2 70t i
173 .
L !
o -
/
g 60r P
[Ve
s0r [
|
40 ,/.’ —-—-Eddie/Syndrome
30 L : I I
0 20 40 60 80 100

False Positive (%)

Fig. 9. Accuracy for REMOTE with frequency-adjusting, vs. Eddie/Syn-
drome for FPGA board running bitcount.

false negative (malware activity not reported in a malware-
affected run) and false-positive rates (malware reported
in a malware-free run) achieved by REMOTE. Our results
show perfect accuracy (i.e., 0% false negatives and 0% false
positives) for all devices and all three distances. However,
if we prevent REMOTE from using total non-clock power
when comparing SSs and use the scheme in EDDIE and/or
Syndrome, on the TS board (which has the weakest signal
among the boards tested) for 50 cm and 1 m distances
we only observe 80% (at 50 cm) and 55% (at 1 m) true
positive rates once we adjust other parameters to achieve
0% false positives (see Fig. 8). This confirms that when
signals are weak, comparisons based on spectral peaks alone
are insufficient and other signal features (such as non-clock
power used in REMOTE) must also be considered.

5.3 Manufacturing Variations

To study the effect of manufacturing variations on the EM
signals and REMOTE accuracy, i.e., to determine if training is
needed for each type of device or for each physical instance
of a device, we use 30 physical instances of the Cyclone
V DEO-CV Terrasic FPGA development board (chosen pri-
marily because we have 30 such boards), to train REMOTE
on one board (randomly selected) and use that training
to monitor each of the other 30 instances, with 20 runs of
bitcount on each instance, both with and without malware.
Our results show that REMOTE’s accuracy remains at
100% true positives and 0% false positives throughout
this experiment. However, when we prevent REMOTE from
frequency-adjusting the SSs used in comparisons, we still
find no degradation for 17 of the boards, but for 13 the
false positive rate increases to nearly 100%. Further analysis
shows that the clock frequencies of the boards vary, with
17 of them (including the one trained-on) were within the
frequency-tolerance (parameter D in § 3.2) of the matching,
whereas the other 13 were outside the tolerance, causing
none of their peaks to vote for the cluster the signal ac-
tually should belong to. If D is then adjusted to avoid
false positives, the true positive rate is severely degraded.
Fig. 9 shows one such scenario where we trained on board
number 3, and test on board number 4. The figure shows the
ROC curve for board number 4 when frequency-adjusting
is active and inactive. We also repeated this experiment
for 10 Olimex boards (we do not have 30 of those), with

11

100

T T
i i
H
80 !
i
i
i

60

i

i b |

i l i

40 b i —Remote !
‘.| ----Eddie/Syndrome ||

i ! i i

i i

i i
1 1
1

i
i
i
i
i
i
i
i

True Positive (%)

i
20 H
Ra
A\ 1]
-\ '/) i
0 5 10 15 20
Time (Hours)

i

!
= J
N, J

Fig. 10. Performance of REMOTE with its clock-frequency adjustment
feature vs. Eddie/Syndrome.

very similar results with and without REMOTE’s frequency-
adjustment. These results confirm the need for frequency-
adjustment in REMOTE if training and monitoring do not
use the same physical instance of a device.

5.4 Variations Over Time

We record the signals at one-hour intervals, over a period
of 24 hours, while keeping the FPGA board and the receiver
active throughout the experiment, to observe how the em-
anated signals vary over time as device temperature (and
room temperature) and external radio interference such
as WiFi and cellular signals change during the day and
due to the day/night transition. The set of measurements
collected each hour consists of 60 bitcount runs, 20 without
malware and 20 times with each of the two types of malware
described in § 5.2. The training data for all REMOTE analyses
in this experiment was recorded just after the device (FPGA
board) and the receiver (SDR) were turned on.

We observed no deviation from REMOTE’s accuracy
throughout this experiment (solid blue line in Fig. 10). We
then prevent REMOTE from clock-adjusting the frequencies
and repeat the experiments (on the same signal recordings),
and find that the detection accuracy is dramatically de-
graded between hours 4 through 13 and hours 23 and 24
(dashed red in Fig. 10). Further analysis shows that the clock
frequency has shifted during these hours, coinciding with
use of business-hours and off-hours thermostat setting for
the room?, likely because temperature affected the board’s
crystal oscillator whose signal is the basis for generating the
processor’s clock frequency.

5.5 Multi-tasking/Time-sharing

In our final set of experiments, we apply REMOTE in the
runs where Ransomware (see § 4.3) is executed as a separate
process, without changing the application. The OLinuXino
board only has one core, so its Debian Linux OS context-
switches between the two processes until the Ransomware
payload completes. Fig. 11 shows the spectrogram in one
such execution. In the first part of the spectrogram only the
application is running. At some point (millisecond 812 in
this spectrogram), the Ransomware process is started, and

4. The actual change in clock frequency was less than one-part-per-
million of the clock frequency, well within typical design tolerances
for clock signals, and with negligible impact on the processor’s overall
performance and power consumption

760 |HEN. l} i3
780 | t 3 Program is runhing normally
=800 o %F‘a’nsomvilare is starting here
O S
Lg20f © T REERR 1T
= | | RN 1
840,‘;‘.%}?” & i | HET
860 th f f ! i Co;ne)jt switch bél\)reen Rar{sbrt;;fe#re i
1 il i

l and original applratit)n

880 B ool = | kkd 4
1.007 1.008 1.009 1.01 1.011 1.012 1.013 1.014 1.015
Frequency (Hz) x10°

Fig. 11. Spectrogram of context-switching between the unmodified Bit-
count application and the Ransomware process.

the context-switching in (approximately) 10 ms time-slices
can clearly be seen beyond this point in the spectrogram.
The spectrum of the malware process is clearly different
from the spectrum produced by the application at this point
in its execution, so we expect REMOTE to detect this malware
execution scenario easily.

To evaluate REMOTE accuracy for this scenario, we use
25 runs, and in each run, start the Ransomware process at a
different point in the run. The results of this experiment are
that REMOTE successfully detects all these runs even with
the tolerance threshold that produces no false positives for
malware-free executions. It should be noted here that in this
set of runs, according to our threat model, the IoT system is
running only one valid application. To successfully handle
scenarios in which the system context-switches between
multiple valid applications, REMOTE must be extended to
identify when context switches are occurring and to keep
track and validate spectral samples with the knowledge
of which application(s) they might belong and where the
“current” point is in each of those applications. Although
we believe such an extension to REMOTE is possible, it will
likely require significant effort to figure out, implement, and
evaluate, so we leave it for future work.

6 RELATED WORK

Much work exists on using EM [26], [45], [46] and other
physical signals [47], [48], [49] as side-channels for extract-
ing sensitive information from a victim system. Majority of
such work has focused on extracting keys during crypto-
graphic activity, on countermeasures against such attacks
and, more recently, on systematically identifying and quan-
tifying EM signals that may be useful to attackers [50],
[51], and on using EM/power analysis to identify the ex-
ecuted code at a per-instruction level [52], [53], [54], [55].
As described in § 2, more recent work, however, uses side-
channel signals beneficially such as for profiling [18], [27],
intrusion detection [1], [2], [28], [56], fingerprinting [57],
characterization [58], etc.

Comparing to the prior EM-based malware detectors
that leveraged EM signals, REMOTE is specifically designed
to be robust in the presence of, and evaluated for robustness
to weak signals, poorly defined peaks in the spectrum, and

12

variations in clock frequency among physical instances of
the same device and over time on the same device. Further-
more, REMOTE is the first EM-based malware detector to be
evaluated on real CPS applications affected by real malware
prototypes (code-reuse attack, Stuxnet-like, and shellcode),
and also the first to be evaluated on several platforms, with
very different processor architectures, including platforms
that run the application on bare-metal and those with an OS.
Moreover, it is first to experimentally identify the specific
ways in which software activity, distance, enclosure, and
antenna positioning, and variation over time and among
device instances of the same time, affect the received signal.
Specifically, comparing to EDDIE [1] and SYNDROME [2]
(which are mostly related to this work), we showed in § 4
and § 5 that using these methods will produce poor results
in some scenarios (e.g., see Figures 6-10) while REMOTE
achieves excellent accuracy. Moreover, these methods re-
quire access to the source code of the application while
REMOTE uses black-box training.

Another related body of work are power consumption-
based malware detection frameworks. Liu et al. [59] provide
code execution tracking based on the power signal using
an HMM model to recover most likely executed instruction
sequence with a revised Viterbi algorithm. Kim et al. [60]
build signatures for individual pieces of malware and later
recognize them. Clark et al. (WattsUpDoc [61]) detect mal-
ware by monitoring system-wide power consumption. Liu
et al. (VirusMeter [62]) build a state machine and flags later
anomalous power consumption using a variety of classifiers.
Gonzalez et al. (Power Fingerprinting [63]) demonstrate
that a specific function and its modified version can be
distinguished using LDA/PCA. Compared to these works,
REMOTE has the following advantages: (i) unlike these
methods, REMOTE does not require access to the source
code for training thus it’s more suitable for scenarios where
the code is not available (propitiatory) and/or the existing
infrastructure on the device does not support instrumenta-
tion. (ii) our evaluations show that REMOTE is applicable
to a variety of systems with various software/hardware
designs. Unfortunately, existing work [59], [60], [61], [62],
[63] provide very limited or no study on the robustness
of their approach which makes it difficult to fairly judge
their scalability and usefulness on other platforms. Further,
it is also unknown how these systems behave (in therms
of accuracy) under different sources of variations. Since as
shown in § 5, these variations may have significant impact
on the overall accuracy. (iii) these methods often suffer
from non-negligible False-Positive-Rate (e.g., 3% for [60],
2% for [61], 5% for [62]) which can significantly degrade the
usefulness of the intrusion detector as an on-line, always-
on protection system. Finally, (iv) instead of leveraging the
power consumption as a side-channel, REMOTE uses the EM
signal that provides locality, higher bandwidth, and requires
no physical connection to the monitored device.

We believe that the main advantages of using REMOTE
in industrial CPS, as shown in § 5, are that () REMOTE can
be trained on one device and then monitor other devices
of the same kind, (b) REMOTE is robust to the presence
of EM noise and interference from other (non-monitored)
electronic devices, (¢) REMOTE can be used at a distance
and without making any changes to the heavy-duty plastic

enclosures that are typically used in such settings, and
without opening the enclosure (which often voids the manu-
facturer’s warranty) and (d) REMOTE does not require access
to source code which is usually unavailable (proprietary).

7 CONCLUSIONS

This paper proposed (REMOTE), a new robust framework
to detect malware by externally observing EM signals emit-
ted by an electronic device. REMOTE does not require any
resources or infrastructure on, or any modifications to, the
monitored system itself, which makes it especially suitable
for malware detection on embedded and/or cyber-physical
systems where hardware resources may be limited and
performance and energy overheads introduced by other
monitoring approaches may be unacceptable. REMOTE can
identify malicious code injection into a known application
that is running on a device in real-time and with a low
detection latency.

To develop a robust framework, we systematically ex-
plored practical concerns through experiments and anal-
ysis. First, to demonstrate the usability of REMOTE in
real-world scenarios, we ported several real-world cyber-
physical-systems each with a meaningful attack, to different
platforms. Our results showed that for all of the programs
on each of the platforms, REMOTE successfully detected the
instances of attacks with high accuracy and almost no false
positives. We then systematically evaluated the robustness
of REMOTE to interrupts and other system activity, to signal
variation among different physical instances of the same
device, to changes in antenna distance, and to changes over
time. By selectively disabling the robustness-oriented fea-
tures of REMOTE, we also demonstrated that these features
are indeed contributing to its robustness.

Using these measurements and analysis, we showed RE-
MOTE has several advantages over state-of-the-art external
malware detection frameworks and it is a promising candi-
date for protecting resource-constrained devices (e.g., CPS,
IoT, PLC, etc.) when implementing an internal malware
detector is infeasible.

REFERENCES

[1] A. Nazari, N. Sehatbakhsh, M. Alam, A. Zajic, and M. Prvulovic,
“Eddie: Em-based detection of deviations in program execution,”
in Proceedings of the 44th Annual International Symposium
on Computer Architecture, ser. ISCA ’17. New York, NY,
USA: ACM, 2017, pp. 333-346. [Online]. Available: http:
//doi.acm.org/10.1145/3079856.3080223

[2] N. Sehatbakhsh, M. Alam, A. Nazari, A. Zajic, and M. Prvulovic,
“Syndrome: Spectral analysis for anomaly detection on medical iot
and embedded devices,” in 2018 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), April 2018, pp. 1-8.

[3] Intel, “A guide to the internet of things infographic,”
https:/ /www.intel.com/content/www /us/en/internet-of-
things/infographics/guide-to-iot.html, 2017 (accessed Feb. 2,

2018).

[4] M. L. Michael Chui and R. Roberts, “The inter-
net of things,” McKinsey Quarterly, Mar. 2010. [On-
line]. Available: https://www.mckinsey.com/industries/high-

tech/our-insights/the-internet-of-things

[5] internet-of More-Things.com, “Security is essential for the
growing iot,” https://internetofmorethings.com/iot-security-
infographic/, 2017 (accessed Feb. 1, 2018).

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

13

I. Zeifman, D. Bekerman, and B. Herzberg, “Source code for
iot botnet mirai released,” https:/ /krebsonsecurity.com/2016/10/
source-code-for-iot-botnet-mirai-released, September 2016 (ac-
cessed Oct. 10, 2017).

TrendMicro, “Persirai: New internet of things (iot) botnet targets
ip cameras,” http://blog.trendmicro.com/trendlabs-security-
intelligence/persirai-new-internet-things-iot-botnet-targets-ip-
cameras/, 2017 (accessed Feb. 1, 2018).

Z.-K. Zhang, M. C. Y. Cho, C.-W. Wang, C-W. Hsu, C.-
K. Chen, and S. Shieh, “Iot security: Ongoing challenges
and research opportunities,” in Proceedings of the 2014 IEEE
7th International Conference on Service-Oriented Computing and
Applications, ser. SOCA ’14. Washington, DC, USA: IEEE
Computer Society, 2014, pp. 230-234. [Online]. Available:
http://dx.doi.org/10.1109/SOCA.2014.58

K. Dunham, “Evaluating anti-virus software: Which is best?”
Information Systems Security, vol. 12, no. 3, pp. 17-28, 2003.

C. Willems, T. Holz, and E. C. Freiling, “Toward automated
dynamic malware analysis using cwsandbox,” IEEE Security &
Privacy, vol. 5, no. 2, pp. 32-39, 2007.

J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman,
S. Sethumadhavan, and S. Stolfo, “On the feasibility of online
malware detection with performance counters,” in Proceedings of
the 40th Annual International Symposium on Computer Architecture,
ser. ISCA "13. New York, NY, USA: ACM, 2013, pp. 559-570.
[Online]. Available: http://doi.acm.org/10.1145/2485922.2485970
M. Ozsoy, C. Donovick, I. Gorelik, N. Abu-Ghazaleh, and D. Pono-
marev, “Malware-aware processors: A framework for efficient on-
line malware detection,” in 2015 IEEE 21st International Symposium
on High Performance Computer Architecture (HPCA), Feb 2015.

M. Ozsoy, K. N. Khasawneh, C. Donovick, I. Gorelik, N. Abu-
Ghazaleh, and D. Ponomarev, “Hardware-based malware detec-
tion using low-level architectural features,” IEEE Transactions on
Computers, vol. 65, no. 11, pp. 3332-3344, Nov 2016.

A. Viswanathan, K. Tan, and C. Neuman, “Deconstructing the
assessment of anomaly-based intrusion detectors,” in Proceedings
of the 16th International Symposium on Research in Attacks, Intrusions,
and Defenses - Volume 8145, ser. RAID 2013. New York, NY,
USA: Springer-Verlag New York, Inc., 2013, pp. 286-306. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-41284-4_15

B. B. Kang and A. Srivastava, “Dynamic malware analysis,” in
Encyclopedia of Cryptography and Security, 2nd Ed., 2011, pp. 367—
368.

M. R. Guthaus, J. S. Pingenberg, D. Emst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” in Proceedings of the IEEE Interna-
tional Workshop on Workload Characterization, 2001.

“Lewansoul learm 6dof full metal robotic arm,” retrieved
on April 2019 from https://www.amazon.com/LewanSoul-
Controller-Wireless-Software-Tutorials /dp/B074T6 DPKX.

N. Sehatbakhsh, A. Nazari, A. Zajic, and M. Prvulovic, “Spectral
profiling: Observer-effect-free profiling by monitoring em emana-
tions,” in 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), Oct 2016, pp. 1-11.

S. Chari, J. R. Rao, and P. Rohatgi, “Template attacks,” in Crypto-
graphic Hardware and Embedded Systems - CHES 2002, B. S. Kaliski,
¢. K. Kog, and C. Paar, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2003, pp. 13-28.

P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Advances in Cryptology — CRYPTO’ 99, M. Wiener, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1999, pp. 388-397.

D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar,
“Trojan detection using ic fingerprinting,” in 2007 IEEE Symposium
on Security and Privacy (SP '07), May 2007, pp. 296-310.

L. N. Nguyen, C. Cheng, M. Prvulovic, and A. Zaji, “Creating
a backscattering side channel to enable detection of dormant
hardware trojans,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 27, no. 7, pp. 1561-1574, July 2019.

J. He, Y. Zhao, X. Guo, and Y. Jin, “Hardware trojan detection
through chip-free electromagnetic side-channel statistical analy-
sis,” IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, vol. 25, no. 10, pp. 29392948, Oct 2017.

Y. Huang, S. Bhunia, and P. Mishra, “Scalable test generation for
trojan detection using side channel analysis,” IEEE Transactions on
Information Forensics and Security, vol. 13, no. 11, pp. 2746-2760,
Nov 2018.

http://doi.acm.org/10.1145/3079856.3080223
http://doi.acm.org/10.1145/3079856.3080223
https://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html
https://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html
https://www.mckinsey.com/industries/high-tech/our-insights/the-internet-of-things
https://www.mckinsey.com/industries/high-tech/our-insights/the-internet-of-things
https://internetofmorethings.com/iot-security-infographic/
https://internetofmorethings.com/iot-security-infographic/
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released
http://blog.trendmicro.com/trendlabs-security-intelligence/persirai-new-internet-things-iot-botnet-targets-ip-cameras/
http://blog.trendmicro.com/trendlabs-security-intelligence/persirai-new-internet-things-iot-botnet-targets-ip-cameras/
http://blog.trendmicro.com/trendlabs-security-intelligence/persirai-new-internet-things-iot-botnet-targets-ip-cameras/
http://dx.doi.org/10.1109/SOCA.2014.58
http://doi.acm.org/10.1145/2485922.2485970
http://dx.doi.org/10.1007/978-3-642-41284-4_15
https://www.amazon.com/LewanSoul-Controller-Wireless-Software-Tutorials/dp/B074T6DPKX
https://www.amazon.com/LewanSoul-Controller-Wireless-Software-Tutorials/dp/B074T6DPKX

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

(39]

[40]

[41]

C. Bao, D. Forte, and A. Srivastava, “Temperature tracking: To-
ward robust run-time detection of hardware trojans,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 34, no. 10, pp. 1577-1585, Oct 2015.

D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The
em side-channel(s),” in Revised Papers from the 4th International
Workshop on Cryptographic Hardware and Embedded Systems,
ser. CHES ’02. London, UK, UK: Springer-Verlag, 2003, pp.
29-45. [Online]. Available: http://dl.acm.org/citation.cfm?id=
648255.752713

R. Callan, E. Behrang, A. G. Zajic, M. Prvulovic, and A. Orso,
“Zero-overhead profiling via EM emanations,” in Proceedings of the
25th International Symposium on Software Testing and Analysis, ISSTA
2016, Saarbriicken, Germany, July 18-20, 2016, 2016, pp. 401-412.

Y. Han, S. Etigowni, H. Liu, S. Zonouz, and A. Petropulu, “Watch
me, but don’t touch me! contactless control flow monitoring
via electromagnetic emanations,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS “17. New York, NY, USA: ACM, 2017, pp. 1095-1108.
[Online]. Available: http://doi.acm.org/10.1145/3133956.3134081
K. N. Khasawneh, N. Abu-Ghazaleh, D. Ponomarev, and
L. Yu, “Rhmd: Evasion-resilient hardware malware detectors,”
in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-50 "17. New
York, NY, USA: ACM, 2017, pp. 315-327. [Online]. Available:
http://doi.acm.org/10.1145/3123939.3123972

C. Hunger, M. Kazdagli, A. Rawat, A. Dimakis, S. Vishwanath,
and M. Tiwari, “Understanding contention-based channels and
using them for defense,” in 2015 IEEE 21st International Symposium
on High Performance Computer Architecture (HPCA), Feb 2015.

M. Kazdagli, V.]. Reddi, and M. Tiwari, “Quantifying and improv-
ing the efficiency of hardware-based mobile malware detectors,”
in 2016 49th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), Oct 2016, pp. 1-13.

H. Sayadi, N. Patel, S. M. P D, A. Sasan, S. Rafatirad,
and H. Homayoun, “Ensemble learning for effective run-time
hardware-based malware detection: A comprehensive analysis
and classification,” in 2018 55th ACM/ESDA/IEEE Design Automa-
tion Conference (DAC), June 2018, pp. 1-6.

S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and F. Mon-
rose, “Sok: The challenges, pitfalls, and perils of using hardware
performance counters for security,” in Proceedings of 40th IEEE
Symposium on Security and Privacy (S&P19), 2019.

S. M. P. Dinakarrao, S. Amberkar, S. Bhat, A. Dhavlle, H. Sayadi,
A. Sasan, H. Homayoun, and S. Rafatirad, “Adversarial attack on
microarchitectural events based malware detectors,” in Proceedings
of the 56th Annual Design Automation Conference 2019, ser. DAC
19. New York, NY, USA: ACM, 2019, pp. 164:1-164:6. [Online].
Available: http://doi.acm.org/10.1145/3316781.3317762

H. Shacham, “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86),” in Proceedings of the
14th ACM Conference on Computer and Communications Security,
ser. CCS '07. New York, NY, USA: ACM, 2007, pp. 552-561.
[Online]. Available: http://doi.acm.org/10.1145/1315245.1315313
T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-
oriented programming: A new class of code-reuse attack,”
in Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security, ser. ASIACCS "11. New
York, NY, USA: ACM, 2011, pp. 30-40. [Online]. Available:
http://doi.acm.org/10.1145/1966913.1966919

B. Wijnen, E. J. Hunt, G. C. Anzalone, and]J. M. Pearce,
“Open-source syringe pump library,” PLOS ONE, vol. 9, no. 9,
pp- 1-8, 09 2014. [Online]. Available: https://doi.org/10.1371/
journal.pone.0107216

T. Abera, N. Asokan, L. Davi,].-E. Ekberg, T. Nyman, A. Paverd,
A.-R. Sadeghi, and G. Tsudik, “C-flat: Control-flow attestation
for embedded systems software,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS’16. New York, NY, USA: ACM, 2016, pp. 743-754. [Online].
Available: http:/ /doi.acm.org/10.1145/2976749.2978358

J. Salwan and A. Wirth, “Ropgadget: Gadgets finder for multiple
architectures,” https://github.com/JonathanSalwan/ROPgadget,
2011 (accessed Feb. 1, 2018).

“Horn antenna datasheet,” https://www.com-power.com/
ahl18hornantenna.html, 2015 (accessed Nov. 5, 2017).

S. A. Carr and M. Payer, “Datashield: Configurable data
confidentiality and integrity,” in Proceedings of the 2017 ACM

[42]

[43]
[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

(52]

[53]

(54]

[55]

[56]

14

on Asia Conference on Computer and Communications Security, ser.
ASIA CCS “17. New York, NY, USA: ACM, 2017, pp. 193-204.
[Online]. Available: http://doi.acm.org/10.1145/3052973.3052983
D. Quarta, M. Pogliani, M. Polino, F. Maggi, A. M. Zanchettin,
and S. Zanero, “An experimental security analysis of an industrial
robot controller,” in 2017 IEEE Symposium on Security and Privacy
(SP), May 2017, pp. 268-286.

“Arduino servo library,” https:/ /www.arduino.cc/en/Reference/
Servo, accessed April 2019).

Ubuntu, “Lightdm,” https://wiki.ubuntu.com/LightDM, 2017
(accessed Feb. 1, 2018).

D. Genkin, L. Pachmanov, I Pipman, and E. Tromer,
“Stealing keys from pcs using a radio: Cheap electromagnetic
attacks on windowed exponentiation,” in Proceedings of the
17th International Workshop on Cryptographic Hardware and
Embedded Systems — CHES 2015. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2015, pp. 207-228. [Online]. Available:
http:/ /dx.doi.org/10.1007 /978-3-662-48324-4_11

Y.-i. Hayashi, N. Homma, T. Mizuki, H. Shimada, T. Aoki, H. Sone,
L. Sauvage, and J.-L. Danger, “Efficient evaluation of em radiation
associated with information leakage from cryptographic devices,”
IEEE Transactions on Electromagnetic Compatibility, vol. 55, no. 3, pp.
555-563, June 2013.

D. Genkin, I. Pipman, and E. Tromer, “Get your hands
off my laptop: Physical side-channel key-extraction attacks
on pcs,” in Proceedings of the 16th International Workshop
on Cryptographic Hardware and Embedded Systems — CHES
2014 - Volume 8731. New York, NY, USA: Springer-Verlag
New York, Inc, 2014, pp. 242-260. [Online]. Available:
http:/ /dx.doi.org/10.1007 /978-3-662-44709-3_14

D. Genkin, A. Shamir, and E. Tromer, “Rsa key extraction
via low-bandwidth acoustic cryptanalysis,” in Advances in
Cryptology — CRYPTO 2014: 34th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 444-461.
[Online]. Available: http://dx.doi.org/10.1007/978-3-662-44371-
225

U. Rithrmair, X. Xu, J. Solter, A. Mahmoud, M. Majzoobi,
F. Koushanfar, and W. P. Burleson, “Efficient power and timing
side channels for physical unclonable functions,” in Cryptographic
Hardware and Embedded Systems - CHES 2014 - 16th International
Workshop, Busan, South Korea, September 23-26, 2014. Proceedings,
2014, pp. 476-492.

R. Callan, A. G. Zajic, and M. Prvulovic, “A practical methodology
for measuring the side-channel signal available to the attacker for
instruction-level events,” in 47th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2014, Cambridge, United
Kingdom, December 13-17, 2014, 2014, pp. 242-254.

——, “FASE: finding amplitude-modulated side-channel emana-
tions,” in Proceedings of the 42nd Annual International Symposium on
Computer Architecture, Portland, OR, USA, June 13-17, 2015, 2015.
J.-J. Quisquater and D. Samyde, “Automatic code recognition for
smart cards using a kohonen neural network,” in Proceedings
of the 5th Conference on Smart Card Research and Advanced
Application Conference - Volume 5, ser. CARDIS'02. Berkeley, CA,
USA: USENIX Association, 2002, pp. 6-6. [Online]. Available:
http:/ /dl.acm.org/ citation.cfm?id=1250988.1250994

T. Eisenbarth, C. Paar, and B. Weghenkel, “Transactions on
computational science x,” M. L. Gavrilova, C. J. K. Tan, and
E. D. Moreno, Eds. Berlin, Heidelberg: Springer-Verlag, 2010, ch.
Building a Side Channel Based Disassembler, pp. 78-99. [Online].
Available: http://dl.acm.org/citation.cfm?id=1985581.1985585

M. Msgna, K. Markantonakis, and K. Mayes, “Precise instruction-
level side channel profiling of embedded processors,” in
Proceedings of the 10th International Conference on Information
Security Practice and Experience - Volume 8434, ser. ISPEC 2014.
New York, NY, USA: Springer-Verlag New York, Inc., 2014, pp.
129-143. [Online]. Available: https://doi.org/10.1007/978-3-319-
06320-1_11

D. Strobel, F. Bache, D. Oswald, F. Schellenberg, and C. Paar,
“Scandalee: A side-channel-based disassembler using local elec-
tromagnetic emanations,” in 2015 Design, Automation Test in Europe
Conference Exhibition (DATE), March 2015, pp. 139-144.

H. A. Khan, N. Sehatbakhsh, L. N. Nguyen, R. L. Callan, A. Yere-
dor, M. Prvulovic, and A. Zajic, “Idea: Intrusion detection through
electromagnetic-signal analysis for critical embedded and cyber-

http://dl.acm.org/citation.cfm?id=648255.752713
http://dl.acm.org/citation.cfm?id=648255.752713
http://doi.acm.org/10.1145/3133956.3134081
http://doi.acm.org/10.1145/3123939.3123972
http://doi.acm.org/10.1145/3316781.3317762
http://doi.acm.org/10.1145/1315245.1315313
http://doi.acm.org/10.1145/1966913.1966919
https://doi.org/10.1371/journal.pone.0107216
https://doi.org/10.1371/journal.pone.0107216
http://doi.acm.org/10.1145/2976749.2978358
https://github.com/JonathanSalwan/ROPgadget
https://www.com-power.com/ah118 horn antenna.html
https://www.com-power.com/ah118 horn antenna.html
http://doi.acm.org/10.1145/3052973.3052983
https://www.arduino.cc/en/Reference/Servo
https://www.arduino.cc/en/Reference/Servo
https://wiki.ubuntu.com/LightDM
http://dx.doi.org/10.1007/978-3-662-48324-4_11
http://dx.doi.org/10.1007/978-3-662-44709-3_14
http://dx.doi.org/10.1007/978-3-662-44371-2_25
http://dx.doi.org/10.1007/978-3-662-44371-2_25
http://dl.acm.org/citation.cfm?id=1250988.1250994
http://dl.acm.org/citation.cfm?id=1985581.1985585
https://doi.org/10.1007/978-3-319-06320-1_11
https://doi.org/10.1007/978-3-319-06320-1_11

physical systems,” IEEE Transactions on Dependable and Secure
Computing, pp. 1-1, 2019.

[57] L.]J. Mariano, A. Aubuchon, T. Lau, O. Ozdemir, T. Lazovich, and
J. Coakley, “Classification of electronic devices and software pro-
cesses via unintentional electronic emissions with neural decoding
algorithms,” IEEE Transactions on Electromagnetic Compatibility, pp.
1-8, 2019.

[58] Z. Hadjilambrou, S. Das, M. A. Antoniades, and Y. Sazeides,
“Leveraging cpu electromagnetic emanations for voltage noise
characterization,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Oct 2018, pp. 573-585.

[59] Y. Liu, L. Wei, Z. Zhou, K. Zhang, W. Xu, and Q. Xu,
“On code execution tracking via power side-channel,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’16. New York, NY,
USA: ACM, 2016, pp. 1019-1031. [Online]. Available: http:
//doi.acm.org/10.1145/2976749.2978299

[60] H. Kim,]J. Smith, and K. G. Shin, “Detecting energy-greedy
anomalies and mobile malware variants,” in Proceedings of the 6th
International Conference on Mobile Systems, Applications, and Services,
ser. MobiSys '08. New York, NY, USA: ACM, 2008, pp. 239-252.
[Online]. Available: http://doi.acm.org/10.1145/1378600.1378627

[61] S.S. Clark, B. Ransford, A. Rahmati, S. Guineau, J. Sorber, K. Fu,
and W. Xu, “Wattsupdoc: Power side channels to nonintrusively
discover untargeted malware on embedded medical devices,”
in Proceedings of the 2013 USENIX Conference on Safety, Security,
Privacy and Interoperability of Health Information Technologies, ser.
HealthTech’13. Berkeley, CA, USA: USENIX Association, 2013,
pp. 9-9. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2696523.2696532

[62] L. Liu, G. Yan, X. Zhang, and S. Chen, “Virusmeter: Preventing
your cellphone from spies,” in Recent Advances in Intrusion Detec-
tion, 12th International Symposium, RAID 2009, Saint-Malo, France,
September 23-25, 2009. Proceedings, 2009, pp. 244-264.

[63] C. R. Aguayo Gonzilez and]J. H. Reed, “Power fingerprinting in
sdr integrity assessment for security and regulatory compliance,”
Analog Integr. Circuits Signal Process., vol. 69, no. 2-3, pp. 307-327,
Dec. 2011. [Online]. Available: http://dx.doi.org/10.1007 /s10470-
011-9777-4

Nader Sehatbakhsh received the B.Sc. de-
gree in Electrical Engineering from University
of Tehran in 2013 and the M.Sc. in Electrical
Engineering from Georgia Institute of Technol-
ogy in 2016. Since 2014, he has been a Grad-
uate Research Assistant with CompArch and
Electromagnetic Measurements in Communica-
tions and Computing (EMC?2) Labs, pursuing
the Ph.D. degree in the School of Computer Sci-
ence, Georgia Institute of Technology focusing
on Computer Architecture, Embedded System
and Hardware Security. He won the best paper award in MIRCO’49 for
his work on using EM side-channel signals for software profiling.

Alireza Nazari is a Ph.D. candidate in the
School of Computer Science, Georgia Tech. He
received his B.Sc. degree in Computer Engi-
neering from Shahed University, Iran in 2011,
M.Sc. degree in Electrical Engineering from
School of Electrical and Computer Engineering,
New Mexico State University, in 2014 and M.Sc.
degree in Computer Science from the School of
Computer Science, Georgia Institute of Technol-
ogy in 2018. His research interests are secure
and reliable computer architecture.

15

Monjur Alam received the B.Tech degree in In-
formation Technology from WBUT, India in 2005
and the M.Sc. in Computer Science and Engi-
neering from IIT Kaharagpur, India in 2008, and
M.Sc. in Computer Science from Georgia State
University, in 2013. Since 2016, he has been a
Graduate Research Assistant with the (EMC?)
Lab, pursuing the Ph.D degree in the Depart-
ment of Computer Science, Georgia Institute of
Technology. Previously, he has been working at
Cadence as an R&D Engineer from 2008 to
2012. His research interest includes system security and side-channels.

Frank Werner received his B.Sc. and M.Sc.

degrees in Electrical Engineering from Auburn

) University, Auburn, Alabama, USA, in 2013 and

- ’ 2016, respectively. Currently, he is working to-
~ ward the Ph.D. degree in Electrical Engineering
%/ in Georgia Institute of Technology, Atlanta, Geor-
/ gia, USA. His research interests include applied
electromagnetics and wireless communications.

Yuanda Zhu received B.Sc. degree in Electrical
Engineering at Georgia Institute of Technology in
May 2016. Hes now a third year PhD student of
Electrical and Computer Engineering at Georgia
institute of Technology. His research interest is
to apply machine learning and deep learning al-
gorithms in biomedical analysis and health infor-
matics. Currently, he is working on pathological
whole slide imaging and health care insurance
claim data analytics.

Alenka Zajic (S'99-M’'09-SM’13) received the
B.Sc. and M.Sc. degrees form the School of
Electrical Engineering, University of Belgrade, in
2001 and 2003, respectively. She received her
Ph.D. degree in Electrical and Computer Engi-
neering from the Georgia Institute of Technology
in 2008. Currently, she is an Associate Profes-
sor in the School of Electrical and Computer
Engineering at Georgia Institute of Technology.
Dr. Zajic was the recipient of the 2017 NSF
CAREER award, 2012 Neal Shepherd Memorial
Best Propagation Paper Award, the Best Paper Award at the Interna-
tional Conference on Telecommunications 2008, and the Best Student
Paper Award at the 2007 Wireless Communications and Networking
Conference. Her research interests span areas of electromagnetic, wire-
less communications, signal processing, and computer engineering.

Milos Prvulovic (S'97-M’03-SM’09) received
the B.Sc. degree in Electrical Engineering from
the University of Belgrade in 1998, and the M.Sc.
and Ph.D. degrees in Computer Science from
the University of lllinois at Urbana-Champaign in
2001 and 20083, respectively. He is a Professor in
the School of Computer Science at the Georgia
Institute of Technology, where he joined in 2003.
His research interests are in computer architec-

:

72\ ' ture, especially hardware support for software

monitoring, debugging, and security. He is a past

recipient of the NSF CAREER award, and a senior member of the ACM,
the IEEE, and the IEEE Computer Society.

http://doi.acm.org/10.1145/2976749.2978299
http://doi.acm.org/10.1145/2976749.2978299
http://doi.acm.org/10.1145/1378600.1378627
http://dl.acm.org/citation.cfm?id=2696523.2696532
http://dl.acm.org/citation.cfm?id=2696523.2696532
http://dx.doi.org/10.1007/s10470-011-9777-4
http://dx.doi.org/10.1007/s10470-011-9777-4

	Introduction
	Background
	Remote
	Spectral Samples (SS)
	Distance Metric for Comparing SSs
	Black-Box Training
	Monitoring

	Experimental Results
	Measurement Setup
	File-less Attacks on Cyber-Physical-Systems
	Shellcode Attack on IoTs
	APT Attack on Commercial CPS

	Further Evaluation of Robustness
	Interrupts and System Activity
	Hardware Platforms and Distance
	Manufacturing Variations
	Variations Over Time
	Multi-tasking/Time-sharing

	Related Work
	Conclusions
	References
	Biographies
	Nader Sehatbakhsh
	Alireza Nazari
	Monjur Alam
	Frank Werner
	Yuanda Zhu
	Alenka Zajic
	Milos Prvulovic

