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EMSim: A Microarchitecture-Level Simulation Tool for
Modeling Electromagnetic Side-Channel Signals

ABSTRACT
Side-channel attacks have become a serious security con-
cern for computing systems, especially for embedded
devices, where the device is often located in, or in close
proximity to, a public place, and yet the system contains
sensitive information. To design systems that are highly
resilient to such attacks, an accurate and efficient design-
stage quantitative analysis of side-channel leakage is
needed. For many system properties (e.g., performance,
power, etc.), cycle-accurate simulation can provide such
an efficient-yet-accurate design-stage estimate. Unfor-
tunately, for an important class of side-channels, elec-
tromagnetic emanations, such a model does not exist,
and there has not even been much quantitative evidence
about what level of modeling detail (e.g., hardware, mi-
croarchitecture, etc.) would be needed for high accuracy.

This paper presents EMSim, an approach that enables
simulation of the electromagnetic (EM) side-channel sig-
nals cycle-by-cycle using the detailed micro-architectural
model of the device. To evaluate EMSim, we compare
the simulated signals against actual EM signals em-
anated from real hardware (a RISC-V processor imple-
mented on an FPGA), and find that they match very
closely. To gain further insights, we also experimentally
identify how the accuracy of the simulation degrades
when key micro-architectural features (e.g., pipeline stall,
cache-miss, etc.) and other hardware behaviors (e.g.,
data-dependent switching activity) are omitted from the
simulation model. We further evaluate how robust the
simulation-based results are, by comparing them to real
signals collected in different conditions (manufacturing,
distance, etc.). Finally, to show the applicability of
EMSim, we demonstrate how it can be used to measure
side-channel leakage through simulation at design-stage.

1. INTRODUCTION
Information leakage through side-channels has become

a serious concern in securing computing systems that
are located where potential attackers may gain enough
physical access to carry out the attack [1,2,3, 4, 5, 6, 7].
This is especially a problem for embedded and Internet-
of-Things (IoT) systems which often contain sensitive
data, such as sensor data, login information for over-the-
network management of the system and/or accessing
back-end cloud infrastructure, and are often placed in
publicly accessible locations. For some side-channels,

such as electromagnetic (EM) emanations, physical prox-
imity can be leveraged to attack systems that are consid-
ered to be physically secure but are located near publicly
accessible locations, e.g., in-wall“smart building”sensors,
security cameras, etc [8, 9, 10,11].

To design these systems to be highly resilient to side-
channel attacks, side-channel leakage needs to be quanti-
tatively assessed and attributed to specific hardware and
software components, relatively early in the design of
the system. For other system properties, such as perfor-
mance, power consumption, reliability, etc., such early
quantitative assessment and attribution typically relies
on cycle-accurate simulation [12,13,14,15,16,17,18,19]
that models the relevant activity in the system with
enough detail to achieve good accuracy, but without
modeling most of the low-level activities that would ren-
der the simulation too slow to be useful for evaluating rel-
evant scenarios. If such efficient-yet-highly-accurate sim-
ulation would exist for EM emanations, hardware design-
ers and architects could include EM side-channel leakage
among their design considerations [20,21,22,23,24,25],
compilers could use simulation models to optimize for
reduced leakage [26, 27, 28], software designers could
detect and mitigate information leakage problems for
security-sensitive applications [29,30,31], etc.

Unfortunately, for assessment and attribution of EM
side-channel emanations, no such efficient-yet-highly-
accurate simulation exists, and there has not even been
much quantitative evidence about what level of mod-
eling detail would be needed for high accuracy, how
much accuracy is sacrificed when not modeling certain
aspects of the hardware and hardware/software inter-
action, e.g., whether high accuracy for estimating EM
emanations can be achieved without modeling the under-
lying physics (how magnetic and electric fields change
in response to current flows through semiconductor and
metal structures that form the circuitry of a system),
whether it is sufficient to model ISA-level properties
without modeling the microarchitecture, etc.

While there are some tools and metrics to quantify
EM side-channel leakages [32, 33, 34, 35, 36], they are
limited due to three main reasons: First, they are
mainly focused on developing metrics to estimate the
information leakage itself, i.e., mutual information be-
tween the signal and the program secrets, rather than
modeling the actual analog signal. Relying only on these



metrics rather than analyzing the actual signal, may not
be sufficient since these metrics inherently make assump-
tions about the aspects of the signal the attacker may
exploit, i.e., they may not reveal all of the information
the signal may contain. Secondly, existing methods only
model the system at architecture-level, i.e., associating
a (leakage) value to individual instructions based on the
ISA, and ignore the micro-architecture activities such as
pipeline stages, stall cycles, etc. on the signal. As we will
show in this paper, this can lead to significant inaccuracy,
mainly because the model, by staying at the ISA-level,
neglects to account for how that instruction interacts
with other instructions and the underlying hardware.
Thirdly, by neglecting the impact of micro-architecture,
these methods implicitly assume that the entire hard-
ware design is a single source, and then only model the
EM emanations based on this single source. Such an
assumption can lead to large inaccuracies since different
micro-architecture components (e.g., cache, register-file,
etc.) generate different electromagnetic waves with dif-
ferent polarization and/or phase, and hence, they may
have constructive or destructive impacts on each other
and the overall received signal.

To address these challenges, in this work we take a dif-
ferent approach. We develop a simulator, EMSim, that
is able to simulate the EM side-channel signals cycle-by-
cycle using the detailed micro-architectural model of the
device. We then quantitatively assess the accuracy of
simulator-generated signals by comparing them to the
EM signals collected while an actual processor executes
the same program code, and we further identify how
much accuracy suffers when key micro-architectural fea-
tures and hardware behaviors are omitted from the sim-
ulation model. By using a systematic and carefully de-
signed set of measurements, along with regression-based
parameter estimation and multiple-input-single-output
(MISO) communication system modeling, we show that
EMSim is able to produce an EM signal that closely
matches the actual signal, and it is robust against dif-
ferent sources of variability.

To assess the accuracy of EMSim itself, i.e., to avoid
discrepancies between simulated and real behaviors that
are caused by differences between the assumed and the
actual (often proprietary) microarchitecture of the pro-
cessor, we implement a RISC-V based [37] in-order pro-
cessor on an FPGA. We will show throughout the paper
that the knowledge of key micro-architectural details
is critical in achieving good accuracy for simulation-
generated EM signals. We envision that, to provide
fairly accurate simulation while having an access to a
detailed micro-architecture model, EMSim can be inte-
grated into a cycle-accurate simulator which, as we will
show in this paper through some use-case examples, can
be used by a variety of users (e.g., hardware designers,
architects, software and/or compiler developers, etc.) to
estimate the EM-related side-channel leakages without
requiring to physically measure any signals.

To the best of our knowledge, this is the first
microarchitecture-level EM side-channel model ,
which allows it to provide much more precise estimates

of leakage not only for individual instructions but also for
sequences of instructions (when the goal is to assess and
improve leakage from a particular piece of code on a set
of hardware platforms), and also the first model that can
asses leakage from a particular part of the system (when
the goal is to make the design less “leaky”) while main-
taining the performance advantages of a cycle-accurate
simulation relative to a physics-based model.

The remainder of the paper is organized as follows:
In §2, we provide a brief overview of our setup. In §3,
we outline our methodology on modeling EM signals
as a multi-input-single-output system. §4 demonstrates
our approach in modeling micro-architectural events
namely pipeline stalls, mispredictions, and cache miss.
§5 presents the experimental setup and evaluations on
model accuracy and robustness. Real-world use-cases
are presented in §6. Related work is briefly reviewed in
§7. The paper is concluded in §8.

2. EXPERIMENTAL METHODOLOGY
Before describing how EMSim simulates side-channel

signals, in this section we first explain our experimental
methodology to generate, collect, and analyze the real
EM signals generated by the target hardware. Using this
information, in the next section we will then describe
our method to accurately model these signals.

2.1 Hardware and Measurement Setup
To generate real EM signals, rather than attempting

to use an off-the-shelf processor and model such a sys-
tem, where some of the microarchtiectural details (of
even entire microarchitectrual blocks) are proprietary
and thus not disclosed in publicly available literature,
we implement a 5-stage, single-issue, in-order processor
equipped with a branch predictor, a cache, and a for-
warding unit using RISC-V ISA [37] and Verilog HDL
on an FPGA to have full control and knowledge about
the target system and its microarchitecture.

We implement a 32-bit base RISC-V ISA [38] which
provides a convenient ISA and software toolchain “skele-
ton” suitable for resource-constrained design scenarios
such as embedded systems [37]. We also implement
the multiplication/division extension (“M”) to support
these activities. Prior to using the processor for our
measurements, we extensively tested the correctness of
the processor’s implementation. The designed processor
has five pipeline stages namely: Fetch, Decode, Exe-
cute, Memory, and Writeback. The processor also has
(i) a branch prediction unit with a 2-level predictor [39]
and a branch-target-buffer (BTB), (ii) a 32-entry 32-bit
register-file, and (iii) a 32KB cache. Cache-hit takes
one extra cycle and reading from memory takes extra
2 cycles (in addition to the cache latency). Note that
these delays can be increased to any arbitrary value
(e.g., to study the effect of delay on side-channels). The
processor also has forwarding and hazard detection units.

Using the implemented processor, we then use a probe
and a signal acquisition device (an oscilloscope) to re-
ceive and record the EM signals (more details on §5).
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Figure 1: Reconstructing the original signal using three different approaches. Using a combination
of a sinusoidal and an exponential function (f(t) in Equ. 5) can achieve the best accuracy.

2.2 Signal Acquisition
Capturing the emanated signal is the first step to

properly modeling the signal. Unfortunately, measuring
the ideal emanated signal (i.e., not corrupted by additive
channel white noise) is not possible if only one-time-run
of any instruction sequence is considered. One option
is to collect many one-time-run signals and take the
average. The problem with this approach is capturing
synchronized signals, i.e., the starting points of captured
signals may not correspond to the same processing-time
of the given instruction sequence. To address this prob-
lem, we use a novel signal-processing method called
“modulo operation” [40] to create a highly accurate esti-
mate of the ideal emanated signal, i.e., to remove most
of the noise and distortion that was present in the actual
signal due to under-sampling, synchronization, noise,
and other imperfections that are unavoidable during
practical collection of signals.

The main parameters for the modulo operation are
the number of clock cycles to execute a given sequence
(noc), the sampling-rate of the instrument, and the clock
frequency of the device. After having these parameters,
the next step is to collect the emanated signal. For that,
a given sequence is executed several times (1000 times in
our measurements). Each set of measurements consists
of a sequence of instructions (called sequence). The
goal is to retrieve the emanated signal for the sequence.

The next step is to utilize the modulo operation to
map each received samples to average these many mea-
surements. Assuming Ts is the total time to execute
the sequence once (i.e., Ts = noc× Tclk), it applies the
following operation to the sampling time of each sample
to map each sample to its fundamental period:

∆m = mod(Tm, Ts), (1)

where Tclk is the clock time, ∆m is called the modular
offset, and Tm is the sampling time of mth sample. Af-
ter obtaining the modular offsets for each sample, the
modulo operation takes the mean of the samples that
have same modular offset, to produce the desired signal.
Further signal-processing techniques such as moving av-
erage, Gaussian filtering, etc., can be applied to this
generated signal to obtain smoother reference signals.

2.3 Signal Reconstruction
Simulating an analog signal can be considered a signal-

processing reconstruction problem where a continuous
signal (i.e., EM in this case) needs to be determined from
a sequence of equally-spaced samples with sampling-rate
T , where T is preferably much smaller than Tclk. Such
a signal can be ideally reconstructed using Whittaker-
Shannon interpolation formula [41], however, it is well-
known that such a method is not feasible in practice.
Instead, a popular method for signal reconstruction is
zero-order hold (ZOH) technique where a continuous
signal, y, can be reconstructed from a sample sequence
x[n], assuming one sample per time interval is T :

y(t) =

+∞∑
n=−∞

x[n]× rect( t− T/2− nT
T

). (2)

To improve the ZOH accuracy, in this paper we make
an observation that switching activity in a processor
is synchronized to its clock and most of the switching
happens right after the positive/negative edge of the
clock. Thus, instead of using a rectangular function
(which implies that activity is evently spread over a
cycle), a decaying function can be used:

f1(t) = e−θtu(t), (3)

where θ is a positive normalization factor that changes
the width of the signal, and u(t) is the unit step function.
Substituting rect() in Equ. 2 by the exponential we get:

y(t) =

+∞∑
n=0

x[n]× e−θ(t−nT ) × u(t− nT ). (4)

However, we observed that the received signal is also
exposed to oscillations with decreasing magnitude. To
meet the requirements for both oscillations and decreas-
ing amplitude, combining sinusoidal with exponential
can increase the accuracy further:

f(t) = sin(2πt/T0)× e−θt × u(t), (5)

where T0 is the periodicity of the sinus function. Again,
substituting rect() in Equ. 2 by f(t), we will have:

y(t) =

+∞∑
n=0

x[n] sin(
2π(t− nT )

T0
)e−θ(t−nT )u(t− nT ).

(6)
In Figure 1, we plot a measured signal and its re-

constructions with these options. We observe that f(t)
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explains the behavior of the received signal much better.
Thus, by finding x[n] for each cycle and using Equ. 6,
the analog side-channel signal can be modeled.

3. EMSIM MODELING

3.1 Overview
Fundamentally, EM side-channel signals are created

due to bit-flips at the transistor-level [9,42]. In principle,
all transistors and metal-layer interconnect components
contribute to the signal, and so the signal could be mod-
eled using activity of all transistors and on-chip wires
as predictor variables, which should be highly accurate
but is practically infeasible. Thus the main challenge
in model-building is to select (or discard) potential pre-
dictors in a systematic manner, to achieve a trade-off
where feasibility (or even efficiency) is achieved without
a major sacrifice in accuracy.

To achieve a simple yet accurate model, existing meth-
ods are mainly focused on individual instructions and
their operands, and they attribute an “average” behavior
to each of the instructions, rather than model its cycle-
by-cycle effect on the processor’s hardware. In effect,
these methods model a simplified one-instruction-at-a-
time implementation, essentially ignoring pipeline effects
and other important aspects of the micro-architecture.

To more accurately simulate EM signals, we model
micro-architectural components as independent sources
of EM emanations and then further group these units
in each pipeline stage as an individual source. We used
pipeline stages as the sources mainly because we ob-
served that each instruction has different footprint in
each cycle, and the side-channel generated at each cycle
is a combination of these activities in ALL stages. Us-
ing this methodology, we model a multi-input (pipeline
stages), single-output (EM signal) system (MISO).

Using this approach, the challenges are a) how to
model the signal for individual sources, and b)
how to properly combine the signals generated by
each source to accurately form the side-channel signal.

3.2 Signal Amplitude for Individual Sources
In practice, there are two contributors in creating

EM side-channel signals for each pipeline stage. The
first group of contributors, which we call instruction-
dependent activities, are caused by the switching activ-
ities of the micro-architectural units (e.g., register-file,
ALU, etc.) that are utilized in that stage (e.g., whether
the register-file is being written or not).

The second group, data-dependent activities, are cre-
ated due to bit-flips on the data-bus, address-bus, and
any other registers that hold operand’s values. These
bit-flips are independent from the instruction-type but
are dependent to the previous state of the bus. In the
following, we will describe how we independently mea-
sure each of these two groups.

Instruction-Dependent Activities. To independently
measure these groups, we first minimize the effect of
the data-dependent activities by setting all the operands,
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Figure 2: The signal amplitude for an ADD as it
progress in the pipeline (while all other instruc-
tions are NOP). The actual signal is shown in light
color (green). Darker color (black) shows the
simulated signal when considering each pipeline
stage as a separate source (top), and when con-
sidering the entire processor as a single source
(bottom), and the largest differences between
the two are pointed out using red ellipses.

addresses, and immediate values to zero. This approach
enables us to measure the baseline signal for each stage
that is only caused by the switching activities of the
micro-architectural units used in that stage.

After decoupling the data-related activities from the
signal, the second challenge is to minimize the effects of
other stages on the generated EM signal. Recall that
we mentioned ALL pipeline stages contribute to the
overall signal, however, ideally we want to be able to
measure the effect of each stage separately so that we can
use them as the basic-blocks to reconstruct the overall
signal. To achieve that, we use NOP instruction as the
baseline since it has the minimum possible switching
activity, and then create NOP → inst → NOP instruction
sequence (for all instructions), while operands for inst
are all set to r1 (and r1 = 0). Using this method,
no data/operand-dependent bit-flips are created, but
register-file, ALU, etc. may be used (depending on the
instruction type). We then measure the signal amplitude
for all instructions and every pipeline stages. We call
this baseline hardware amplitude or A.

Figure 2 shows how the (actual) EM signal (shown
in green/light color) changes as an ADD instruction pro-
gresses through the pipeline while all the other instruc-
tions are NOP. Using Equ. 6 and NOP→ inst→ NOP in-
struction sequence, we used our simulator to generate the
signal. Further, to show why individual stages should
be modeled separately, Figure 2 (bottom) shows the
simulated signal when the “average” amplitude is used
for all stages. As can be seen, failing to model each stage
individually (as used in previous work [34]) can lead to
significant inaccuracies in some stages (note that using
max instead of average also leads to similar inaccuracies).

Data-Dependent Activities. Once the baseline am-
plitude is measured, the next step is to find how this
amplitude changes as the number of bit-flips changes
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Figure 3: Effect of the activity factor on the am-
plitude. The actual signal shown in green. The
simulation is shown in black when activity factor
is modeled using a linear regression model (top)
and when an average activity is used (bottom).

due to value/operand used in the instruction and the
previous state of the bus/register. Intuitively, the more
bit-flips, the higher the amplitude should be thus we
define activity-factor, α, as a scaling factor to the
baseline activity, A. To find α, we first treat each bit-
flip equally, and assume that each bit-flip has similar
effect on the signal amplitude. We then calculate α as:

α = 1 +
(flipsnew − flipsbase)

flipstotal
, (7)

where flipsnew is the total number of flips for the current
instruction, flipsbase is the total number of flips when
previous instruction is NOP, and flipstotal is the maxi-
mum possible number of flips for the current instruction.
Using this equation, we then define A′ = α×A, and use
it to simulate the signal. Figure 3 (bottom) shows the
original signal (shown in light green), and the simulated
signal using this approach (shown in black) for the sim-
ilar NOP→ inst→ NOP instruction sequence discussed
in the previous section. As can be seen in the figure
(bottom), this “averaging” modeling can not accurately
predict the amplitude of the signal which indicates that
not all the bit-flips have the similar impact on the am-
plitude. Our further investigation confirmed this theory.
Particularly, we found that flips in the output of the
ALU and memory have the most significant impacts on
the signal. We believe this difference is mainly due to
the different physical parameters of transistors and/or
lengths of the connecting wires. Using this observation,
to systematically calculate the activity factors for each
stage, we use a linear regression model:

α = δ + T × c+ ε, (8)

where T is a vector of transition bits across all the
existing registers in the targeted pipeline stage, δ and
ε are the vector of scalar intercept and error terms
respectively, c is the vector of activity factors to be
predicted by the model. As mentioned before, α is the
scaling factor for the baseline amplitude, A, thus α =
Ameas/Asimul. Note that to find T , a detailed micro-
architecture model is needed to track all the bit-flips
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Figure 4: An example of how individual sources
(pipeline stages) are combined to form the final
signal. Top: how the actual EM signal looks like
when the instructions are executed in isolation
(NOP, inst, NOP). Bottom: The actual EM sig-
nal when the instruction sequence is NOP, ADD,
SHIFT, NOP (i.e., a combination of multiple in-
struction in the pipeline).

for every gate in the processor (except cache/memory).
However, to significantly reduce the complexity and
simulation time, the size of T can be reduced using the
step-wise regression method [43] where, iteratively, the
size of the fitted model (i.e., α and T in our case) is
reduced using standard statistical metrics such as F-
tests [43]. In other words, since not all the bit-flips have
statistically significant impact on the emanated signal,
the non-contributing factors can/should be removed
from the model. In our processor, using this method we
managed to reduce the size of T by more than 65%.

Figure 3 (top) shows the simulated signals when the
linear regression (LR) model is used for activity factors.
Compared to the averaging method (bottom), using LR
has significantly improved the simulation accuracy.

3.3 Multi-Input Modeling
Once the signal amplitude for individual sources are

calculated, the next step is to combine the signals gener-
ated by these individual sources to create the simulated
EM signal. In principle, the generated EM signal is
the superposition of individual waves thus depending on
each source’s phase, the superposition of each pair can
be either constructive or destructive. Using this fact, the
overall signal can be approximated as a linear combi-
nation of these individual sources where the coefficients
may vary between ±1, depending on the phases.

Due to the complex nature of the generated EM sig-
nals, accurately modeling each and every source mathe-
matically is significantly time-consuming and often in-
feasible in practice. To tackle this problem and find
coefficients for each source, a model-fitting approach
can be used. We use a linear-regression model to find
(predict) the overall EM signal. Specifically, we use:

X = δs + (αA)×M + εs, (9)

where αA is the vector of individual sources amplitudes
(α is the activity factor and A is the baseline amplitude),
δ and ε are the intercept and error vectors, M is the
predicted coefficients, and X is the final amplitude which
will be used in Equ. 6 to simulate the signal.
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Stall Cycles

Figure 5: Effect of stalls on the signal. The ac-
tual signal shown in green, while simulated sig-
nals are shown in black when modeling pipeline
stalls (top) and not modeling it (bottom).

Figure 4 shows an example of how two individual
sources are combined in each cycle to form the final
signal. Figure 4 (top) shows ADD and SHIFT instructions
when they are executed in isolation (i.e., NOP, inst,
NOP), and Figure 4 (bottom) shows how the final sig-
nal looks like when the executed sequence is NOP, ADD,
SHIFT, NOP. Specifically, cycle 6 is when the ADD in-
struction is in WB stage and SHIFT is in MEM, and the
resulting signal is a linear combination of these two
sources. Note that to find M , we need to measure all
the possible combinations of the entire instructions in
the ISA, however, as we will show in Section 5, the
number of required measurements can be significantly
reduced using standard clustering algorithms.

4. MODELING MICRO-ARCHITECTURAL
EVENTS

The last step of simulating an EM side-channel signal
is adding the signatures of different micro-architectural
events to the signal. We particularly add the signatures
of the following three events to the signal:

Pipeline Stall. Stalling is a common event in a proces-
sor which prevents successor instructions from advanc-
ing in the pipeline and preserves the instruction and
operands in the stalled stages. Due to this preservation
no bit-flips occur in the stalled stages. In addition, to
save power, a control signal is typically used to disable
(e.g., through power-gating) hardware components in
the stalled stages. As a result, stalling typically has
a dramatic impact on the switching activities of the
stalled stages and, consequently, results in a significant
reduction in the amplitude of the generated side-channel
signals. Figure 5 shows the effect of stalling on the signal
where a MUL instruction has stalled the pipeline for eight
cycles (we intentionally increased the stall cycles in MUL
for clarity). As can be seen from the figure, not prop-
erly simulating stalls (bottom) results in a significant
deviation from the original signal (shown in light green).

Note that stalling does not have any impact on prior
instructions thus they still generate side-channel signals

Figure 6: Effect of cache-miss (left) and cache-
hit (right) on the signal. Miss causes two extra
stall cycles. The actual signal (light blue) and
simulated signals (black) with (top) and without
(bottom) modeling cache misses are shown.

as they advance through the pipeline. Thus during the
stall, the received side-channel signal is only generated
by the instructions in the non-stalled stages (if any).

To properly model stalling, the simulator should be
able to detect when stalls are happening (using the
micro-architecture model), and ignores the signals gener-
ated by the stalled stages during the stall phase. In our
model, this is done by setting the amplitudes of stalled
stages to zero in Equ. 9.

Cache miss. Similar to pipeline stalls, due to a data-
dependency, cache miss can also cause stalls. In our
design, accessing the cache stalls the pipeline for one
cycle. Further, cache miss and access to the memory
causes extra two stall cycles. These two signals and
their difference is shown in Figure 6. As can be seen in
the figure, two extra stall cycles (total of three) can be
seen in the LD instruction. Similar to stalls, the cache
activity should be properly simulated using the micro-
architecture model. Figure 6 illustrates how without
properly modeling the cache misses the simulated signal
will be deviated from the original signal (bottom left).

Misprediction. In addition to stalls, we observed that
branch misprediction also has noticeable impact on the
side-channel signals. Depending on the pipeline design,
the correct outcome of a branch instruction can be re-
solved after a few cycles (2 cycles in our design), and if a
misprediction is detected, the processor has to flush the
incorrectly fetched instructions, and begin executing the
correct ones after that. In order to do that, processors
typically substitute the incorrect instructions with NOP
instructions. It is expected that executing these bubble
instructions temporarily changes the side-channel sig-
nals since they change the switching activities of each
stage. Figure 7 shows the received EM signals with and
without a misprediction along with instructions present
at each cycle in each pipeline stage.

Similar to pipeline-stall, using the micro-architecture
model, mispredictions can be detected and simulated in
our simulator. It is important to mention that we also
studied the impact of using different branch-predictors
on the side-channel signals (e.g., always not-taken, 2-
level, g-share, etc.) and we did not observe any sta-
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Figure 7: Effect of misprediction (right) on the
signal. It causes two instructions being flushed
from the pipeline and hence affect the signal in
those cycles.

tistically significant difference between these predictors
mainly because they have relatively small switching ac-
tivities (especially for low-end processors).

It is also important to mention that we tested the
effect of other micro-architectural events such as data-
forwarding on the signal and did not observe any signifi-
cant difference in the presence and/or absence of them.
Also note that, as we mentioned before, in this paper,
we limited the modeling to bare-metal, and left system-
level activities modeling such as interrupts, exceptions,
context-switch, etc. to future work.

5. EVALUATIONS
We divide our evaluations into two main parts. First

to show the correctness, accuracy, and robustness of our
simulator, we present our experimental evaluations on
how well the simulated signal matched with the original
side-channel signal generated by the target hardware for
ALL possible combinations of the instructions. We then
explore the impact of variations such as manufacturing,
environmental, etc. on the accuracy of EMSim.

The second part of our evaluations (presented in §6)
is focused on the EMSim use-cases and its application
in different domains such as security, debugging, etc.

5.1 Evaluating Model Accuracy
Setup. We implemented a RISC-V based processor on
a Terrasic DE0-CV board with an Altera Cyclone-V
FPGA [44] with 50 MHz clock-rate. To record side-
channel signals, we used a Keysight digital oscilloscope
(DSOS804A), with 1 GHz bandwidth and 10 GSa/s
rate. We further studied the effect of changing the
sampling-rate on the accuracy and found that similar
accuracy can be achieved with much lower sampling-
rate (about 200 MHz in our measurements). As a result,
similar results can be achieved using a less expensive de-
vice (e.g., TBS1032B Tektronix Digital Oscilloscope [45]
costs around $300) and/or a high sampling-rate device
can be used for modeling devices with faster clock-rates.
To receive EM signals, we used a magnetic probe [46],
placed 5 cm above the FPGA. Signal processing is done
in Matlab2017-b and the simulator is implemented in
standard C++ programming language.

Model Building. In §3, we discussed that in order

Cluster Type Inst. No. Inst.

1 ALU ADD,XOR,JAL, ... 13
2 Shift SLLI,SRT, SRA, ... 10
3 MUL/DIV MUL, DIV, REM, ... 8
4 Load LB, LW, LH, ... 5
5 Store SB, SH, SW 3
6 Cache LB, LW, LH, ... 5
7 Branch BEQ, BLT, BGE, ... 6

Table 1: RISC-V (R32IM) instruction-set and
their cluster used in this paper.

to fit a model, ALL possible combinations of instruc-
tions should be measured (i.e., about three hundred
million combinations in RISC-V ISA). Clearly such a
requirement makes the model building extremely time-
consuming in practice. However, intuitively, we ex-
pect instructions with similar behaviors (e.g., ALU-type,
memory-type, etc.) have similar side-channel signals
since they share identical hardware activities. Using
this intuition, we used the hierarchical agglomerative
algorithm [47] with the cross-correlation as the distance
metric to cluster instructions with similar EM pattern
into a same cluster. We found that RISC-V ISA can
be clustered into 7 categories (when the operands are
similar) where a single instruction in each category can
be a representative of all instructions in that category.

These categories are shown in Table 1. Using this ta-
ble, we then used only the representative instruction of
the cluster for model building which, in turn, reduce the
model building complexity significantly. In our setup,
the number of measurements was reduced from 300 mil-
lion to only 16 thousands. Note that while the clustering
algorithm did not use the micro-architecture model as
a prior knowledge, the clusters confirmed that instruc-
tions with similar micro-architecture activities should
be clustered in a same group.

Results. To prove that our approach provides accurate
simulated signals for ALL possible instruction combina-
tions thus can be applicable to ANY complex program
that uses the mixture of the implemented ISA (R32IM),
we created a microbenchmark using all possible combina-
tions of the representative instructions shown in Table 1.
Particularly, for a 5-stage pipeline and 7 distinct clus-
ters, there are 75 = 16807 possible combinations that
can appear together (in the pipeline) in a cycle. We
created a program to generate all these combinations
with random operands. We then manually modified
branch instructions and assigned the target address and
branch condition to create loops with random instruc-
tion and iteration sizes. To limit the execution time, we
then randomly put these instructions into groups of 1024
combinations (i.e., 5120 instructions in each group which
were executed one after another similar to a real pro-
gram). To cover all the combinations, 17 of such groups
were needed (no two groups were similar). We then exe-
cuted these randomly-generated groups on the processor
normally, and recorded the real and simulated signals.
To further prove the validity and correctness of our sim-
ulator, we also randomly created another 17 groups, this
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Figure 8: A comparison between the signal gen-
erated by a real hardware (top) and the simu-
lated signal (bottom) in EMSim.

time from all instructions in the ISA and not just the
representatives. Using these 34 groups/applications, we
then compared the simulated signals with the actual ones
using the normalized cross-correlation method. Each
group/application takes about 9000 cycles to finish on
average. The execution-time varied depending on the
instructions used and microarchitectural events.

Figure 8 shows the simulated and actual EM-side-
channel signals for one of the groups tested in our evalu-
ation (for clarity, only the first 50 cycles are shown in the
figure). As can be seen from the figure, the simulated
signal matches the real signal with high accuracy. We
found that, on average, EMSim has about 94.1% ac-
curacy in simulating side-channel signals across
all possible instruction combinations.

5.2 Manufacturing Variability
To investigate the impact of manufacturing variability

on the model’s accuracy, i.e., to determine if training
is needed for each physical instance of a (same) device,
we repeated our measurements for three physical in-
stances of the Terrasic development board. We then
compared the signals received form each device using
the normalized correlation method. We observed that,
for each cycle, the signals for board #2 and #3 are
slightly shifted (compared to the board #1), mainly due
to the slight shift in the actual clock frequency of the
boards. However, we found that such a shift has no
statistically significant impact on the accuracy.

In general, it is important to mention that while a shift
in the clock frequency could cause the side-channel signal
to be scaled in each cycle (depending on the amount of
the shift), we observed that this scaling has (almost) the
same impact (in terms of shape and amplitude) on all
the instructions thus, effectively, makes the true mutual
information unchanged.

5.3 Board Variability
To study the effect of board variability, mainly the

effect of CMOS technology and board design on the
signals, and further evaluate the model accuracy on
boards with different manufacturing conditions, we used
two other boards: a Terrasic DE1 board with an Altera
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Figure 9: Effect of distance on the signal ampli-
tude. For both figures, the plots with darker
color correspond to reconstructed signal, and
the other ones correspond to the original signal.

Cyclone-II FPGA [48] and a Digilent ARTY board with
a Xilinx Artix-35T FPGA [49] (both clocked at 50MHz).
We then repeated the measurements described in §5.1
for these two new boards and found that, using the
same processor design and applications, to correctly
model the signal both A and c parameters (cf. Equ. 9 in
§3.3) should be retrained to achieve the similar accuracy.
Other parameters such as M remained the same since
the position of the antenna and the physical and logic
design of the processor stays the same. We envision that
for different designs, the baseline amplitude and activity
factors should be re-trained (only once) and then can be
included by the developers as a library (similar to that
of for other properties such as power, timing, etc.).

5.4 Effects of Distance
Transferring the ideas from communication theory

literature, to find the effect of the distance (i.e., the posi-
tion of the probe and its distance to the center of borad)
on each source, a parameter, called loss-coefficient or
β, can be considered as the channel coefficient of a flat-
fading channel. Here, we need to note that, regardless
of the position of the probe, the baseline amplitude, A,
can not be measured solely because we do not have any
control on the power distribution of the board for each
instruction at each pipeline stage. Hence, the resulting
signal power is always a combination of the actual signal
amplitude and the corresponding loss coefficient (i.e.,
Aβ). However, to deal with this problem, we choose
the probe’s location at the center of the processor as
the base point, and define β0 as the loss coefficient at
this point. Further denoting A0 is the actual emanated
signal amplitude, we assume the amplitude of the signal
can be written as A = A0β0 with respect to the base
point. Therefore, with these assumptions, β is assumed
to be one for all the measurements done in this paper.

To further investigate the effect of β on the amplitude,
we measured the signal (with the same input trace)
at a different location, and compared the results with
the base case. Figure 9 illustrates the effect of the
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antenna location on the loss coefficient factor β. Here,
the training signals for the reconstruction are obtained
from the base measurement, and the figure at the bottom
is obtained by neglecting the effect of β (i.e., β = 1)
during the simulation. The figure at the top is generated
by solving the same linear regression model given in
Equ. 9 this time by substituting A by Aβ, where β is
not constrained to one (while A is the signal obtained
in the base case). We can conclude that considering
the effect of β is crucial to explain the changes due to
antenna location since better correlation and root mean
square (RMSE) results are obtained with the adjusted β.
Note that, adjusting the β is only required during the
model building (i.e., during measurements if the position
of the probe changes), however, the user of the tool
does not require to change/adjust β for his/her leakage
estimation and can use the base case or numerous cases
(depending on the availability) to obtain an “average”
leakage estimation, or “worst” case for β = 1.

6. PRACTICAL USE-CASES FOR EMSIM
In the previous section, we showed EMSim’s abil-

ity in accurately modeling all possible combinations of
instruction in RISC-V ISA. We also demonstrated its
robustness against different sources of variability. In this
section, we present various use-cases for EMSim.

6.1 Side-Channel Leakage Estimation
An important step for defending against side-channel

attacks (SCA) is estimating how much (sensitive) in-
formation can be possibly leaked (through a specific
or set of side-channels) during the execution of an ap-
plication. To estimate this leakage, different metrics
can be used. Particularly, for EM side-channels the
state-of-the-art methods are Test Vector Leakage Assess-
ment (TVLA) [50,51] and Signal Available to Attacker
(SAVAT) [33] methodologies.

Due to the lack of simulation tools, to properly calcu-
late these metrics, several actual measurements should
be performed. Unfortunately, these measurements often
require sophisticated equipment and experts with various
skills which, in turn, makes them expensive and diffi-
cult in practice. Using our approach, however, we show
that EMSim is capable of generating highly-accurate
simulated signals which can be used to calculate these
metrics precisely which eliminates the need for an actual
measurement infrastructure.

The following describes how EMSim can be used to
model TVLA and SAVAT. It is important to mention
that unlike prior work [34, 35, 52, 53], EMSim is NOT
limited to a specific metric or analysis, and it can be
used for ANY analysis based on the EM signal.

Test Vector Leakage Assessment (TVLA). This
metric is based on the T-test statistical test which de-
termines if there is a significant difference between the
means of two groups, which may be related in certain
features. In the context of SCA, TLVA shows how much
the side-channel signal (e.g., EM) is correlated with spe-
cific values in the code. The values can be either some
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Figure 10: AES-128 leakage assessment using
TLVA methodology on the measured/actual sig-
nal (top) and the simulated signal (bottom).

known intermediate nodes (e.g., the output of Sbox in
AES) or more generally, some fixed (or semi-fixed) input
parameters of a specific function. If the metric exceeds
a threshold (i.e., a confidence value in the statistical
test), it indicates that there is a (potential) leakage for
an SCA such as DPA [54,55], template attacks [6], etc.

To compare the accuracy of TLVA metric based on
the measured vs. simulated signals, we ran AES-128
on our RISC-V processor. We then used our setup de-
scribed in §5.1, to measure the signal. Figure 10 shows
these measurements for the real signal (top) and the
simulated signal (bottom). As can be seen from the
figure, the TLVA metric based on the simulated signal is
highly matched with the real measurement and follows
the same pattern (and values) as the actual one (i.e.,
no-activity→high→low→no→medium sequence).

Signal Available to Attacker (SAVAT). This met-
ric measures the side-channel signal created by a specific
single-instruction difference in program execution, i.e.,
the amount of signal made available to an attacker who
wishes to decide whether the program has executed in-
struction/event A or instruction/event B.

To measure this metric, Callan et al. [33] developed a
microbenchmark which creates a controlled alternation
between A and B instructions many times. Such alter-
nation creates a periodic signal with period tp = tA+ tB ,
where for the half of the period A is executing and for
the other half B. Such a periodic activity can then be
observed in the frequency domain as a spike at fp = 1/tp.
The key insight is that the corresponding energy of the
spike (i.e., area under the curve) indicates how different
A and B are from each other (in terms of side-channel
signals) hence reveals how much signal would be avail-
able to an attacker when the difference between two
samples is whether A was executed or B.

To compute SAVAT in both real measurements and
simulated signals, we implemented the microbenchmark
proposed by Callan et al. [33], and used the setup ex-
plained in §5.1 to collect the signals. Table 2 shows
SAVAT values in our processor for 6 pairs of instructions.
As can be seen, the values retrieved from simulations are
highly matched with the values computed using the real
measurements. SAVAT can then be utilized to reveal
the information leakage capacity of the system [56].
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LDM LDC NOP ADD MUL DIV
R S R S R S R S R S R S

LDM 0.02 0 3.71 3.91 5.34 5.32 5.24 5.20 5 5.02 4.98 4.98
LDC 3.72 3.91 0.04 0 0.81 0.85 0.74 0.74 0.21 0.24 0.21 0.23
NOP 5.35 5.32 0.8 0.86 0.01 0 0.08 0.1 0.67 0.69 0.66 0.69
ADD 5.24 5.20 0.74 0.75 0.07 0.1 0.03 0 0.98 1.05 1.03 1.1
MUL 4.98 5.01 0.22 0.21 0.66 0.68 0.94 1 0.03 0 0.04 0.01
DIV 4.97 4.99 0.21 0.21 0.65 0.68 1.05 1.13 0.03 0.01 0.02 0

Table 2: Signal Available to Attacker metric [33] for Real measurements (R) and Simulations (S).
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Figure 11: A case-study to show how EMSim
can be used for debugging. The measured sig-
nal (top) does not match with the reference
model obtained by the simulation model (bot-
tom) which indicates that there is a potential
error/issue in the hardware.

6.2 Application to Debugging/Profiling
While so far we have shown how EMSim can be uti-

lized to accurately model EM side-channel signals and
thus can be used for leakage estimation during develop-
ing secure software, in this section, we present another
potentially useful use-case of EMSim and show how hard-
ware designers and computer architects can also leverage
this framework during hardware development.

Given that EMSim can accurately model the system
for each pipeline stage and each micro-architecture event,
it can potentially be used as a debugging tool in the
chip-design flow such as a debugging tool for finding
design bugs in post place&route stage and/or for find-
ing manufacturing bugs/defects in post-fabrication. In
contrary with signal modeling, in this scenario, the sig-
nals simulated by the simulator can be assumed as the
“ground-truth” or “expected” signal where the signals
emanated by the hardware have to be matched to these
reference models. A deviation from the reference model
obtained by the simulations indicates that there is an
unwanted change/error in the hardware.

The main advantage of this approach compared to
existing standard testing methods is that the proposed
approach is zero-overhead and does not require any
testing infrastructure on the system which, in turn, saves
a significant amount of area and reduces complexity.

To further demonstrate the feasibility of this approach,

Figure 11 shows a scenario where there is a bug in design-
ing a multiplier in the Execution stage. The multiplier is
designed such that it calculates the result of multiplying
two 16-bits operands in three cycles where the majority
of the activity (i.e., writing the output register, etc.)
takes place in the last (third) cycle. However, as seen
from the figure, the amplitude of the measured signal
(top) in the third cycle of the execution (shown in a red
circle) is significantly lower than that of in the simula-
tion (bottom). Further investigation reveals that instead
of properly multiplying two 16-bits data, the designed
multiplier only uses the lower half (i.e., 8-bit data) of
each operand and ignores the upper half of those inputs
hence results in a significantly lower activity factor and
thus much smaller signal strength.

7. RELATED WORK
Much work has been done to prevent particular side-

channel attacks [2, 32, 57, 58, 59, 60, 61], either by re-
moving the tie between sensitive information and the
side-channel signal, or by trying to make the signal more
difficult to measure. However, such work mostly focuses
on preventing a particular side channel attack in a very
specific piece of code and are less focused about the fun-
damental relationship between the hardware, software,
and the side-channel signal.

Strategies for quantifying potential side channel expo-
sure at the micro-architectural and architectural levels
are still an open problem. Existing work proposed differ-
ent methods and/or metrics to estimate the leakage ei-
ther for a specific type of side-channel (e.g., cache, power,
EM, etc.) or alternatively, as a generic framework to
estimate the overall leakage for any given side-channel.

Side-Channel Vulnerability Factor (SVF) [32] mea-
sures how the side-channel signal correlates with high-
level execution patterns (e.g., program phase transitions).
While this metric allows overall assessment of the “leaki-
ness” of a particular system and application over a given
side-channel, it provides limited insight to 1) computer
architects about which architectural and microarchitec-
tural features are the strongest leakers, and to 2) soft-
ware developers about how to reduce the side-channel
leakiness of their code.

To address these limitations, Signal Available to At-
tacker (SAVAT) method [33] was proposed. SAVAT mea-
sures the side-channel signal (particularly EM and power
from laptops) created by a specific single-instruction dif-
ference in program execution, i.e., the amount of signal
made available to a potential attacker who wishes to de-
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cide whether the program has executed instruction/event
A or instruction/event B. These measurements can be
used to determine the potential for information leak-
age when execution of individual instructions or even
sections of code depend on sensitive information. Unfor-
tunately, SAVAT only models the system at ISA-level
and ignores the underlying relation of each instruction
to the hardware or other instructions in the sequence.

Similar to SAVAT, McCann et al. [34] proposed a mod-
eling technique capable of producing a leakage metric
at instruction-level for power (and/or EM) side-channel
signals on ARM M0/M4 cores. To estimate the leakage
for individual instructions, the proposed method only
requires knowledge about different characteristics of the
system at ISA-level such as data-dependent effects of
neighboring instructions in a sequence, register effects,
bit-flips, etc. Similar to SAVAT, while the method pro-
posed by McCann et al. [34] provides interesting insights
about possible sources of leakage, it also ignores the
effects of micro-architecture events such as cache miss,
branch mis-prediction, etc. on the signal which, as shown
in this paper, may lead to making wrong conclusions
about the leakage model of the software/system.

Another related work to EMSim is the method pro-
posed by Barenghi and Pelosi [35] where the leakage
for individual instructions was calculated by measur-
ing the power consumption between two consecutive
cycles and employing the Pearson correlation coefficient
between the two measurements. To calculate the leak-
age, in addition to leveraging the ISA-level informa-
tion, pipeline model was also used. However, the frame-
work did not consider any micro-architecture events, nor
pipeline stalls and only accounts the number of cycles
that takes for each instruction to execute. It also did not
model the individual effect of each stage on the others
and the overall signal. In this work, however, we took a
more systematic and accurate approach by considering
different micro-architecture events and hardware effects.

Also related to this work are work on leveraging
EM signals for profiling [28, 62, 63]. Spectral Profil-
ing [62] compares short-term spectra of EM emanations
to those obtained during training to recognize which
loop-granularity region of code the signal corresponds
to. EMPROF [63] analyzes the system’s EM emana-
tions to identify processor stalls that are associated with
last-level cache (LLC) misses. Compared to these frame-
works, instead of leveraging the existing EM side-channel
signal for profiling, our work takes a more holistic ap-
proach and systematically models the underlying relation
between the software and hardware and provides insights
on how and why these EM side-channel signals are cre-
ated due to a variety of micro-architectural and hardware
activities. Using this approach, EMSim can be used for
a variety of purposes beyond only for program/memory
profiling (e.g., hardware modeling, leakage estimation,
compiler development, etc.).

Another body of work related to this paper are the
cycle-accurate models/tools to simulate power and/or
microarchitecture [12,13,14,15,16,17,18,19]. While these
models can accurately model the power consumption at

each cycle, they are different from this work and hence
may not be a proper tool for simulating EM side-channel
signals for two main reasons: First, while these methods
do consider the activity factor to calculate power, they
often treat all the bit-flips equally. However, as shown in
this paper, depending on the design, not all flips equally
contribute to the overall signal. Ignoring this fact can
lead to inaccurate modeling (see Figure 3). Second,
depending on the architecture, different stages might
have different effect on each other and the overall signal.
Without properly modeling these effects, the overall
signal can not be modeled (see Figure 9).

Loosely related to our work are methods for instruc-
tion tracking/intrusion detection based on side-channel
signals [64,65,66,67]. These methods often use different
signal processing methods (e.g., Markov Model, Statis-
tical tests, etc.) and/or machine learning techniques
to find the most likely executed instruction based on
the side-channel trace. While they are effective in pro-
viding a non-intrusive, zero-overhead method for profil-
ing/intrusion detection, they are not designed to model
the signal and/or provide any information or insight
about how these signals are generated.

8. CONCLUSIONS
This paper presented EMSim, an approach that en-

ables simulation of the EM side-channel signals cycle-
by-cycle using the detailed micro-architectural model
of the device. To evaluate EMSim, we compared its
simulation-derived signals to signals measured from real
hardware and found that they match very closely. To
gain further insight, we also experimentally identified
how the accuracy of the simulated signals degrades when
key micro-architectural features and other hardware be-
haviors are omitted from the simulation model.

We envision a variety of uses for EMSim. For hard-
ware, software, and compiler developers, it allows EM
leakage to be quantified without having to build actual
hardware and/or actually measure signals. More impor-
tantly, it allows simulated signals to be broken down and
attributed to specific parts of the hardware design and
program code. Furthermore, when hardware prototypes
are available, significant discrepancies between the signal
generated by EMSim and actual EM emanations can
be used to identify where the actual hardware design
differs from the simulated microachitecture, which can
be used to debug the hardware and/or to help refine the
simulation model to more closely match the hardware.

To extend EMSim to simulate more complex proces-
sors, we believe similar multi-input-single-output method-
ology can be used, where each pipeline stage acts as a sin-
gle source. For out-of-order processors we expect higher
baseline hardware amplitude for each stage (specifically
fetch and decode due to the more complex hardware
design of these stages). We also expect different values
for activity factors and coefficients for individual stages.
However, given that regardless of the implementation,
the root cause of creating side-channel signals are bit-
flips at the gate-level, we do not expect any fundamental
modeling difference between in-order and OoO designs.
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(T. Güneysu and H. Handschuh, eds.), (Berlin, Heidelberg),
pp. 207–228, Springer Berlin Heidelberg, 2015.
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