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ABSTRACT

In this paper, we propose a methodology to identify both the
brand of a cell-phone, and the status of its camera by exploit-
ing electromagnetic (EM) emanations. The method composes
two parts: Feature extraction and Convolutional Neural Net-
wotk (CNN). We first extract features by averaging magni-
tudes of short-time Fourier transform (STFT) of the measured
EM signal, which helps to reduce input dimension of the neu-
ral network, and to filter spurious emissions. The extracted
features are fed into the proposed CNN, which contains two
convolutional layers (followed by max-pooling layers), and
four fully-connected layers. Finally, we provide experimental
results which exhibit more than 99% classification accuracy
for the test signals.

Index Terms— Security, Classification, Convolutional
Neural Network, Electromagnetic Emanations

1. INTRODUCTION

A side channel is an unintentional source of information
which can leak confidential data [1]. Many attacks have been
performed to exfiltrate sensitive information by exploiting the
emanations. These attacks, called side channel attacks, are
established on systematical changes while executing a script,
a program, etc. Some examples of these attacks exploit dis-
tinct features while signing different bits of a cryptosystem,
and are based on temperature [2, 3], timing [4, 5, 6], cache-
misses [7, 8], acoustic signals [9], and power consumption
[10, 11]. These attacks either require direct access to the tar-
geted device or have a limited bandwidth. However, attacks
based on EM emanations require only close proximity [12].
Moreover, they can take advantage of larger bandwidth which
can result in higher throughput [13, 14].

The potential of the EM based side channel attacks is
demonstrated by Eck [15] and Kuhn [16] when they recon-
struct images on a video display unit by capturing the em-
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anated EM signals from some distance. Although these ad-
vancements are made by experimenting on relatively simple
devices, they have motivated researchers to monitor different
units of more sophisticated devices. Detecting the current sta-
tus of a camera could be a very good example for monitoring
relatively more complex devices because many public places
enforce no camera policy, i.e. museums, cinemas, theaters,
etc. However, easy access to cameras through smartphones
make the policy enforcement much more difficult. To ad-
dress this issue, a supervised learning model which utilizes
k-Nearest-Neighbor algorithm is proposed in [18] to classify
phone status only when its camera is active. In this paper,
we propose a methodology to classify the phone brand and
status of a camera even when the camera is inactive. The
method contains two modules: Feature extraction and CNN
model. We first extract features by averaging STFT outputs
of the measured signal, and then utilize these features in the
proposed CNN model. We demonstrate that classification for
the test measurements exceeds 99% accuracy rate.

The organization of the paper is as follows: In Section 2,
we explain the feature extraction method and introduce the
CNN model, Section 3 provides the experimental results and
discussion, and conclusions are drawn in Section 4.

2. METHODOLOGY FOR PHONE BRAND AND/OR
CAMERA STATUS IDENTIFICATION

As the mobile devices get more complex, exfiltrating infor-
mation becomes more challenging because of higher operat-
ing clock frequency, coupling of emanated signals from var-
ious components, etc. It has been shown that there are many
sources in a smartphone which can leak information [17]. In
this respect, we investigate different patterns in the frequency
domain when the status of a camera changes. An example
of the received signal is given in Fig. 1 for the cases when
rear-camera is on, front-camera is on, and both cameras are
off. One of the main observations is that some frequency
components are activated when the cameras are active. More-
over, the activated frequencies are different for rear and front
cameras. However, the last observations could be misleading



since it is shown that the same frequency components are acti-
vated for both rear and front camera activities in some devices
[18]. The first approach that comes into mind is to track the
frequencies which are activated when cameras are on. This
approach can be inefficient as the sample size increases, and
can cause loss of buried information existing in the measured
signal. Moreover, it is almost impossible to differentiate dis-
tinct phones when both cameras are off.
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Fig. 1. Spectrogram of the received signal when the camera is
idle, rear camera is active and front-camera is active for ZTE.

To obviate the difficulties, we first need to extract fea-
tures that can be utilized to cluster existing classes in the
measured data. However, measurements that are obtained
by measuring devices with high sampling rates are generally
very large, and contain many frequency components which
are not relevant to camera activity. To decrease the dimen-
sion of the input signal and weaken the undesired frequency
components due to other sources, we apply STFT averaging
introduced in [18]. Let TM and TS be the measurement and
sampling time of the measuring device, respectively. There-
fore, the number of samples taken for each measurement can
be written as IS = TM/TS . Assuming OS is the number of
non-overlapping samples between consecutive STFT opera-
tions, the total number of STFT operation can be written as
Ξ = floor ((IS −F) /OS + 1) where F is the FFT size
for the STFT window. Therefore, the input vector mi for the
ith measurement after feature extraction can be written as

mi[k] =

Ξ∑
n=1

∣∣Xi
n[k]

∣∣ (1)

where k ∈ {0, 1, · · · ,F − 1}, and

Xi
n[k] =

F−1∑
ξ=0

Θi [ξ + (n− 1)OS ] exp (−j2πkξ/F) (2)

where Θi is the measured raw signal. After extracting the
features, our next goal is to classify the signals as accurate as

possible. In this respect, we propose to utilize a CNN model
given in Fig. 2.
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Fig. 2. CNN model for classification of camera status and
phone brand.

The model contains two convolutional layers and four
fully connected layers. Each convolutional layer is followed
by a max-pooling layer. The kernel size of the max-pooling
layer is set to 10 with stride of 10. The stride for the con-
volutional layers is kept as one while the kernel size is 10.
The input size for the CNN model is equivalent to F because
mi is the vector containing the extracted features from the
measurements. Dense layers are followed by a ReLU layer
except the output layer, where we apply softmax function.
The size of the output layer is set based on the number of
considered clusters.

3. EXPERIMENTAL RESULTS

The last step is to validate whether the feature extraction
method and the proposed CNN model can cluster existing
classes accurately. For that we first introduce the experimen-
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Fig. 3. Experimental setup for measurements.

tal setup given in Fig. 3. We use a signal analyzer (Keysight



MXA N9020B), and a near-field magnetic probe (AAronia
PBS H2) which is placed on top of the rear camera. The con-
sidered phones are ZTE ZFive with 1.4 GHz clock frequency
(Quad-Core), Alcatel Ideal with 1.1 GHz clock frequency
(Quad-Core), iPhone SE with 1.85 GHz clock frequency
(Quad-Core), and Samsung Centura with 800 MHz clock fre-
quency (Single-Core). The received signal is downconverted
by 990 MHz and the bandwidth is set to 30 MHz.

Before demonstrating the experimental results, we pro-
vide the steps that we follow to cluster the brand and the cam-
era status of a phone:

• Collect the training signal for TM seconds for each
phone and camera status with the experimental setup
given in Fig. 3. Set the sampling rate of device, TS ,
and the considered bandwidth to be the same for all
measurement to prevent any inconsistency.

• Determine the FFT size and apply the feature extraction
method described in Section 2.

• Modify the output layer of the CNN model so that the
number of nodes is equivalent to the number of distinct
training classes.

• Train the CNN model by utilizing softmax as the loss
function of the model.

• Collect new signals to test the trained model.

We first investigate whether differentiating the status of
the camera of a given phone is possible. We collect 200 sig-
nals for any camera status. Half of the measurements are kept
for testing. We set TM and TS as 0.5 ms and 1.3× 10−5 ms,
respectively. The number of non-overlapping samples, OS ,
and FFT size, F , are selected as 256 and 4096, respectively.
These parameters are also used in the rest of the paper unless
otherwise stated.

(a) (b)

Fig. 4. Values of output layer a) before, and b) after applying
softmax operation.

Since there are at most three possible outcomes for a given
phone, i.e., rear-camera is on, front-camera is on, or both
cameras are off, we set the size of the output layer as three.
We achieve 100% accuracy rate for each considered phone.

The outcome of the output layer for iPhoneSE is given in Fig.
4. In Fig. 4a, we plot the outcomes before applying soft-
max function, and in Fig. 4b, we plot the normalized out-
comes with softmax function. Each axis in these figures rep-
resents the outcome of the considered neuron. We observe
that although both figures demonstrate perfect clustering for
the camera status, the outcome of the softmax function makes
it clear why we achieve 100% accuracy rate for each consid-
ered phone.

Being motivated by the results of the previous experi-
ment, we modify the CNN model so that the classification of
the phone brands are possible irrespective of camera status.
The number of the output nodes is increased to four which is
equivalent to the number of the tested devices. The confusion
matrix for the testing measurements is given in Fig. 5. We
observe that there is only one inaccurate classification for the
testing signals. Here, we need to note that Samsung Centura
has only rear-camera, therefore, the number of test signals is
less than the other brands (100 testing signal is missing cor-
responding to the front-camera).

Fig. 5. Confusion matrix for the test data to classify the brand
of phones.

Brand classification results reveal that clustering the brand
even with no camera activity is possible. Therefore, the next
goal is to identify both the brand and camera status of the
measurements. In this regard, we first increase the node num-
ber of output layer to eleven (which is equivalent to the num-
ber of brand and camera status combinations). Compared to
the previous experiment, each class has the same number of
measurements for training and testing. The confusion matrix
for the experiment is given in Fig. 6. We observe that out of
1100 measurements only two of them are misclassified. One
of the inaccurate classification is when two phones are idle,
and the other one is when rear-camera or front-camera of the
same phone is active. Both errors are because of the high sim-
ilarity between the corresponding classes. For example, if we
consider Alcatel, we observe that the same frequency compo-
nents are activated with different power levels when rear or
front camera is active separately [18].

The inaccurate classification can be corrected if we in-



Fig. 6. Confusion matrix for the test data to classify both the
brand and camera status of phones.

crease training size or decrease the number of clusters. To in-
vestigate, we have disregarded the measurements correspond-
ing to idle status and work on the data that rear or front camera
is active, hence, seven different clusters. Again, we only mod-
ify the number of nodes at the output layer as seven. With the
modified network, we accurately label all test signals. Then,
we apply the same methodology only to the classes where the
phones are idle. However, we still obtain the same inaccu-
rate classification even with the reduced CNN model where
the output layer contains only four nodes. We provide all
the results for the experiments in Table 1 to demonstrate the
strength of the proposed methodology in this paper. Forth
column of the table contains the numbers of test data for each
experiment, and the fifth column presents the number of clas-
sification errors.

Table 1. Experimental Results for the proposed CNN model.
# of Phones Camera # of Test # of
Classes Data Error
3 Alcatel All 300 0
3 ZTE All 300 0
3 Samsung Rear & Idle 200 0
3 iPhone All 300 0

4 All Camera status 1100 1independent
11 All All 1100 2
7 All Rear & Front 700 0
4 All Idle 400 1

The proposed CNN model overcomes the difficulties
faced with the methodology given in [18] because differen-
tiating the brands of the phones is possible even when the

phones are idle. This is mostly because the proposed model
can reveal non-linear information embedded within the mea-
surement signals. Moreover, TM is ten times smaller which
shows that the proposed model is more resilient to the ir-
relevant frequency components because better classification
results are obtained in a shorter measurement period.

Finally, we investigate the effect of FFT size, F , and
number of training, T , on the accuracy rate of the pro-
posed model. We consider three different training lengths
where {T ∈ {10, 50, 100}}, and three FFT sizes where
{F ∈ {256, 1024, 4096}}. The experimental results with
different combinations of T and F are given in Fig. 7.

Fig. 7. Effect of FFT size (F) and training length (T ) on the
test accuracy.

We observe that the accuracy gets better as both FFT size
and the training size increase. Increasing the window size of
the STFT operation increases the resolution of the signal in
the frequency domain, therefore, it provides more informa-
tion to the proposed model. However, the effect of increas-
ing the window size degrades as the training length increases,
and vice versa. However, if both parameters are small, the
accuracy rate decreases dramatically. Hence, to obtain better
accuracy rates, a proper window size and training length have
to be selected.

4. CONCLUSION

A CNN model is implemented to identify both the brand of
a phone, and the status of its camera. Before feeding input
to the neural network, we extract features by averaging STFT
magnitudes of the measured signal, which helps to reduce the
input dimension of the neural network, and to filter spurious
emissions. The proposed CNN model contains two convolu-
tional layers, which are followed by max-pooling layers, and
four fully-connected layers. We achieve more than 99% clas-
sification accuracy in the test phase, and even perfect classifi-
cation when the camera status of a single phone is considered.
The results reveal the severity of leakages due to EM emana-
tions, hence, we believe some countermeasures are required
to develop to prevent attacks based on these information emis-
sions.
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[12] Alenka Zajić and Milos Prvulovic, “Experimental
demonstration of electromagnetic information leakage
from modern processor-memory systems,” in IEEE
Transactions on Electromagnetic Compatibility, Vol-
ume: 56, Issue: 4,, 2014, p. 885893.

[13] B. Berkay Yilmaz, R. Callan, M. Prvulovic, and
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