
Week 3 Document Submission

Jacob Dallaire

September 7, 2024

1. Paper
Xiao-Xiao Niu, Ching Y. Suen,

A novel hybrid CNN–SVM classifier for recognizing handwritten digits, Pattern

Recognition, Volume 45, Issue 4,2012, Pages 1318-1325, ISSN 0031-3203,

https://doi.org/10.1016/j.patcog.2011.09.021.

(https://www.sciencedirect.com/science/article/pii/S0031320311004006)

SUMMARY

The passage discusses a novel hybrid model that combines Convolutional Neural

Network (CNN) as a feature extractor and Support Vector Machine (SVM) as a

recognizer for recognizing handwritten digits. The hybrid model achieved high

recognition rates on the MNIST digit database, outperforming individual classifiers and

demonstrating improved accuracy and reliability in handwritten digit recognition tasks.

The study highlights the synergy between CNN and SVM in enhancing recognition

performance and reliability in pattern recognition applications.

2. Scripts
A script was begun to query the API to retrieve all image urls but was determined that

was not a viable solution due to rate limits. I found an export function on iNaturalist that

creates a CSV file of requested information. There is a 200,000 row limit per file but

multiple can be requested.

Using this CSV file I created the following script to query the open data aws bucket to

download all images onto my machine. Unfortunately, the runtime to download all

images is >18hours at time of writing. It will be necessary to multithread the script and

add a check for existing images in the save folder if a delta run is desired.

def download_images(filepath):

 df = pd.read_csv(filepath)

 taxon_i={}

 for index, row in df.iterrows():

 taxon_id = row['taxon_id']

 image_url = row['image_url']

 if not pd.isnull(image_url) and 'https://inaturalist-open-

data.s3.amazonaws.com/photos' in image_url:

 if taxon_id not in taxon_i:

 taxon_i[taxon_id] = 0

 taxon_i[taxon_id]+=1

 save_path =

f"{folder_path}/{taxon_id}/{taxon_id}_{taxon_i[taxon_id]}.jpg"

 os.makedirs(os.path.dirname(save_path),exist_ok=True)

 urllib.request.urlretrieve(image_url, save_path)

 if index%1000 == 0:

 print("In Progress")

 print("Done")

3. Documentation
Created export query on iNaturalist example structure:

Queryhas[]=photos&quality_grade=research&identifications=any&rank=species&tax

on_ids[]=36488,36391,36455 Columns id, license, image_url, taxon_id

Wrote a function to download and save all photos by the url provided in the iNaturalist

exported CSV. The script also creates a file structure to aid in the ease of labeling with

each taxon having its own folder.

4. Next Weeks Proposal

I will change my image download script to run in multiple threads as the current runtime is
far too long. I will also create a simple classifier using CNN architecture that I will work on
improving over the coming weeks.

Week 3 report

Ruiqing Wang | Lizard CV team

Time slot response:

§ What progress did you make in the last week?

1. Review papers on DeepLabCut

2. Help assembling paper report submissions and address submission situation.

3. Using GoogleColab to run the DeepLabCut demo project

4. Check on videos I got from Dr. Strout and start data preparation.

5. Set up PACE account access

§ What are you planning on working on next?

1. Met with Dr. Stroud and discuss about further methods and recources

2. Start labelling and preparing my training dataset

3. Check my PACE allocation and evaluate performance

§ Is anything blocking you from getting work done?

 N/A

Abstract
Paper:
Real-Time Closed-Loop Feedback in Behavioral Time Scales Using DeepLabCut

Summary:
This paper discusses using deep learning to track a mouse's whisker movements in real-time without
markers. By training a deep neural network offline and transferring it to work in real-time, the researchers
were able to track whisker positions and trigger outputs based on whisker movements, which can be
useful for studying the relationship between movement and neural activity in mice. The challenges in
DNN-based tracking approaches include communication delays between devices, data transfer latency,
and the need for optimizing hardware-software interactions to enhance real-time tracking efficiency in
behavioral neurophysiology research.

Methodology:
The position estimation involves utilizing DeepLabCut 2.1.3. The DNN model processes one frame at a
time with a batch size of one, incorporating a GPU-based inference stage, to estimate the positions of
three specific whiskers on mice. Each mouse had a unique model trained with the default ResNet-50
network architecture, tailored to the individual characteristics of their whiskers. The DNN models
consistently identified the tips of the specified whiskers across the behavioral recording sessions,
providing a reliable method for tracking and analyzing whisker movements in real-time experiments.
Scripts and Code Blocks

This week I tried GoogleColab to run a DLC demo. GoogleColab provides free GPUs and has all library
set up so it is relatively easy to install the DLC toolkit.
Here is the code I used:

In GoogleColab, it is relatively easy to set up environment by using code: “!pip install “[.tf]” ” in its set-
up folder. I successfully get the trained network and the processed video with landmark. However, when
processing the sample video, I met challenges which prevented from getting the trained dataset. I need
start video preparations next week.

For video extraction and network training, here is what I got:
https://github.com/DeepLabCut/DeepLabCut/wiki/DOCSTRINGS#train_network

Signature: deeplabcut.create_new_project(project, experimenter, videos,
working_directory=None, copy_videos=False, videotype='.avi')
Docstring:
Creates a new project directory, sub-directories and a basic configuration
file. The configuration file is loaded with the default values. Change its
parameters to your projects need.

Signature: deeplabcut.extract_frames(config, mode='automatic', algo='kmeans',
crop=False, userfeedback=True, cluster_step=1, cluster_resizewidth=30,
cluster_color=False, opencv=True, slider_width=25)
Docstring:
Extracts frames from the videos in the config.yaml file. Only the videos in
the config.yaml will be used to select the frames.

Signature: deeplabcut.label_frames(config, multiple=False)

https://github.com/DeepLabCut/DeepLabCut/wiki/DOCSTRINGS#train_network

Docstring:
Manually label/annotate the extracted frames. Update the list of body parts
you want to localize in the config.yaml file first.

This will be my work next week to assemble the data blocks when I started labeling and preparing the
labeled training data.

As for PACE access, I successfully login in school PACE, and I will started set up environment and test
the GPU performance.
Documentation

My demo code is stored in https://github.com/RuiqingW20/HAAG_Research-
/blob/main/deeplabcut_test_demo.ipynb

Results Visualization

Here is the trajectory picture showing the x,y position I got after processing:

Proof of work

Please check github link: https://github.com/RuiqingW20/HAAG_Research-

https://github.com/RuiqingW20/HAAG_Research-

Here is the information I got when I successfully login in school hpc:

Next Week’s Proposal

1. Start Labeling and preparing training dataset
2. Met with Dr. Strout and Bree to discuss current progress and aim
3. Check my PACE allocation performance by running my former sample code

Weekly Report

Philip Woolley

2024-09-06

Time Log Reponse:

• What Progress did you make in the last week? - Segmented Jaw and teeth of
example image from dataset, sent to Dr. Stroud for review. Created python script
for visualizing TIFF stacks from CT images.

• What are you planning on working on next? - Create script to automatically load
and process full dataset of images.

• Is there anything blocking you? - None at this time

1 Abstract
Abstract

Accurate segmentation of the jaw (i.e., mandible and maxilla) and the teeth in cone
beam computed tomography (CBCT) scans is essential for orthodontic diagnosis and
treatment planning. Although various (semi)automated methods have been proposed to
segment the jaw or the teeth, there is still a lack of fully automated segmentation methods
that can simultaneously segment both anatomic structures in CBCT scans (i.e., multiclass
segmentation). In this study, we aimed to train and validate a mixed-scale dense (MS-D)
convolutional neural network for multiclass segmentation of the jaw, the teeth, and the
background in CBCT scans. Thirty CBCT scans were obtained from patients who had
undergone orthodontic treatment. Gold standard segmentation labels were manually cre-
ated by 4 dentists. As a benchmark, we also evaluated MS-D networks that segmented
the jaw or the teeth (i.e., binary segmentation). All segmented CBCT scans were con-
verted to virtual 3-dimensional (3D) models. The segmentation performance of all trained
MS-D networks was assessed by the Dice similarity coefficient and surface deviation. The
CBCT scans segmented by the MS-D network demonstrated a large overlap with the gold
standard segmentations (Dice similarity coefficient: 0.934 ± 0.019, jaw; 0.945 ± 0.021,
teeth). The MS-D network–based 3D models of the jaw and the teeth showed minor sur-
face deviations when compared with the corresponding gold standard 3D models (0.390
± 0.093 mm, jaw; 0.204 ± 0.061 mm, teeth). The MS-D network took approximately 25
s to segment 1 CBCT scan, whereas manual segmentation took about 5 h. This study
showed that multiclass segmentation of jaw and teeth was accurate and its performance
was comparable to binary segmentation. The MS-D network trained for multiclass seg-
mentation would therefore make patient-specific orthodontic treatment more feasible by
strongly reducing the time required to segment multiple anatomic structures in CBCT
scans.

Summary This paper proposes using the Multi-scale Dense convolutional neural net-
work to segment teeth and jaw bones in CT scans. The authors performed multi-class
segmentation for jaw, teeth, or neither. Crucially, the authors pre-crop the CT scans to
remove layers which do not have any jaw or teeth present, which is not a fully automated
step which my project could easily implement. This could hint towards using a hierarchi-
cal CNN to first select slices of interest and then perform segmentation. While this paper
does a clear job of explaining their process for data collection and methods, I believe the
figures and tables in this paper do not communicate information in the way that readers
expect. For example, the model diagram has no labels or information about what layers
consist of. This is an aspect that I would plan to improve on if my method is developed
into an article.

Citation
Wang H, Minnema J, Batenburg KJ, Forouzanfar T, Hu FJ, Wu G. Multiclass CBCT

Image Segmentation for Orthodontics with Deep Learning. Journal of Dental Research.
2021;100(9):943-949. doi:10.1177/00220345211005338

2 Scripts and Code Blocks
This week, I created the testtif.ipynb notebook which shows steps for opening, threshold-
ing, and visualizing slices from CT volumes. This is done using several python libraries,
including imageio

3 Documentation
Documentation for testtif.ipynb is not complete, as the code from this notebook is intended
to be rewritten into a final script which will be tested and documented.

https://www.morphosource.org/projects/0000C1059?locale=enpage=11sort=publication_status_ssi+desc
List of available MicroCT Datasets of anolis lizards that will be used for this project.
When infrastructure for data storage is ready I will prepare documentation detailing the
downloading and storage process.

https://slicermorph.github.io/ Documentation for SlicerMorph, an extension of the
3D slicer tool commonly used by Biologists.

https://github.com/jmhuie/SlicerBiomech Documentation for the Dental Dynamics
module, which is a 3D slicer extension for calculating tooth stress from jaw segmentations.
the outputs from my segmentation pipeline will need to be compatible with this module
for analysis.

4 Script Validation (Optional)
There are no scripts to validate this week.

5 Results Visualization
Here is an image showing the example segmentation of lower jaw and teeth that I per-
formed.

6 Proof of Work
See Code published on github as well as image showed above.

7 Next Week’s Proposal
• Create script to load and threshold all images in dataset

• Investigate UNet +ResNeXT segmentation method, see if applicable to jaw or tooth
segmentation

• Keep up with any required blog posts for webmaster role

