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Time Log Reponse:

• Investigated different method for increasing 3d registration accuracy

• What are you planning on working on next? - Continue segmenting training data.
Retrain model with additional data and new metric. Change website structure to
match request from Bree

• Is there anything blocking you? - Access to "Appearance" tab on wordpress needed
to rearrange navigation menu



1 Abstract
Abstract

Deformable image registration (DIR) has been well explored in recent decades, and it is
widely utilized in clinical tasks, especially dose warping. Nowadays, as deep learning (DL)
develops rapidly, many DL-based methods were also applied in DIR. This paper reviews
DL-based DIR methods in recent years and the application of DIR in dose warping.
We collected and categorized the latest DL-based DIR studies. A thorough review of
each category was presented, in which studies were discussed based on their supervision,
advantage, and challenges. Then, we reviewed DIR-based dose warping and discussed its
rationale, feasibility, successes, and difficulties. Lastly, we summarized the review on both
parts and discussed their future development trend.

Summary
Citation
Haonan Xiao, Ge Ren, Jing Cai, A review on 3D deformable image registration and

its application in dose warping, Radiation Medicine and Protection, Volume 1, Issue
4, 2020, Pages 171-178, ISSN 2666-5557, https://doi.org/10.1016/j.radmp.2020.11.002.
(https://www.sciencedirect.com/science/article/pii/S2666555720300629)

2 Scripts and Code Blocks

3 Documentation
The VisualizeModelResults.ipynb notebook is used for creating and viewing images of
model output on validation data. Users provide a pretrained model and validation dataset,
and this notebook inferences all of the images in the dataset and allows the user to review
the output segmentations against the ground truth manual segmentations.

The DataProcess.ipynb notebook is used for converting slicer volume files (.nrrd and
.seg.nrrd) into a HuggingFace dataset for use with the pretrained Mask2Former model.
Volumes should be added to the "vols" folder, and segmentation volumes should be added
to the "masks" folder.

https://www.morphosource.org/projects/0000C1059?locale=enpage=11sort=publication_status_ssi+desc
List of available MicroCT Datasets of anolis lizards that will be used for this project.
When infrastructure for data storage is ready I will prepare documentation detailing the
downloading and storage process.

https://slicermorph.github.io/ Documentation for SlicerMorph, an extension of the
3D slicer tool commonly used by Biologists. This is used for loading stacks of .tiff images
as a volume in 3d slicer.

https://github.com/jmhuie/SlicerBiomech Documentation for the Dental Dynamics
module, which is a 3D slicer extension for calculating tooth stress from jaw segmentations.
the outputs from my segmentation pipeline will need to be compatible with this module
for analysis.



4 Script Validation (Optional)

5 Results Visualization

6 Proof of Work

7 Next Week’s Proposal
• Continue segmenting training data for ML panoptic segmentation model

• Develop testing script for 3D image registration for converting coordinate systems

• Reformat blog page as requested by Bree



Week 10 Document Submission 

Jacob Dallaire 

October 25, 2024 

1. Paper 
Nezami, Somayeh, Ehsan Khoramshahi, Olli Nevalainen, Ilkka Pölönen, and Eija 

Honkavaara. 2020. "Tree Species Classification of Drone Hyperspectral and RGB 

Imagery with Deep Learning Convolutional Neural Networks" Remote Sensing 12, no. 7: 

1070. https://doi.org/10.3390/rs12071070  

SUMMARY 

Automating tree species classification using drone imagery, particularly through the 

application of 3D convolutional neural networks (3D-CNNs), has proven to be highly 

effective in forest science, significantly reducing the manual labor required for forest 

inventories. This study demonstrated that a 3D-CNN model, utilizing a combination of 

hyperspectral (HS) and RGB data, achieved an overall classification accuracy of 98.3% 

for major boreal tree species, outperforming traditional machine learning methods like 

multi-layer perceptrons (MLPs) in both accuracy and efficiency. The findings also 

indicated that while canopy height models (CHMs) were less effective in enhancing 

classification performance, the integration of HS and RGB data provided superior results, 

suggesting a potential shift in remote sensing methodologies for forest management and 

ecological studies. 

2. Scripts 
Training script for object detection model. Converts a Tensor flow model from the 

tensorflow model zoo trained on the COCO database to be useable with the keras 

interface. 

 

def load_json_annotations(json_path): 

    with open(json_path, 'r') as f: 

        annotations = json.load(f) 

    return annotations 

 

def parse_annotations(annotation): 

    bboxes = [] 

     

    # Extract image dimensions 

    image_width = annotation['imageWidth'] 

    image_height = annotation['imageHeight'] 

     

    if annotation['shapes']: 

        shape = annotation['shapes'][0] 

        points = shape['points'] 

        # Convert points to (ymin, xmin, ymax, xmax) 

        xmin, ymin = points[0] 

        xmax, ymax = points[1] 



        bboxes.append([ymin, xmin, ymax, xmax])  # Store as [ymin, xmin, ymax, xmax] 

 

    # Normalize bounding box coordinates to [0, 1] 

    bboxes = np.array(bboxes) 

    bboxes[:, [0, 2]] /= image_height  # Normalize ymin, ymax 

    bboxes[:, [1, 3]] /= image_width   # Normalize xmin, xmax 

     

    return bboxes 

 

def load_image_and_labels(image_path, annotation): 

    # Load the image 

    image = tf.io.read_file(image_path) 

    image = tf.image.decode_jpeg(image, channels=3) 

     

    # Store the original size for later scaling 

    original_size = tf.shape(image)[:2]  # Height, Width 

     

    # Resize the image to a standard size 

    image_resized = tf.image.resize(image, [320, 320]) 

     

    # Get the corresponding annotations for this image 

    bboxes= parse_annotations(annotation) 

    #bboxes = np.concatenate([bboxes, c_score.reshape(-1, 1)], axis=-1) 

    bboxes = tf.convert_to_tensor(bboxes, dtype=tf.float32) 

    return image_resized, bboxes, original_size 

 

def load_dataset(annotations_folder): 

    bboxes = [] 

    images = [] 

     

    # Iterate through JSON files in the specified folder 

    for filename in os.listdir(annotations_folder): 

        if filename.endswith('.json'): 

            json_path = os.path.join(annotations_folder, filename) 

            annotation = load_json_annotations(json_path) 

            img, bbox, origional_size = 

load_image_and_labels(f'F:/LizardCV/bbox/{annotation["imagePath"]}',annotation) 

            bboxes.append(bbox) 

            images.append(img)  # Adjust as needed for correct path 

     

    # Create dataset from image paths and annotations 

    dataset = tf.data.Dataset.from_tensor_slices((images, bboxes)) 

     

    dataset = dataset.batch(8) 

    return dataset 

 



def custom_loss(y_true, y_pred): 

    # Separate bounding boxes and confidence scores 

    bbox_true = tf.squeeze(y_true)[:, :4]  # First 4 values: bounding box 

    conf_true = tf.squeeze(y_true)[:, 4]  # Last value: confidence score 

 

    bbox_pred = y_pred[:, :4]  # First 4 values: predicted bounding box 

    conf_pred = tf.squeeze(y_pred)[:, 4]  # Last value: predicted confidence score 

 

    # Bounding box loss (Mean Squared Error) 

    bbox_loss = tf.reduce_mean(tf.square(bbox_true - bbox_pred)) 

 

    # Confidence score loss (Binary Cross-Entropy) 

    conf_loss = tf.reduce_mean(tf.keras.losses.binary_crossentropy(conf_true, conf_pred)) 

 

    # Total loss is a combination of both 

    total_loss = bbox_loss #+ conf_loss 

    return total_loss 

 

# Example usage of the dataset loader 

annotations_folder = 'F:/LizardCV/bbox'  # Path where JSON files are stored 

train_dataset = load_dataset(annotations_folder) 

 

# Load a pre-trained object detection model (SSD MobileNet V2 here as an example) 

#base_model = 

tf.keras.models.load_model('C:/Users/Dallaire/Desktop/LizardsCV/models/base.h5') 

base_model = tf.keras.applications.MobileNetV2(input_shape=(320, 320, 3), 

include_top=False, weights='imagenet') 

# Freeze the base model layers to retain pre-trained features 

base_model.trainable = False 

 

# Add custom detection layers (you can modify the layers depending on your classes and 

bounding boxes) 

x = base_model.output 

x = tf.keras.layers.Conv2D(256, (3, 3), activation='relu', padding='same')(x)  # Detection-

specific conv layer 

x = tf.keras.layers.GlobalAveragePooling2D()(x) 

x = tf.keras.layers.Dense(128, activation='relu')(x) 

output_boxes = tf.keras.layers.Dense(4, activation='sigmoid')(x)  # 4 for bounding box 

coords 

 

# Create the full model for object detection 

detection_model = tf.keras.Model(inputs=base_model.input, outputs=output_boxes) 

 

# Compile the model with appropriate loss functions and an optimizer 

detection_model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001 / 

10), loss='mean_squared_error', metrics=['mae']) 



 

# Train the model (initial training with frozen backbone) 

history = detection_model.fit(train_dataset, epochs=10) 

 

# Fine-tuning: Unfreeze some of the layers of the base model for further training 

base_model.trainable = True 

fine_tune_at = len(base_model.layers) // 2  # Unfreeze half of the layers for fine-tuning 

 

for layer in base_model.layers[:fine_tune_at]: 

    layer.trainable = False  # Keep earlier layers frozen 

 

# Compile again with a lower learning rate for fine-tuning 

detection_model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001 / 

10), loss='mean_squared_error', metrics=['mae']) 

 

# Continue training for fine-tuning 

fine_tune_history = detection_model.fit(train_dataset, epochs=10) 

 

# Save the fine-tuned model for inference 

detection_model.save('F:/LizardCV/detection.h5') 

 

3. Documentation 
I created and object detection model that was trained with the 990 images I previously 

annotated with bounding boxes. Results were mixed with localization of the anoles being 

strong but correct bounding boxes not being generated. A few of the generated bounding 

boxes from testing are shown in figure 1. 

 

 
Figure 1. Predicted Bounding Boxes generated by my detection model. 

 

The detections work best with high contrast between the anole and the background. In 

contexts, for example, where a green anole is on a green background the detector has 

much more difficulty correctly bounding the full anole. 



4. Next Weeks Proposal 

I will be implementing boosting for the training data by adding rotational copies for all 
annotations. I will also generate another ~1000 annotations. Pending success of correct 
bounding I will be adapting the classification model to be crop images to the area of the 
bounding box and boosting the classes with few samples. 



Week10 report 
 

Ruiqing Wang | CiChild CV team  

§ What progress did you make in the last week? 

1. Worked on DropBox folders (200G) origional videos and process current model on all videos 

2. Get all labeled videos and uploaded to DropBox  

3. Get  all X, Y position from various bodyparts and visualize it  

4. rerun current model and test its performance  

5. Get data analysis on labeled videos   

6. Attend Cichild group meeting and discussed about technical details  

7.  Review papers on DeepLabCut and pose estimation  

8. Help assembling paper report submissions and address submission situation.  

§ What are you planning on working on next? 

1. Get analysis on current labeled videos  

2. Learn new software on animal pose estimation  

3. Meet with Cichild CV team to discuss current progress  

§ Is anything blocking you from getting work done? 

N/A  



Paper abstract  
Paper: SLEAP: Multi-animal pose tracking https://doi.org/10.1101/2020.08.31.276246 
 
Abstract summary: The text discusses the development of SLEAP (Social LEAP Estimates 
Animal Poses), a sophisticated framework for multi-animal pose tracking that leverages deep 
learning techniques originally designed for computer vision. By addressing the complexities of 
tracking multiple interacting animals, SLEAP incorporates configurable neural network 
architectures and advanced inference methods, allowing for tailored performance across various 
experimental conditions. The framework demonstrates high accuracy in pose estimation, 
achieving less than 2.8 pixels of error on 95% of tracked points, and provides extensive user 
support, including a graphical interface and resources for training and inference. 
 
Methodology:  
Neural network model training in the SLEAP framework begins with as few as ten labeled 
frames, allowing users to either select from predefined configurations or customize their own, 
with accessible documentation on hyperparameters and output visualizations. Once trained, the 
model can predict animal poses on a per-frame basis, with initial predictions likely requiring 
corrections, which are more efficient than labeling from scratch. To solve the multi-animal 
problems, there are two main ways they used: top-down and bottom up: 
 
The top-down approach in multi-animal pose estimation involves first detecting instances within 
a full-resolution image and cropping them to create instance-centered images, which may still 
contain pixels from other instances. This method uses a designated anchor body part to provide 
spatial context for predicting the locations of other body parts, employing a two-stage neural 
network framework where the first network generates multi-peak confidence maps and the 
second focuses on single-peak predictions for the anchored instance. While effective, this 
approach has limitations, including a lack of global contextual awareness and dependency on the 
accuracy of the initial detection stage, which can affect overall performance, particularly in 
complex scenes with multiple overlapping instances. 
 
The in a bottom-up approach of Part Affinity Fields (PAFs) for multi-animal pose estimation, 
where PAFs represent the connectivity between body parts as a vector field. Each directed edge 
in the skeleton graph connects a source body part to a destination body part, and the PAFs are 
generated from labeled data by calculating distance-weighted edge unit vectors, which are then 
combined to form a comprehensive representation of body part relationships. The methodology 
emphasizes the importance of maintaining a spanning arborescence structure to facilitate 
efficient bipartite matching, thereby optimizing the assembly of body part instances while 
minimizing inter-node dependencies. 
  

https://doi.org/10.1101/2020.08.31.276246


Scripts and Code Blocks  
 
This week I process 200G videos in total to create all labeled walking lizards.  My main job is 
downloading from dropbox, upload to PACE, get test videos, all postion data and move back to 
DropBox. Here is the script I use to process analyzed videos:  
 

 
 
The job.sh is the same with my former code.  
 
Documentation 
 
The steps are pretty bald: to analyze the videos, and based on batch size and frame setting, we created 
labeled videos.  
All my current code samples were stored in my PACE folder:  
/home/hice1/rwang753/scratch/week9 
 
Results Visualization and Code Validation 
 
Here are some examples I got from videos analysis:  
 

 
  



 
Figure 1: X-Y position likehood  and X-Y in pixels of different bodyparts (video from 

05_18_24: 0110_1) 



 
Figure 2: X-Y position likehood  and X-Y in pixels of different bodyparts (video from 

05_18_24: 0037_1) 
 
 
Proof of Work and code validation 
For the modified video process, I have modify the dot size and tested more videos, here are some 
screenshot:  



 
 
       
 
The video I tested showed that current network is validated and could track lizard body parts in 
real-time movements. The screenshot above showed the current detected landmark on walking 
lizards.  
The storage place by checking is below:  

 
My current work was stored at: /home/hice1/rwang753/scratch/week9 



 
Above and below is the screenshot of some files executed in PACE. 

 



 

 
 
Above is one of the labeled video folders I uploaded to DropBox.  
Next Week’s Proposal 

1. Get analysis on current labeled videos  
2. Learn new software on animal pose estimation  
3. Meet with Cichild CV team to discuss current progress  

 






