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1. Paper 
Weitschek, E., Fiscon, G. & Felici, G. Supervised DNA Barcodes species classification: 

analysis, comparisons and results. BioData Mining 7, 4 (2014). 

https://doi.org/10.1186/1756-0381-7-4 

SUMMARY 

In 2003, Hebert et al. introduced DNA Barcoding as a molecular technique for species 

identification using specific DNA fragments from mitochondrial, nuclear, and plastid 

genomes, with designated regions such as COI for animals and rbcL for plants. This 

method addresses the limitations of traditional morphological identification, particularly 

in complex cases, by enabling accurate species classification even from damaged or 

immature specimens through short, easily obtainable DNA sequences. The International 

Barcode of Life project has since promoted DNA Barcoding as a global standard, 

facilitating the development of various computational approaches, including supervised 

machine learning algorithms, to enhance the accuracy and efficiency of species 

classification based on DNA sequences. 

 

Not particularly relevant to vision classification but I am interested in genetics. 

 

2. Scripts 
Short little script to apply a standard to annotations with point 1 being upper left of the 

box and point 2 the bottom right of the box. 

 

Additional script change not shown to convert pre-processing to crop images to bounding 

boxes before training. 

 

# Loop through each file in the folder 

for filename in os.listdir(folder_path): 

    if filename.endswith(".json"): 

        file_path = os.path.join(folder_path, filename) 

         

        # Load JSON data 

        with open(file_path, 'r') as f: 

            data = json.load(f) 

 

        # Process each shape to adjust points for top-left and bottom-right 

        for shape in data.get("shapes", []): 

            # Extract points 

            x1, y1 = shape["points"][0] 

            x2, y2 = shape["points"][1] 

             



            # Calculate top-left and bottom-right 

            top_left_x = min(x1, x2) 

            top_left_y = min(y1, y2) 

            bottom_right_x = max(x1, x2) 

            bottom_right_y = max(y1, y2) 

             

            # Update points to be top-left and bottom-right 

            shape["points"] = [ 

                [top_left_x, top_left_y],    # Top-left 

                [bottom_right_x, bottom_right_y]  # Bottom-right 

            ] 

 

        # Overwrite the existing file with updated JSON data 

        with open(file_path, 'w') as f: 

            json.dump(data, f, indent=4) 

 

        print(f"Bounding boxes updated in {file_path}") 

 

 

3. Documentation 
I generated 400 additional annotations. While reviewing some of the data I discovered the 

labeling tool I used assigned the points based on mouse clicks rather than by standard 

points of the bounding box. While most labels were created from the top-left to bottom-

right sometimes it was easier to label the image starting from a different corner of the 

bounding box. After discovering this issue, I created a simple script to convert all 

annotations to the top-left bottom-right standard. 

 

With the correction to bounding boxes and additional training data I retrained the object 

detection model. Results no longer required padding additional size to the edges. 

Unfortunately, the output has a preference to being a centered square. The output 

bounding box will warp its dimensions, change its size, and shift its position to a slight 

degree, it is not as robust as it needs to be. In the general case most anoles are in the 

center of the image and the bounding box captures a large portion of the anole, in specific 

cases where the anole was off center of the image it did not perform as expected. 

 



 

 

 
Figure 1. Detected anoles 

 

In the left image the box has the expected shape and size but did not adjust its position to 

capture the anoles body and left half the box contents as the background. In the middle 

image the box adjusted its shape correctly but is slightly oversized. In the right image the 

box has the correct shape and size but did not adjust its position adequately and failed to 

capture both the body and head of the anole. 

 

With improved detections I have retrained the classifier, but the testing cycle has not 

finished at the time of this report. 

 

4. Next Weeks Proposal 

I will be investigating if there is a logical error in the processing of the annotations that is 
creating a strong bias to keep the box to the center of the image. The other possibility is 
there is a bias put in by the by the training data being composed mostly of images with the 
anole in the center. If the latter is the case, I will need to generate additional training data 
with affine transformations to create more diversity in the data set.  



Week11 report 
 

Ruiqing Wang | CiChild CV team  

§ What progress did you make in the last week? 

1. Finished labeled videos from DeepLabCut 

2. Read user guide on SLEAP and installed it on my local pc and HPC  

3. Get annotated data using SLEAP    

4. Attend Cichild group meeting and discussed about technical details  

5.  Review papers on SLEAP and pose estimation  

6. Help assembling paper report submissions and address submission situation.  

§ What are you planning on working on next? 

1. Get more annotation data on SLEAP   

2. Run DEMO network training and validate results  

3. Meet with Cichild CV team to discuss current progress  

§ Is anything blocking you from getting work done? 

N/A  



Paper abstract  
Paper: Selfee, self-supervised features extraction of animal behaviors 
 https://elifesciences.org/articles/76218 
 
Abstract: The authors introduce Selfee, a self-supervised convolutional neural network designed 
to extract comprehensive and discriminative features from social behavior video frames in an 
end-to-end manner, thereby mimicking human perception. This approach not only facilitates the 
detection of subtle anomalous behaviors that may escape human observation but also enables 
temporal analysis of behaviors, showcasing its potential for various downstream applications in 
behavioral research. 
 
Methodology: By projecting images into a low-dimensional space that is invariant to various 
shooting conditions. The extracted features from Selfee facilitate a range of downstream 
analyses, including t-SNE visualization, k-NN classification and anomaly detection, and 
integration with autoregressive hidden Markov models (AR-HMM), demonstrating its 
applicability across multiple model organisms and potential for broader behavioral studies. 
 
Selfee employs a dual-branch architecture of Siamese Convolutional Neural Networks (CNNs) 
to generate discriminative representations from live-frame video data, utilizing ResNet-50 as its 
backbone with a modified classifier replaced by a three-layer multi-layer perceptron (MLP) 
known as projectors. The main branch includes an additional predictor, while the reference 
branch mirrors the main branch, following the SimSiam framework, which simplifies the training 
process by optimizing cosine similarity between the predicted and actual representations. During 
training, live-frames undergo random augmentations, such as cropping and rotation, to enhance 
the model's robustness and facilitate effective online clustering of the extracted features. 
  

https://elifesciences.org/articles/76218


 
Scripts and Code Blocks  
 
This week I mainly read papers and user guide, install softwares and did data annotation. There 
are no codes update.  
 
Documentation 
 
The data annotation in SLEAP route is pretty much similar with DLC. However, the SLEAP 
software mainly focused on skeleton, instead of label it self. So the annotation is node + edges, 
basically treated as a graph.  
Please check https://sleap.ai/guides/index.html for more details.  
 
Results Visualization and Code Validation 

 
Here is the node and edge settings for lizard dataset:  

 

https://sleap.ai/guides/index.html


 
 

For skeleton design, I basically followed the mouse skeleton template and made small 
modifications on adding spines bodyparts. Under “Skeleton" interface, it specifically highlighted 
a node-based system for mapping anatomical points in a subject. The table lists nodes such as 
"head1," "neck1," "forelegL1," and others, indicating their labeled positions and symmetry 
attributes, which are key in defining the structure for motion analysis or behavioral studies. 

The second image shows the practical application of this skeleton structure within an annotation 
environment. On the right panel, the "Project Skeleton" section provides a connection table 
between source and destination nodes, building the skeletal framework needed for defining body 
movements or postures. This structured approach is essential for ensuring accuracy in movement 
analysis or automated tracking. 

 
Proof of Work and code validation 
Below are some data annotation samples I did at the GUI:  



 



 
 



Key anatomical points such as "head1," "neck1," "forelegL1," "forelegR1," "hindlegL1," 
"hindlegR1," "spine1," "spine2," "tailstart1," "tail1," and "tailend1" are labeled. These nodes are 
connected to form a skeletal framework that follows the animal's body structure from head to 
tail, representing the major joints and points of articulation. 
 
Here is the screenshot for successfully download and installed it in ICE:  

 
 
The procedure is as follows:  
First you should have anaconda installed in your current environment: 
https://www.anaconda.com/blog/a-faster-conda-for-a-growing-community 
Set the solver in the base environment (and skip the Mambaforge installation): 
 conda update -n base conda 
conda install -n base conda-libmamba-solver 
conda config --set solver libmamb 
Finally install the pakage:  
conda create -y -n sleap -c conda-forge -c nvidia -c sleap -c anaconda sleap=1.3.3 
 
Next Week’s Proposal 

1. Get more annotation data on SLEAP   
2. Run DEMO network training and validate results  
3. Meet with Cichild CV team to discuss current progress  

 

https://www.anaconda.com/blog/a-faster-conda-for-a-growing-community







