
Week 11 Document Submission

Jacob Dallaire

November 1, 2024

1. Paper
Weitschek, E., Fiscon, G. & Felici, G. Supervised DNA Barcodes species classification:

analysis, comparisons and results. BioData Mining 7, 4 (2014).

https://doi.org/10.1186/1756-0381-7-4

SUMMARY

In 2003, Hebert et al. introduced DNA Barcoding as a molecular technique for species

identification using specific DNA fragments from mitochondrial, nuclear, and plastid

genomes, with designated regions such as COI for animals and rbcL for plants. This

method addresses the limitations of traditional morphological identification, particularly

in complex cases, by enabling accurate species classification even from damaged or

immature specimens through short, easily obtainable DNA sequences. The International

Barcode of Life project has since promoted DNA Barcoding as a global standard,

facilitating the development of various computational approaches, including supervised

machine learning algorithms, to enhance the accuracy and efficiency of species

classification based on DNA sequences.

Not particularly relevant to vision classification but I am interested in genetics.

2. Scripts
Short little script to apply a standard to annotations with point 1 being upper left of the

box and point 2 the bottom right of the box.

Additional script change not shown to convert pre-processing to crop images to bounding

boxes before training.

Loop through each file in the folder

for filename in os.listdir(folder_path):

 if filename.endswith(".json"):

 file_path = os.path.join(folder_path, filename)

 # Load JSON data

 with open(file_path, 'r') as f:

 data = json.load(f)

 # Process each shape to adjust points for top-left and bottom-right

 for shape in data.get("shapes", []):

 # Extract points

 x1, y1 = shape["points"][0]

 x2, y2 = shape["points"][1]

 # Calculate top-left and bottom-right

 top_left_x = min(x1, x2)

 top_left_y = min(y1, y2)

 bottom_right_x = max(x1, x2)

 bottom_right_y = max(y1, y2)

 # Update points to be top-left and bottom-right

 shape["points"] = [

 [top_left_x, top_left_y], # Top-left

 [bottom_right_x, bottom_right_y] # Bottom-right

]

 # Overwrite the existing file with updated JSON data

 with open(file_path, 'w') as f:

 json.dump(data, f, indent=4)

 print(f"Bounding boxes updated in {file_path}")

3. Documentation
I generated 400 additional annotations. While reviewing some of the data I discovered the

labeling tool I used assigned the points based on mouse clicks rather than by standard

points of the bounding box. While most labels were created from the top-left to bottom-

right sometimes it was easier to label the image starting from a different corner of the

bounding box. After discovering this issue, I created a simple script to convert all

annotations to the top-left bottom-right standard.

With the correction to bounding boxes and additional training data I retrained the object

detection model. Results no longer required padding additional size to the edges.

Unfortunately, the output has a preference to being a centered square. The output

bounding box will warp its dimensions, change its size, and shift its position to a slight

degree, it is not as robust as it needs to be. In the general case most anoles are in the

center of the image and the bounding box captures a large portion of the anole, in specific

cases where the anole was off center of the image it did not perform as expected.

Figure 1. Detected anoles

In the left image the box has the expected shape and size but did not adjust its position to

capture the anoles body and left half the box contents as the background. In the middle

image the box adjusted its shape correctly but is slightly oversized. In the right image the

box has the correct shape and size but did not adjust its position adequately and failed to

capture both the body and head of the anole.

With improved detections I have retrained the classifier, but the testing cycle has not

finished at the time of this report.

4. Next Weeks Proposal

I will be investigating if there is a logical error in the processing of the annotations that is
creating a strong bias to keep the box to the center of the image. The other possibility is
there is a bias put in by the by the training data being composed mostly of images with the
anole in the center. If the latter is the case, I will need to generate additional training data
with affine transformations to create more diversity in the data set.

Week11 report

Ruiqing Wang | CiChild CV team

§ What progress did you make in the last week?

1. Finished labeled videos from DeepLabCut

2. Read user guide on SLEAP and installed it on my local pc and HPC

3. Get annotated data using SLEAP

4. Attend Cichild group meeting and discussed about technical details

5. Review papers on SLEAP and pose estimation

6. Help assembling paper report submissions and address submission situation.

§ What are you planning on working on next?

1. Get more annotation data on SLEAP

2. Run DEMO network training and validate results

3. Meet with Cichild CV team to discuss current progress

§ Is anything blocking you from getting work done?

N/A

Paper abstract
Paper: Selfee, self-supervised features extraction of animal behaviors
 https://elifesciences.org/articles/76218

Abstract: The authors introduce Selfee, a self-supervised convolutional neural network designed
to extract comprehensive and discriminative features from social behavior video frames in an
end-to-end manner, thereby mimicking human perception. This approach not only facilitates the
detection of subtle anomalous behaviors that may escape human observation but also enables
temporal analysis of behaviors, showcasing its potential for various downstream applications in
behavioral research.

Methodology: By projecting images into a low-dimensional space that is invariant to various
shooting conditions. The extracted features from Selfee facilitate a range of downstream
analyses, including t-SNE visualization, k-NN classification and anomaly detection, and
integration with autoregressive hidden Markov models (AR-HMM), demonstrating its
applicability across multiple model organisms and potential for broader behavioral studies.

Selfee employs a dual-branch architecture of Siamese Convolutional Neural Networks (CNNs)
to generate discriminative representations from live-frame video data, utilizing ResNet-50 as its
backbone with a modified classifier replaced by a three-layer multi-layer perceptron (MLP)
known as projectors. The main branch includes an additional predictor, while the reference
branch mirrors the main branch, following the SimSiam framework, which simplifies the training
process by optimizing cosine similarity between the predicted and actual representations. During
training, live-frames undergo random augmentations, such as cropping and rotation, to enhance
the model's robustness and facilitate effective online clustering of the extracted features.

https://elifesciences.org/articles/76218

Scripts and Code Blocks

This week I mainly read papers and user guide, install softwares and did data annotation. There
are no codes update.

Documentation

The data annotation in SLEAP route is pretty much similar with DLC. However, the SLEAP
software mainly focused on skeleton, instead of label it self. So the annotation is node + edges,
basically treated as a graph.
Please check https://sleap.ai/guides/index.html for more details.

Results Visualization and Code Validation

Here is the node and edge settings for lizard dataset:

https://sleap.ai/guides/index.html

For skeleton design, I basically followed the mouse skeleton template and made small
modifications on adding spines bodyparts. Under “Skeleton" interface, it specifically highlighted
a node-based system for mapping anatomical points in a subject. The table lists nodes such as
"head1," "neck1," "forelegL1," and others, indicating their labeled positions and symmetry
attributes, which are key in defining the structure for motion analysis or behavioral studies.

The second image shows the practical application of this skeleton structure within an annotation
environment. On the right panel, the "Project Skeleton" section provides a connection table
between source and destination nodes, building the skeletal framework needed for defining body
movements or postures. This structured approach is essential for ensuring accuracy in movement
analysis or automated tracking.

Proof of Work and code validation
Below are some data annotation samples I did at the GUI:

Key anatomical points such as "head1," "neck1," "forelegL1," "forelegR1," "hindlegL1,"
"hindlegR1," "spine1," "spine2," "tailstart1," "tail1," and "tailend1" are labeled. These nodes are
connected to form a skeletal framework that follows the animal's body structure from head to
tail, representing the major joints and points of articulation.

Here is the screenshot for successfully download and installed it in ICE:

The procedure is as follows:
First you should have anaconda installed in your current environment:
https://www.anaconda.com/blog/a-faster-conda-for-a-growing-community
Set the solver in the base environment (and skip the Mambaforge installation):
 conda update -n base conda
conda install -n base conda-libmamba-solver
conda config --set solver libmamb
Finally install the pakage:
conda create -y -n sleap -c conda-forge -c nvidia -c sleap -c anaconda sleap=1.3.3

Next Week’s Proposal

1. Get more annotation data on SLEAP
2. Run DEMO network training and validate results
3. Meet with Cichild CV team to discuss current progress

https://www.anaconda.com/blog/a-faster-conda-for-a-growing-community

