
Week 8 Document Submission

Jacob Dallaire

October 11, 2024

1. Paper
B. Pande, K. Padamwar, S. Bhattacharya, S. Roshan and M. Bhamare, "A Review of

Image Annotation Tools for Object Detection," 2022 International Conference on

Applied Artificial Intelligence and Computing (ICAAIC), Salem, India, 2022, pp. 976-

982, doi: 10.1109/ICAAIC53929.2022.9792665.

SUMMARY

The introduction highlights the significant advancements in deep learning, particularly in

object detection, which has become a critical area within computer vision due to its

diverse applications, including surveillance and medical imaging. It emphasizes the

importance of data annotation in the lifecycle of object detection projects, noting that the

quality of image annotations directly influences model performance. The text also

discusses various annotation strategies—such as in-house, outsourcing, and

crowdsourcing—each with distinct trade-offs in terms of cost, quality, and security,

underscoring the necessity for careful selection of annotation tools and methodologies to

optimize outcomes in machine learning tasks.

2. Scripts
3. import tensorflow as tf

4. import cv2

5. import numpy as np

6. import matplotlib.pyplot as plt

7.

8. # Load your custom-trained object detection model

9. detection_model = tf.saved_model.load('@TODO train my own model')

10.

11. # Load an input image

12. image = tf.io.read_file('F:/LizardCV/Raw/36391_4333245.jpg')

13. image = tf.image.decode_jpeg(image, channels=3) # or tf.image.decode_png

if it's a PNG

14. image = tf.image.resize(image, [640, 640]) # Resize to the input size

expected by the model

15. #image = tf.cast(image, tf.uint8)

16. input_tensor = tf.convert_to_tensor(image)

17. input_tensor = input_tensor[tf.newaxis, ...] # Add batch dimension

18. image_np = image.numpy() # Convert to NumPy array for OpenCV

19.

20. # Run object detection

21. detections = detection_model(input_tensor)

22.

23. # Access the output tensor

24. output_tensor = detections[0] # Get the first tensor

25. output_array = output_tensor.numpy() # Convert to NumPy array

26.

27. # Initialize lists to store detected boxes, scores, and class IDs

28. boxes = []

29. scores = []

30. class_ids = []

31.

32. # Set a confidence threshold

33. confidence_threshold = 0.5

34.

35. # Iterate over the detections

36. for detection in output_array[0]: # Loop through the detections for the

first image

37. # Extract bounding box and scores

38. box = detection[:4] # First four elements are the box coordinates

39. score = detection[4] # The fifth element is the objectness score

40.

41. # If the score is above the confidence threshold, save the results

42. if score >= confidence_threshold:

43. boxes.append(box)

44. scores.append(score)

45.

46. # Get the class ID with the highest score

47. class_score = detection[5:] # Class scores

48. class_id = np.argmax(class_score) # Get the class index of the

max score

49. class_ids.append(class_id)

50.

51. # Convert lists to NumPy arrays for easier manipulation

52. boxes = np.array(boxes)

53. scores = np.array(scores)

54. class_ids = np.array(class_ids)

55.

56. # Define a color map for visualization

57. colors = np.random.randint(0, 255, size=(len(boxes), 3), dtype='uint8')

58.

59. # Draw bounding boxes on the original image

60. for i in range(len(boxes)):

61. ymin, xmin, ymax, xmax = boxes[i]

62.

63. # Convert to original image scale

64. xmin = int(xmin * image.shape[1])

65. xmax = int(xmax * image.shape[1])

66. ymin = int(ymin * image.shape[0])

67. ymax = int(ymax * image.shape[0])

68.

69. # Draw bounding box and label

70. cv2.rectangle(image_np, (xmin, ymin), (xmax, ymax),

color=colors[i].tolist(), thickness=2)

71. cv2.putText(image_np, f'ID: {class_ids[i]} {scores[i]:.2f}', (xmin,

ymin - 10),

72. cv2.FONT_HERSHEY_SIMPLEX, 0.5, colors[i].tolist(), 2)

73.

74. # Show the image with detections

75. plt.imshow(cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB))

76. plt.axis('off')

77. plt.show()

I produced a script to use for testing some object detection models I found on model

zoos. I had very little success with them and have decided it is necessary to transfer learn

to create my own model that accounts for the complex nature of the training data set.

3. Documentation
I tested some existing models I found on model zoos. I found frequently they had too

many classes and misidentified the Anoles frequently or for specialized models they had

datasets with fixed background and were not able to identify the Anoles from the

background. Figure 1 is an example of the multi class detectors and failures to identify

the anoles correctly.

Figure 1. Multiclass object detector

Figure 2. Specialized Lizard detector

Figure 2 is an example of the failures of the specialized Lizard detector models I tested.

Incorrectly overlapping bounding boxes on a single object, misplacement of a bounding

box or inability to detect objects at all.

I have been evaluating a few option on bbox annotation tools to create my own dataset to

fine tune a generalized model. I decided to go with labeme

(https://github.com/wkentaro/labelme?tab=readme-ov-file) as it is a light weight

application.

4. Next Weeks Proposal

I aim to produce about 1000 annotated images to use to train an object detection model.

https://github.com/wkentaro/labelme?tab=readme-ov-file

Weekly Report

Philip Woolley

2024-10-11

Time Log Reponse:

• Researched and chose quality metric for measuring segmentation - Identified possible
automatic alignment tools. Continued segmenting training data

• What are you planning on working on next? - Continue segmenting training data.
Retrain model with additional data and new metric. Change website structure to
match request from Bree

• Is there anything blocking you? - Access to "Appearance" tab on wordpress needed
to rearrange navigation menu

1 Abstract
Abstract

Open3D is an open-source library that supports rapid development of software that
deals with 3D data. The Open3D frontend exposes a set of carefully selected data struc-
tures and algorithms in both C++ and Python. The backend is highly optimized and is
set up for parallelization. Open3D was developed from a clean slate with a small and care-
fully considered set of dependencies. It can be set up on different platforms and compiled
from source with mini mal effort. The code is clean, consistently styled, and main tained
via a clear code review mechanism. Open3D has been used in a number of published
research projects and is actively deployed in the cloud. We welcome contributions from
the open-source community.

Summary This paper describes the design and implementation details for the Open3D
library. This is an open source library for viewing and manipulating 3d data in python
or C++. For my project I will be working with the 3d CT lizard scans and trying
to automatically adjust their orientation to match the slicing axes, so several of the
capabilities of this library will be useful. The most useful are converting 3d arrays to point
cloud format, which is widely used for image registration, as well as functions to create
a global to local registration pipeline. The paper includes several quality visualizations,
and does a good job of explaining the workings of the library and common use cases. I
would like to emulate something similar, while targeted for a low-code audience, in the
documentation of my project.

Citation
Zhou, Qian-Yi, Jaesik Park, and Vladlen Koltun. "Open3D: A modern library for 3D

data processing." arXiv preprint arXiv:1801.09847 (2018).

2 Scripts and Code Blocks
I have begun sketching the model’s post processing steps in the sketchpostprocess.ipynb
notebook. This week, I added a function to this notebook showing how to calculate
Panoptiq Quality for the segments output by the model. This is the chosen accuracy
metric for model training. Below images include implementation of the metric and the
formula for how to calculate it.

3 Documentation
The VisualizeModelResults.ipynb notebook is used for creating and viewing images of
model output on validation data. Users provide a pretrained model and validation dataset,
and this notebook inferences all of the images in the dataset and allows the user to review
the output segmentations against the ground truth manual segmentations.

The DataProcess.ipynb notebook is used for converting slicer volume files (.nrrd and
.seg.nrrd) into a HuggingFace dataset for use with the pretrained Mask2Former model.
Volumes should be added to the "vols" folder, and segmentation volumes should be added
to the "masks" folder.

https://www.morphosource.org/projects/0000C1059?locale=enpage=11sort=publication_status_ssi+desc
List of available MicroCT Datasets of anolis lizards that will be used for this project.
When infrastructure for data storage is ready I will prepare documentation detailing the
downloading and storage process.

https://slicermorph.github.io/ Documentation for SlicerMorph, an extension of the
3D slicer tool commonly used by Biologists. This is used for loading stacks of .tiff images
as a volume in 3d slicer.

https://github.com/jmhuie/SlicerBiomech Documentation for the Dental Dynamics
module, which is a 3D slicer extension for calculating tooth stress from jaw segmentations.

the outputs from my segmentation pipeline will need to be compatible with this module
for analysis.

4 Script Validation (Optional)

5 Results Visualization
These are the printed results on validation set for the first version of the model.

6 Proof of Work
Please see Code Blocks and Results Visualization

7 Next Week’s Proposal
• Continue segmenting training data for ML panoptic segmentation model

• Develop testing script for 3D image registration for converting coordinate systems

• Reformat blog page as requested by Bree

