## Week 7 Report

# Wen Han Chia (Lizard Classification)

### Time-Log

Additionally, the time-log should include any work you've done for your *role* work (e.g., meeting management, web management, programs management, etc.)

#### What did you do this week?

- Preliminary Data analysis and annotation
  - Reviewed best practices for resizing images for classification model training
    - Reviewed previous project lead's implementation done in TensorFlow
  - Annotated the rest of lizard images
- Familiarized with PACE-ICE cluster
  - Reviewed step-by-step guide to using PACE-ICE: 1) ssh into PACE cluster using IDE from local machine 2) Create virtual python environment 3) Best practices for storing huge files and running scripts

#### What are you going to do next week

- Train models on PACE

Blockers, things you want to flag, problems, etc.

## Abstracts:

Zheng, Heliang, et al. 'Looking for the Devil in the Details: Learning Trilinear Attention Sampling Network for Fine-Grained Image Recognition'. *2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, IEEE, 2019, pp. 5007–16. *DOI.org (Crossref)*, <u>https://doi.org/10.1109/CVPR.2019.00515</u>.

Learning subtle yet discriminative features (e.g., beak and eyes for a bird) plays a significant role in fine-grained image recognition. Existing attention-based approaches localize and amplify significant parts to learn fine-grained details, which often suffer from a limited number of parts and heavy computational cost. In this paper, we propose to learn such fine-grained features from hundreds of part proposals by Trilinear Attention Sampling Network (TASN) in an efficient teacher-student manner. Specifically, TASN consists of 1) a trilinear attention module, which generates attention maps by modeling the inter-channel relationships, 2) an attention-based sampler which highlights attended parts with high resolution, and 3) a feature distiller, which distills part features into a global one by weight sharing and feature preserving strategies. Extensive experiments verify that TASN yields the best performance under the same settings with the most competitive approaches, in iNaturalist-2017, CUB-Bird, and Stanford-Cars datasets.

#### What did you do and prove it

Familiarized with PACE-ICE cluster



Reviewed code snippet from previous project lead's implementation on image resizing

