Week 7 Report

Wen Han Chia
(Lizard Classification)

Time-Log

Additionally, the time-log should include any work you’ve done for your role work (e.g.,
meeting management, web management, programs management, etc.)

What did you do this week?

- Preliminary Data analysis and annotation
o Reviewed best practices for resizing images for classification model training
= Reviewed previous project lead’s implementation done in TensorFlow
o Annotated the rest of lizard images
- Familiarized with PACE-ICE cluster
o Reviewed step-by-step guide to using PACE-ICE: 1) ssh into PACE cluster
using IDE from local machine 2) Create virtual python environment 3) Best
practices for storing huge files and running scripts

What are you going to do next week

- Train models on PACE

Blockers, things you want to flag, problems, etc.



Abstracts:

Zheng, Heliang, et al. ‘Looking for the Devil in the Details: Learning Trilinear Attention
Sampling Network for Fine-Grained Image Recognition’. 2079 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), IEEE, 2019, pp. 5007-16. DOl.org
(Crossref), https://doi.org/10.1109/CVPR.2019.00515.

Learning subtle yet discriminative features (e.g., beak and eyes for a bird) plays a
significant role in fine-grained image recognition. Existing attention-based approaches
localize and amplify significant parts to learn fine-grained details, which often suffer from a
limited number of parts and heavy computational cost. In this paper, we propose to learn
such fine-grained features from hundreds of part proposals by Trilinear Attention Sampling
Network (TASN) in an efficient teacher-student manner. Specifically, TASN consists of 1) a
trilinear attention module, which generates attention maps by modeling the inter-channel
relationships, 2) an attention-based sampler which highlights attended parts with high
resolution, and 3) a feature distiller, which distills part features into a global one by weight
sharing and feature preserving strategies. Extensive experiments verify that TASN yields the
best performance under the same settings with the most competitive approaches, in
iNaturalist-2017, CUB-Bird, and Stanford-Cars datasets.



What did you do and prove it
- Familiarized with PACE-ICE cluster

» Intro

> 1) Connecting to PACE

v 2) Workflow in PACE (Setting up python env)

v Intro

PACE's use the SLURM system to allocate resources (CPUs, GPUs, etc) and schedule user tasks. #Your notes
The typically slurm workflow goes as follows:
* sshinto PACE (as in (1)) -> request an interactive computing node -> load necessary software (‘modules’) ->
run your code
e ssh into PACE, submit batched jobs to computing nodes.
Translation:
* |nteractive node: this gives you access to a machine (via terminal) to run commands on the fly.
° Example, you can run , see the results in your terminal / folders, change code, run
again
e Submit batched jobs: put a script on a queue to be executed by slurm when resources are available.
o Example: put in the queue. You don't interact with the terminal of this computing
node; results will be available in logs/folders you specify.
o This is useful when more time/resources are needed. See (6) for more.

Below section describes case (1), specifically how to install packages and run python using anaconda and the

scratch folder to avoid problems with storage.

- Reviewed code snippet from previous project lead’s implementation on image
resizing
download_images(filepath):
download_images_part(df):
extract_label_from_filename(filename):
re.split(’ ., filename)[©]

preprocess_image(path, label):
tf.io.read_file(path)
tf.image.decode_image(image, channels=3)
tf.ensure_shape(image, [! - f2i )
tf.image.resize(image, [256, 256])
if image.shape != (256,256,3):
print(path)
image = image / 255.0
label = tf.one_hot(label, depth=5)
image, label, path




