HAAG Week 11 Report -Lizard Jaw Segmentation

Shuyu Tian

Time-Log
What did | do this week?

o | metwith the computational advisor on code review for the code | have for
rigid registration.

o lwasrecommended to provide justification and background information on
why specific functions and choices in the code were made, specifically
regarding the registration portion of the code

o lwrote up the justifications and background information to the
computational advisor for review for our meeting next week
| reviewed and tested the non-rigid registration code provided by Philip
As the webpage manager and meeting leader of my group, | updated the
webpage of the Stroud group with a subpage for the Lizard Jaw Segmentation
group’s weekly reports and group meeting recording link.

e What | will do next week

o lwill review with the computational advisor on the registration code provide

forimprovements and research direction if this process is not done well
e Blockers, things | want to flag, problems, etc.

o Ifrigid and non-rigid registration methods are not producing usable data,
manual segmentation work on 3Dslicer will be needed again and will be a big
time-sink

Abstract:

Citizen science platforms like iNaturalist generate biodiversity data at an unprecedented
scale, with observations on the order of hundreds of millions. However, extracting
phenotypic information from these images, such as color of organisms, at such a large
scale poses unique challenges for biologists. Some of the challenges are that manual
extraction of phenotypic information can be subjective and time-consuming. Fortunately,
with the maturation of computer vision and deep learning, there is an opportunity to
automate large parts of the image processing pipeline. Here, | present SegColR, a user-
friendly software package that leverages two state-of-the-art deep learning models -
GroundingDINO and SegmentAnything - to enable automated segmentation and color
extraction from images. The SegColR package provides an R-based interface, making it
more accessible to evolutionary biologists and ecologists who may not have extensive
coding experience. The SegColR pipeline allows users to load images, automatically
segment them based on text prompts, and extract color information from the segmented
regions. The package also includes visualization and data summarization functions to
facilitate downstream analysis and interpretation of the results.

Link: https://www.biorxiv.org/content/10.1101/2024.07.28.605475v1.full

General summary: The paper introduces SlimSAM, a compact version of the Segment
Anything Model (SAM), specifically tailored for biological image segmentation tasks.
SlimSAM achieves a significant reduction in model size, utilizing only 1.4% of the original
SAM's parameters, making it more efficient for practical applications. The authors
demonstrate that SimSAM maintains performance comparable to the original SAM across
various biological imaging datasets. This advancement offers a more accessible and
resource-efficient tool for researchers in the field of biological image analysis.

What did you do and prove it

1. Below are screenshots of non-rigid registration code provided as well as the
justification and background information on my code for registration:

def draw_registration_result(source, target, transformation):
source_temp = copy.deepcopy(source)
target_temp = copy.deepcopy(target)
source_temp.paint_uniform_color([1, ©.706, @])
target_temp._paint_uniform_color([6, 8.651, ©8.929])
source_temp.transform(transformation)
o3d.visualization.draw_geometries([source_temp, target temp],
zoom=8.4559,
front=[0.6452, -0.3036, -0.7011],
lookat=[1.9892, 2.0208, 1.8945],
up=[-0.2779, -0.9482, 0.1556])

def preprocess_point_cloud(pcd, voxel size):
#print(":: Downsample with a voxel size %¥.3f." ¥ voxel size)

pcd_down = pcd.voxel_down_sample(voxel_size)

radius_normal = voxel_size * 2
#print(":: Estimate normal with search radius ¥.3f." ¥ radius_normal)
pcd_down.estimate normals(

03d.geometry.KDTreeSearchParamHybrid{radius=radius_normal, max_nn=3@))

radius_feature = voxel size * 5
#print(":: Compute FPFH feature with search radius %.3f." % radius_feature)
pcd_fpfh = o3d.pipelines.registration.compute_fpfh_feature(

pcd_down,

03d.geometry.KDTreeSearchParamHybrid(radius=radius_feature, max_nn=100))
return pcd_down, ped_fpth

def volume to_point_cloud(volume, threshold=38008, equal flag = False):
temp = np.asarray((volume > threshold))
if(equal_flag):
temp = np.asarray((volume == threshold))
#temp = np.asarray(temp < 66068)
z, y, x = temp.nonzero()
points = np.vstack((x, y, z)})}.T # Transpose to get points in (N, 3) format
return points

def prepare_dataset(voxel_size, source_file=None, target_file=None):
#print(":: Load two point clouds and disturb initial pose.")

#source = 03d.i0.read point_cloud('wd/head.ply")
#target = o03d.1io.read point_cloud('wd/full.ply’)
source_data, _ = pynrrd.read(source_file)
target_data, _ = pynrrd.read(target file)

source_points = volume_to_point_cloud(source_data, 1, True)
target_points = volume to_point cloud(target data)

Create Open3D point clouds
source_pcd = o3d.geometry.PointCloud()
target_pcd = o03d.geometry.PointCloud()

source_pcd.points = o3d.utility.Vector3dVector(source_points)
target_pcd.points = o3d.utility.Vector3dVector(target_points)
#trans_init = np.asarray([[6.06, 6.8, 1.6, 0.8], [1.8, 6.6, 0.0, 6.4],
[e.e, 1.0, 0.0, 0.0], [6.0, 0.0, 0.0, 1.0]])
#source. transform(trans_init)

draw_registration_result(source_pecd, target_pcd, np.identity(4))

source _doun, source fpfh = preprocess point cloud(source ped, voxel size)
target_down, target_fpfh = preprocess_point_cloud(target_pcd, voxel_size)

return source_data, target_data, source_down, target_down, source_fpfh, target_fpfh

source, target, source_down, target_down, source_fpfh, target_fpfh = prepare_dataset(3, source_file, target_file)

def execute_global registration(source_down, target_down, source fpfh,
target fpfh, voxel size):
distance_threshold = voxel size * 1.5
#print(":: RANSAC registration on downsampled point clouds.")
#print(” Since the downsampling voxel size is ¥.3f," ¥ voxel_size)
#print(" we use a liberal distance threshold ¥.3f." % distance threshold)
result = o3d.pipelines.registration.registration_ransac_based on_feature matching(
source_down, target_down, source_fpfh, target_fpfh, True,
distance_threshold,
o3d.pipelines.registration.TransformationEstimationPointToPoint(False),
3, [
o03d.pipelines.registration.CorrespondenceCheckerBasedOnEdgelength(
8.95),
o3d.pipelines.registration.CorrespondenceCheckerBasedOnDistance(
distance_threshold)
], o3d.pipelines.registration.RANSACConvergenceCriteria(200660, 160000))
return result

result_ransac = execute_global_registration(source_down, target_down,
source_fpfh, target fpfth,

8)
st = source_down.transform(result_ransac.transformation)
draw_registration_result(st, target_down, np.identity(4))

bbox = st.get minimal oriented bounding box()
bbox.extent = bbox.extent * 2

tt = target_down.crop(bbox)

#tt = target_down

acpd = probreg.cpd.AffineCPD(np.asarray(st.points), use_cuda=False)

start = time.time()

tf_param = probreg.bcpd.registration_bcpd(np.asarray(st.points), np.asarray(tt.points))
elapsed = time.time() - start

print("time: ", elapsed)

time: 13@.8828580379486
result_ransac = execute_global registration(source_down, target_down,

source_fpth, target_fpfh,
8)

st = source_down.transform(result_ransac.transformation)
draw_registration_result(st, target down, np.identity(4))

bbox = st.get_minimal_oriented bounding_box{)
bbox.extent = bbox.extent * 2

tt = target_down.crop(bbox)

#tt = target_down

acpd = probreg.cpd.AffineCPD({np.asarray(st.points), use_cuda=False)

start = time.time()

tf_param = probreg.bcpd.registration_bcpd(np.asarray(st.points), np.asarray(tt.points))
elapsed = time.time() - start

print("time: ", elapsed)

time: 13@.88285808379486
tf_param

<probreg.transformation.CombinedTransformation at @x2a58216f11@>

result = copy.deepcopy(st)

result.points = tf_param.transform(result.points)

draw_registration_result(result, target_down, np.identity(4))

Summary of Jupyter Notebook Functions

Below is the summary of function usage in the Jupyter Notebook for 3D image registration
using Open3D and NRRD volumes for lizard heads and jaws.

preprocess_point_cloud(pcd, voxel_size)
Downsamples the point cloud and computes surface normals and FPFH features. Used to
reduce computation and prepare for feature-based matching.

volume_to_point_cloud(volume, threshold=None)
Converts a 3D volume to a point cloud using intensity thresholding. This transforms medical
image data into point clouds.

segment_lower_jaw(point_cloud)
Filters the point cloud to isolate the lower jaw region based on bounding box limits. Helps
focus alignment on relevant anatomical regions.

prepare_dataset(voxel_size, source_file, target_file)
Loads source and target NRRD files, converts them to point clouds, segments the lower jaw,
and preprocesses them for registration. This is a wrapper for earlier steps.

compute_average_transformations(transformations)
Computes the average of multiple 4x4 transformation matrices. Useful for summarizing
multiple registration results.

process(num_samples=20, max_iters=5)
Main driver function that runs the full registration workflow multiple times, applying ICP
refinement and computing the average transformation.

visualize_registration(source, target, transformation)
Visualizes the source and target point clouds after applying a transformation. Useful for
visual validation of registration results.

Additionally, | updated the Stroud lab webpage with my group’s relevant information up to
week 10 of this semester (see images below).

Home / Lizard Jaw Segmentstion /

Lizard Jaw Segmentation Group Meetings and
Recordings

B Updated On March 20, 2025

Spring 2025 Week 11 Computational Advisor/Group Meeting Recording

https:/fgtvault-
my.sharepoint.com/personal/stiand0_gatech_edu/Documents/Recordings/Computational®% 20 Advisor%20Meeting_%20Lizard%20Jaw% 20Segmentation-
20250319 _170154-Mesting%20Recording. mpd Pweb=18&referrer=Teams TEAMS-

ELECTROM&referrerScenario=RecapOpeninStreamButton. view.2b8a23c1-2849-409b-8a09-093 5ed87 0990

Spring 2025 Week 10 Group Mesting — Mo meetings this week due to scheduling conflicts
Spring 2025 Week 9 Compatational Advisor/Group Meeting Recording

https://sites gatech edu/haagstroudprojects /wp-admin/user-new. php

Spring 2025 Week 8 Meeting Recording
Weekly Lizard Jaw Meeting-20250226 170110-Mesting Recording.mp4
Spring 2025 Week 7 Compautational Advisor/Group Meeting Recording

Weekly Lizard Jaw Meeting-20250219_170647-Meeting Recording.mpd

Spring 2025 Week 6 Meeting Recording

Weekly Lizard Jaw Meeting-20250212_ 170746 Me=sting Recording.mpd

Spring 2025 Week 5 Computational Advisor Meeting Recording

Lizard Jaw Segmentation_ Student Researcher _ Computational Advisor Meet-20250206_171303-Meeting
Recording.mp4d

Spring 2025 Week 4 Meeting Recording

Weekly Lizard Jaw Meeting-20250123_150624-Meeting Recording.mpd

Spring 20235 Week 3 Meeting Recording

Weekly Lizard Jaw Meeting-20250122_150152-Meeting Recording.mpd

Spring 2025 Week 3 Computational Advisor Meeting Recording

Lizard Jaw Segmentation_ Student Reasearcher _ Computational Advisor Meet-20250120_150433-Meeting
Recording.mpd

Lizard Jaw Segmentation Weekly Submissions

Bl Updated On March 20, 2025

Week 11 Computaticnal Advisor/Group Meeting

Computational AdvisorfWeekly Group Meeting Summar
1. Meating Scheduls Update

+ The computational edvisor mestings will be merged
meetings, ocourring evary other week.

2. File Sharing and Registration Work

+ Philip mentioned he would sand an email with the fil
work.

+ The registration pipeline is heavily based on existing
3. Code Review and Next Steps
+ Prakhar will review the code and esk about design di

+ He is particularly interested in understanding why c«
wants to s2e visual results.

+ Prakhar noted that RANSAC is an impaortant first ste|

+ He raised questions about specific featuras used in

& Blan fnr Mavt Waolr

Computational Acvisor Weekhy Meeting Weelc 11 m

Week 10 Weekly Report

= Shuyu-Tian_Lizard-Jaw-5e_.

HAAG Week 10 Report -Lizard

Shuyu Tian

Time-Log

‘What did | do this week?

