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  Abstract 

This paper investigates decision quality in large choice sets across several choice architectures in three 

studies. In the first controlled experiment, we manipulate two features of a choice architecture – the 

response mode (for ranking alternatives) and presentation mode (for presenting alternatives). Our design 

objectively ranks all sixteen choice options in each choice set, and makes it possible to observe decision 

quality directly, independent of attitudes toward risk. We find joint presentation outperforms separate 

presentation, and that choice response modes outperform ‘happiness ratings’ which outperform 

hypothetical monetary valuations. We also apply classical welfare criteria to assess the performance of the 

architectures. Our key finding is that low cognitive reflection subjects (as measured by the cognitive 

reflection test) perform better given a large choice set than given smaller sets collectively containing the 

same alternatives. This illustrates a basic tradeoff confronting choice architectures: For a fixed choice set, 

fewer options improve decision quality within that set, but require architectures to elicit multiple responses, 

increasing opportunities for errors. One follow-up study demonstrates the robustness of the response mode 

result in a comparison using the tournament presentation mode. A second follow-up study reveals that the 

impact of incentivizing monetary valuations depends on cognitive reflection.  
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1.      Introduction 

Making good economic decisions is desirable for both individual welfare and achieving social goals. Sub-

optimal or lower quality decisions, such as choosing a dominated option, can reduce the decision maker’s 

welfare relative to what could have been achieved. Additionally, if the suboptimal decisions result in 

inappropriate health insurance plans or insufficient retirement savings, for example, the decisions also likely 

impose a cost on society. However, error prone decision making has long been recognized as a fact of life, 

embodied in Alexander Pope’s famous statement, “To err is human.” Although shunned by the classical 

economic models of the 1950’s and 60’s, this fact is widely recognized in behavioral economics today. This 

has led to an increased emphasis on choice architecture where the goal is to “nudge” participants towards 

decisions that are both individually and socially optimal by manipulating the decision-making environment. 

Yet, the properties that determine effective choice architectures are not fully understood. 

Building on the design in Besedeš et al. (2015), this paper uses experiments to systematically test 

for the effectiveness of two general features of a choice architecture: (i) the response mode (how rankings 

over alternatives are expressed) and, (ii) the presentation mode (how information is presented). Our design 

enables us to consider a basic tradeoff between presentation complexity (number of alternatives presented 

at once) and response complexity (the number of discrete responses required by the architecture). While it 

is generally understood that decision making is better in smaller choice sets (see Besedeš et al 2012a, 

2012b), decomposing a large choice set into a series of small ones may not necessarily result in improved 

decision making (see Besedeš et al 2015). Once we fix the size of a choice set, smaller presentation sets 

may improve average decision quality per response, but require architectures to elicit multiple responses, 

increasing the opportunity for error. This tradeoff suggests a novel implication: If error rates are sufficiently 

high, smaller presentation sets may actually reduce decision quality. 

In our primary study, we consider three response modes – direct choice among a set of options, 

subjective happiness ratings of options, and monetary valuations of options. Under direct choice, decision 

makers select one of the available options from each choice set. For subjective happiness ratings, decision 

makers rate each option in the choice set on an emoticon scale, reflecting how happy each option makes 
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them. For monetary valuations, decision makers specify their maximum willingness to pay for each option 

in dollars. Of these response modes, direct choice is the one encountered most frequently in making 

decisions. Monetary valuation requires one to think very precisely about the value of every option and in 

this respect may be the most difficult and most time consuming. Response modes similar to happiness 

ratings include quality and satisfaction ratings of restaurants, books, movies, and other consumption 

experiences. Direct choices, ratings, and valuations are three of the classic response modes in the judgment 

and decision-making literature, although they have to date been primarily used to study the consistency of 

preferences across response modes, rather than the optimality of decisions across response modes.  Our 

design enables us to utilize these classic response modes to go beyond studying consistency of preferences 

and study their possible role in making better decisions. In our design all choice options can be ranked 

according to stochastic dominance, enabling us to objectively rank the available choices, and observe 

decision-making quality in a way that is not contaminated by subjects’ attitudes toward risk or other 

unobservable idiosyncratic properties of preferences.  

Our choice of response modes was also motivated by the possibility that different response modes 

may induce different decision-making processes. For instance, it seems plausible that an emoticon scale (or 

subjective happiness rating) increases reliance on feelings, whereas a pricing task may increase reliance on 

calculation. If choosing by calculation is a superior decision-making strategy, especially when choices 

involve well-defined probabilities and monetary outcomes, one might predict that performance will be 

superior in the monetary valuation response mode. Alternatively, if relying on feeling and intuition (going 

with your gut) is a better strategy for decision making, especially when the choice set is large, one might 

predict better performance on the emoticon response mode. Finally, if one views decision makers as well-

adapted to choice tasks, constantly facing discrete choices in the environment, and rarely providing explicit 

ratings or prices, one might predict superior performance under the choice response mode.  

One feature of a choice architecture that varies across response modes is the degree to which the 

response mode constrains the possible responses for a choice set of a given size. A highly constrained 

response mode, such as a single direct choice admits only 𝑛 possible response patterns for a choice set with 
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𝑛 alternatives. In contrast, an emoticon scale is less constrained in that each of the 𝑛 options is given a 

rating on a scale with 𝑚 possible ratings per option. The monetary valuation task is even less constrained 

than the rating scale, since each of the 𝑛 options can be assigned any monetary value (between $0.00 and 

$20.00 in our experiment). One may also view the degree to which a response mode does not constrain 

responses as indexing the complexity of the response mode, with response modes requiring more responses 

per choice set (e.g., rating each item) and permitting a larger range of responses per item as being more 

complex.  

We also consider two main presentation modes – joint presentation (all options are presented 

simultaneously) and separate presentation (each option is presented one at a time, in isolation). A variety 

of studies have documented that the order in which information such as risks and benefits is presented or 

acquired can significantly affect choices (Aimone et al., 2016; Arieli, et al., 2011; Bergus et al., 2002). 

However, it is not clear a priori whether choices presented jointly will produce higher quality decisions 

than separate presentation of alternatives. Under expected utility theory, any lottery has its own value, 

independent of other choice alternatives. If the only presentation mode effect at work is due to choice 

overload, one might predict that evaluating each option in isolation avoids the paralyzing effect on choice 

of seeing many complex options simultaneously. However, evaluating each option in isolation may also 

require one to remember how each previous alternative was valued. In this respect, decision quality in 

presentation modes may be affected by this tradeoff between the complexity of joint presentation and the 

memory required for separate presentation.   

The previous literature on response mode and presentation mode effects has focused on 

inconsistencies (preference reversals) across response modes, and not the decision quality (selection of 

dominant vs. dominated choices) induced within response modes or presentation modes. For instance, the 

literature on response mode effects has mostly examined preference reversals across response modes (e.g., 

the pricing-choice reversals identified by Lichtenstein and Slovic (1971) and the pricing-rating reversals 

identified by Slovic et al. (2007)). Similarly, the literature on behavior under different presentation modes 

has also focused on the identification of preference reversals across presentation modes (the joint-separate 
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reversals identified by Hsee (1996), Hsee et al., (1999), and Hsee and Zhang (2010), and the comparative 

ignorance effect identified by Fox and Tversky (1995)). Two papers that do look at dominance in 

presentation modes are Hsee (1998) and List (2002) and both find that people are better able to value two 

options at once rather than one option at a time using a pricing response mode. However, these two studies 

both used a between-subjects design even within the separate presentation mode and thus under their design, 

no single subject could provide valuations that reveal a preference for the dominated option. In addition, 

these studies do not consider the large choice sets that are reflective of many economic situations. 

Choice architecture may be seen as the ‘engineering’ branch of behavioral economics, perhaps 

analogous to how Roth (2002) envisioned mechanism design as the engineering branch of game theory. 

Whereas mechanism design analyzes how behavior changes in response to normatively relevant incentives 

(e.g., changes in monetary payoffs), choice architecture analyzes how behavior changes in response to 

normatively irrelevant features of the decision task (e.g., changes in framing, response mode, or 

presentation mode). Choice architecture has many practical applications such as increasing revenue through 

the presentation and organization of a grocery store (Reutskaja et al., 2011), designing healthcare plans or 

presenting healthcare information in a manner that helps people select the best plan for themselves (Peters 

et al., 2007), designing retirement pension plans to increase employee saving (Thaler and Benartzi, 2004), 

and designing the presentation of nutritional information to promote healthier food choices (Downs et al., 

2009). These applications highlight basic questions about the principles underlying the selection of optimal 

or welfare-improving choices. Such basic questions as which response mode and which mode of presenting 

information lead to the most efficient welfare outcomes served as the motivation behind our study.       

The options in our design comprise a choice set of sixteen lotteries with different expected payoffs 

whose outcomes are distributed over twelve possible states with pre-defined probabilities. These may be 

viewed as stylized versions of insurance plans, retirement plans, or financial investments. By varying the 

response mode, we can identify which method of eliciting rankings is most effective in producing high 

quality choices. By varying the presentation mode, we can identify whether providing complete information 

(presenting all sixteen options simultaneously) or incremental information (presenting one option at a time) 
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leads to better decisions for large choice sets. We also examine subject heterogeneity and test whether 

reflective thinkers perform better than intuitive thinkers across architectures using a version of the cognitive 

reflection test (Frederick, 2005; Toplak et al, 2014).  

For the choice task, the joint presentation mode is compared to a tournament’ architecture in which 

participants choose between four disjoint subsets of the overall choice set and then choose among their 

chosen options in a ‘final four’ round. We include this architecture since Besedeš et al. (2015) found this 

to be best among architectures using the choice response mode at helping individuals make optimal choices. 

Across all subjects in our studies, we find the persistent ranking that a choice response mode 

outperforms a happiness rating response mode, which in turn outperforms a pricing mode and that joint 

presentation yields better performance than presenting each option sequentially. An important additional 

finding is that choice architectures need to account for individual differences in nuanced ways: when 

designing a choice architecture for a fixed choice set (in our case of size 16), there is a fundamental tradeoff 

between the number of options presented at once and the number of responses required by the decision 

maker. In particular, participants with low scores on the cognitive reflection test (CRT) performed best on 

the "choose one of sixteen" architecture, whereas moderate and high scorers on the CRT performed best 

overall on a tournament-style architecture.1 This presents something of a puzzle. If the low CRT participants 

can perform fairly well in a sixteen-item choice set, one might suspect they would do even better in a 

tournament-style architecture where they choose among just four options at a time.  We show that this 

puzzle is plausibly explained by a simple error rate model that assumes: (i) that low CRT participants have 

larger error rates than high CRT participants and (ii) that, for a fixed CRT level, error rates are larger from 

larger choice sets than from smaller choice sets. The key observation to note is that the tournament 

architecture requires multiple responses, increasing opportunities for error. If low CRT participants have 

sufficiently high error rates in four-item choice sets, when confronted with a series of such choice sets, they 

                                                      
1 We refer to subjects with high, medium and low scores in the Cognitive Reflection Test as high CRT, medium CRT 
and low CRT respectively. The CRT does not necessarily imply intelligence, but rather reflects the approach a person 
naturally uses for problem-solving (intuitive versus reflective).   
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have more opportunities for error than in the 'choose one' architecture. However, as higher CRT subjects 

have lower error rates, they can benefit more from the tournament architecture. In the simple error rate 

model in Section 5 we solve for the unique error rates across CRT groups and choice set sizes. It turns out 

that assumptions (i) and (ii) noted above are necessary conditions for the simple error rate model to fit the 

observed data exactly.       

In this first study, we also find that high CRT subjects perform better across all architectures than 

low CRT subjects. For both ratings and valuations, we find joint presentation to considerably outperform 

separate presentation, and we find less-constrained response modes to marginally outperform more 

constrained response modes.   

We report two additional studies aimed at understanding the robustness of our initial findings.  In 

our second study we use the happiness rating and pricing modes in a tournament structure similar to that 

used in the first study with the direct choice response mode. We show that the response mode ranking of 

choice, happiness, and payment is robust to this presentation mode. Our third study considers the effect of 

making the pricing response incentivized rather than hypothetical as in the first two studies. In this study 

subjects identify their maximum willingness to pay for an option, both in joint and separate presentation 

modes, using an incentive compatible mechanism which results in the subject purchasing an option. 

Ultimately, we find making payments incentivized does not impact decision quality among low CRT scores 

but may lead to better decision making for higher CRT individuals.       

In terms of identifying the optimal architecture, considering the welfare of low CRT, medium CRT, 

and high CRT participants, there is no architecture that dominates across all CRT levels (no architecture is 

Pareto efficient) in our data. Instead, the optimal architecture depends on the social welfare criterion that a 

policy maker prefers to implement. In particular, for our experiment, John Rawls’ (1971) maximin criterion, 

which helps the demographic with the lowest welfare, favors the architecture involving a single direct 

choice from a sixteen-item choice set, whereas Harsanyi’s (1955) utilitarian welfare criterion, which 
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maximizes the average welfare of individuals in society, favors the tournament architecture involving five 

direct choices, each from a four-item choice set.     

2.     Identifying Optimal and Efficient Choice Architectures 

We consider simple choice architectures that are defined to be a pair (R, P) where R is a response mode 

and P is a presentation mode. We let R ∈ ሼ𝑟, 𝑣, 𝑐ሽ, where 𝑟 is a happiness rating task, 𝑣 is a monetary 

valuation task, and 𝑐 is a choice task. We let P ∈ ሼ𝑗,𝑝, 𝑠ሽ, where 𝑗 is a ‘joint’ presentation mode (all options 

are presented simultaneously), 𝑝 is a partial presentation mode (different subsets of the choice set are 

presented together), 𝑠 is a ‘separate’ presentation mode (all options are presented individually, in isolation). 

Our design contains six choice architectures: (R, P) = ሺ𝑟, 𝑗ሻ, ሺ𝑟, 𝑠ሻ, ሺ𝑣, 𝑗ሻ, ሺ𝑣, 𝑠ሻ, ሺ𝑐, 𝑗ሻ, ሺ𝑐,𝑝ሻ. 

Thus, the happiness rating and valuation tasks are shown both with all options at once and with 

each option presented separately. For one of the direct choice tasks, options were displayed all at once. The 

other choice task, ሺ𝑐,𝑝ሻ, is the bench-mark best-performing choice architecture (the ‘choice tournament’ 

architecture from Besedeš et al., 2015) in which a large choice set is divided into a number of equally sized 

smaller choice sets with the decision maker selecting one option from each small choice set. The final 

decision is then made over all options selected in each of the smaller choices sets.  

In our first study, we were primarily interested in comparing joint versus separate presentation 

modes, and choice, rating, and monetary valuation (pricing) response modes. We included the tournament 

architecture primarily because it performed best in the study of Besedeš et al. (2015) who considered only 

variations of choice response modes. Concerned about the possibility of subject fatigue if we included too 

many architectures, we did not consider variations in the tournament architecture in our base study. 

In one follow-up study (Section 7), we do contrast the choice tournament with rating and pricing 

tournaments. This provides a robustness check and enables us to determine whether it is the tournament 

style architecture or whether it is primarily the choice response mode that drives performance in this 

architecture. In another follow-up study (Section 8), we consider joint versus separate presentation modes 

with incentivized monetary valuation tasks.     
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We are interested in whether some choice architectures lead to better normative behavior (i.e. a 

higher likelihood of choosing the optimal option) than others. In particular, we ask the following questions:  

(i)  Does separate presentation of alternatives improve decision making when the choice set is large, 

holding the response mode fixed? To be specific, does ሺ𝑟, 𝑠ሻ perform better than ሺ𝑟, 𝑗ሻ and does 

ሺ𝑣, 𝑠ሻ perform better than (𝑣, 𝑗ሻ? Or do people perform better when having all options presented 

simultaneously even when the choice set is large?  

(ii)  Do more numerical or calculation-based response modes (such as a monetary valuation task) 

improve decision making relative to more qualitative or feeling-based response modes (such 

as a happiness rating task), holding the presentation mode fixed? More precisely, does ሺ𝑣, 𝑠ሻ 

perform better than ሺ𝑟, 𝑠ሻ and does ሺ𝑣, 𝑗ሻ perform better than ሺ𝑟, 𝑗ሻ?) Or do people perform 

better when making qualitative assessments than when specifying a precise willingness to pay? 

(iii)  Do more constrained response modes (those with fewer possible responses per option) perform 

better than less constrained response modes (those with more possible responses per option)? 

(iv)  Does heterogeneity in cognitive reflection account for heterogeneity in performance across 

architectures? Do participants who differ in cognitive reflection perform best on the same 

choice architectures? 

(v)  Which architectures perform best according to classical welfare criteria (such as Pareto efficiency, 

Rawls’ maximin criterion, and Harsanyi’s utilitarian criterion)?  

Our design enables us to investigate each of these questions. The results inform whether the 

response mode and the presentation mode (and their interaction) can facilitate higher quality choices. To 

our knowledge, this issue has not been addressed in the literature.  

We employ a design, building on Besedeš et al. (2015) in which choices can be objectively ranked 

across different configurations of response modes and presentation modes. Our design enables us to conduct 

a within-subjects experiment to study the optimality of response modes and presentation modes (whether 

some response modes or presentation modes systematically induce better decisions). 
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3.   Experimental Design  

We tested the performance of six different choice architectures, systematically varying the response mode 

(how subjects express their choices) and the presentation mode (how options were presented) across 

architectures using a within-subject design. In each case, the choice set involves 16 lotteries, each with 12 

different mutually exclusive and exhaustive states. In each state, a given lottery either pays $0 or $20. A 

single state is randomly selected to determine payment. A unique feature of our design is that these lotteries 

can be ranked using stochastic dominance. In other words, we can objectively rank the 16 options, 

independent of subjects’ attitudes toward risk. Consequently, we can directly evaluate the performance of 

different choice architectures, different response modes, and different presentation modes, based on how 

frequently they induce optimal choices, or based on how close subjects come to obtaining the best option 

in each task. The experiment can be accessed at http://gametheory.net/ms3/experiment.pl. 

3.1  Options   

      The 12 possible states of the world were described as types of Cards and numbered 1-12. The 

likelihood of a particular state of the world was determined by the number of cards of that type that were 

present in a virtual deck of 100 cards. The number of cards of a particular type was referred to as the odds. 

The 16 lotteries were referred to as Options and were lettered A to P. Each option contained different cards 

(states of the world), with no two options containing the same set of cards. Table 1 shows the 16 options 

that were used in the experiment. 

      In Table 1, a check-mark appearing below a particular option indicates that the option contains that 

card. Selecting an option would result in the subject earning $20 if a card contained by the chosen option 

were drawn and $0 if a card not contained by the chosen option was drawn. Thus, Option X is a better 

choice than Option Y if Option X pays $20 for a greater percentage of the cards in the deck, i.e. has a greater 

probability of paying $20. For example, Option A in Table 1 is the best option, while Option P is the worst 

as it implies the lowest probability of payment. The order of options and cards was randomized for each 

subject for each choice architecture and relabeled sequentially from Option A to Option P and from Card 1 

to Card 12.       
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 Six different decks of cards were used in the experiment (one for each choice architecture) selected 

at random without replacement. Moreover, the decks were constructed in such a way that the probability 

an option would result in a payment of $20 was held fixed across the six decks of cards. To achieve this, 

we started with a master design with only six states (cards labeled I through VI) and sixteen options 

designed so that each option covers either three or four of the attributes. We then subdivided some of the 

six states (and their probabilities) into multiple new states, while preserving each lottery’s coverage. That 

is, if an option contained the card in the six-state design, it also contained all subdivided states. The first 

column in Table 1 in each of the three panels presents the same six-attribute master design. In the first panel 

Cards I and V are each split into three new cards and Cards III and IV are split into two new cards. In the 

second panel Cards II and V are each split into three new cards and Card IV and VI are split into two new 

cards each. In the third panel Cards III and IV are split into three cards each and Cards I and II into two 

cards each. By varying how the probability assigned to a card in the six-state design is split among the new 

cards in the twelve-state design, we created two different probability distributions across the twelve states. 

We do so in each panel for a total of six different probability distribution functions (PDFs). The variety of 

PDFs conceals the similarity of options across tasks. Importantly, however, this design preserves the 

probability with which each option results in a payment. This is similar to how Besedeš et al. (2012a) add 

additional attributes in their experiment, but with the added advantage that option payoffs are held constant 

across the six PDFs. 
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Table 1. Options and Odds   

Card PDF Card PDF1 PDF2 A B C D E F G H I J K L M N O P

1 10 7 1 1 1 1 1 1 1 1 1 1

2 4 10 1 1 1 1 1 1 1 1 1 1

3 5 2 1 1 1 1 1 1 1 1 1 1

II 15 4 15 15 1 1 1 1 1 1

5 14 9 1 1 1 1 1 1 1

6 8 13 1 1 1 1 1 1 1

7 11 16 1 1 1 1 1 1 1 1 1

8 13 8 1 1 1 1 1 1 1 1 1

9 4 3 1 1 1 1 1 1 1 1 1 1

10 2 4 1 1 1 1 1 1 1 1 1 1

11 6 5 1 1 1 1 1 1 1 1 1 1

VI 8 12 8 8 1 1 1 1 1 1 1 1 1 1 1 1

Card PDF Card PDF3 PDF4 A B C D E F G H I J K L M N O P

I 19 1 19 19 1 1 1 1 1 1 1 1 1 1

2 5 2 1 1 1 1 1 1 1

3 6 3 1 1 1 1 1 1 1

4 4 10 1 1 1 1 1 1 1

III 22 5 22 22 1 1 1 1 1 1 1 1

6 10 6 1 1 1 1 1 1 1 1 1

7 14 18 1 1 1 1 1 1 1 1 1

8 3 5 1 1 1 1 1 1 1 1 1 1

9 2 4 1 1 1 1 1 1 1 1 1 1

10 7 3 1 1 1 1 1 1 1 1 1 1

11 5 7 1 1 1 1 1 1 1 1 1 1 1 1

12 3 1 1 1 1 1 1 1 1 1 1 1 1 1

Card PDF Card PDF5 PDF6 A B C D E F G H I J K L M N O P

1 4 13 1 1 1 1 1 1 1 1 1 1

2 15 6 1 1 1 1 1 1 1 1 1 1

3 9 11 1 1 1 1 1 1 1

4 6 4 1 1 1 1 1 1 1

5 10 5 1 1 1 1 1 1 1 1

6 5 7 1 1 1 1 1 1 1 1

7 7 10 1 1 1 1 1 1 1 1

8 13 14 1 1 1 1 1 1 1 1 1

9 8 7 1 1 1 1 1 1 1 1 1

10 3 3 1 1 1 1 1 1 1 1 1

V 12 11 12 12 1 1 1 1 1 1 1 1 1 1

VI 8 12 8 8 1 1 1 1 1 1 1 1 1 1 1 1

Payoffs 80 73 66 65 63 61 59 57 58 56 51 54 44 42 39 35

19I

Options12‐state setup6‐state setup

VI 12

8VI

12V

II 15

24IV

I

IV 24

22III

II 15

19

22III

IV 24
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3.2  Choice Architectures 

Each subject provided responses to each of the following six choice architectures: 

1. Simple choice architecture ሺ𝑐, 𝑗ሻ: The simple choice architecture explicitly asked subjects to 

select their most preferred option and presented all sixteen options at once. Subjects only had to 

click the “Select” button beneath their chosen option and confirm their response. This task, shown 

in the top panel of Figure 1, involves a choice response mode and a joint presentation mode. 

2. Sequential tournament ሺ𝑐, 𝑝ሻ: The sequential tournament architecture decomposes the sixteen-

option choice set into four choice sets, each with four options. Subjects are asked to choose from 

each of the four choice sets. A subject’s chosen options from these sets are combined into a “final 

four” round where the subject chooses one of the four previously chosen options as the final choice.       

3. Rating all at once ሺ𝑟, 𝑗ሻ: The rating all at once architecture asks subjects to provide a happiness 

rating for each option on a seven-point scale with endpoints of happy and neutral emoticons.2 

Subjects are informed that if they rate one option higher than all others, that will be their selected 

option. Subjects are also informed that if there is a tie for the highest rated option, then each tied 

option is equally likely to be the selected option and one is randomly assigned. The rating all at 

once architecture is depicted in the middle panel of Figure 1 and involves a joint presentation mode. 

4. Rating one at a time ሺ𝑟, 𝑠ሻ: The rating one at a time architecture is identical to rating all at once, 

both in visual appearance and in the rules for determining payoffs, except that options are now 

presented sequentially (in random order), and each subject is asked to rate each option individually 

(viewing only one option at a time).  

5. Pricing all at once ሺ𝑣, 𝑗ሻ: The pricing all at once architecture asks subjects to record their 

maximum willingness to pay for each option. The willingness to pay is hypothetical and the 

subjects know there is no explicit cost for selecting an option.  Subjects are informed that the option 

                                                      

 2 Sad emoticons were not used because each option involved a chance of winning $20 and there was no possibility of 
losing money. Employing the neutral emoticon instead of a sad emoticon also may encourage more use of the full 
seven-point scale.   
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with highest recorded price will be the one selected as their preferred option. Subjects are also 

informed that if there is a tie for the highest valued option, a random draw will determine the 

selected option. This architecture involves a pricing response mode and a joint presentation mode 

and requires the subject’s valuation to be entered into the box at the bottom panel of Figure 1.  

6. Pricing one at a time ሺ𝑣, 𝑠ሻ: The pricing one at a time architecture is identical to pricing all at 

once, both in visual appearance and in the rules for determining payoffs, except that options are 

now presented sequentially (in random order), and each subject is asked to price each option 

individually (viewing only one option at a time). 

3.3  Subjects 

One hundred twenty undergraduate students at a private California university participated in the 

experiment. Subjects were recruited from a standing pool of volunteers who had not participated in any 

related study.  Each session included twenty-four subjects. Subjects received $7 for participating in addition 

to any salient earnings.   

3.4  Protocol   

The six different architectures and six PDFs were presented in random order. The order in which options 

and cards were presented were randomized within each architecture although the first option was always 

labeled A and the first card was labeled Card 1. After making their choice(s) for each architecture subjects 

were presented with a deck of 100 cards each containing cards numbered 1 through 12, with the number of 

each card corresponding to the odds of the PDF used for that architecture. Subjects would then turn over 

the cards by clicking on them which would also trigger their shuffling. Once the deck was shuffled, the 

subject could turn over one card by clicking on any of the 100 cards. This card would determine whether 

subjects would earn a payment for that architecture: as long as the option they selected or rated as their 

most preferred one (either by assigning highest happiness rating or highest willingness to pay), they would 

receive $20 as payment for that architecture. In case of multiple most preferred options ties were broken by 

randomly assigning one of the tied options.  
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After completing all six tasks, subjects responded to a brief questionnaire including demographic 

questions and the seven-question cognitive reflection test or CRT (Toplak et al., 2014), which extends the 

three-question CRT from Frederick (2005). As explained to subjects in advance, a physical die was rolled 

by the experimenter once all subjects had completed all tasks and the questionnaire to determine which task 

would count for payment. Subjects were paid in cash with average salient earnings of $15.17 per subject.   

Figure 1. Choice, Rating, and Pricing Architectures under Joint Presentation 
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4.     Results 

We focus on three measures of performance for comparing architectures: (i) The average rank of the 

selected option under that architecture (where an average rank of 1 would indicate that all subjects chose 

the best option, while an average rank of 2 would indicate that on average subject chose the second best 

option as their preferred choice), (ii) The percentage of subjects who chose the best option under that 

architecture and (iii) Money left on the table which measures the difference between the probability of 

receiving a payment under the optimal option and the probability of receiving the payment under the chosen 

option (multiplying this measure by the size of the monetary payment reveals how much money was forgone 

by choosing suboptimally). When ties occurred that contained the best option, for (i) we computed the 

average rank of all tied options, for (ii) we computed the probability of choosing the best option as 1/𝑡 

where 𝑡 is the number of tied options (since each of the tied options was equally likely to be randomly 

assigned), and for (iii) we computed the average money left on table across all chosen options.  

 We will refer to the first metric as welfare ranking or ‘efficiency’3 and the second as optimality. 

We refer to a task as the efficient architecture for a group of subjects if it assigns those subjects the best 

average ranked option among the 16 options, relative to the other architectures. The average rank of 

assigned lotteries is shown for all six architectures in Table 2, with the results broken down by the CRT 

score of the subjects. We will refer to a task as the optimal architecture for a group of subjects if it 

maximizes the average probability of selecting the best option for those subjects. A similar breakdown for 

optimal architectures and for money left on the table is provided in Figures 2 and 3. Subjects were grouped 

according to how many of the CRT questions they correctly answered, and classified into roughly equal-

sized categories of low CRT, medium CRT, and high CRT, based on whether they correctly answered two 

or fewer questions, three or four questions, or five or more questions correctly, respectively.  

                                                      
3 While the ‘welfare ranking’ differs from the typical metric of efficiency in economics, the two are perfectly correlated 
in this study. This is a consequence of our design which holds the probability of every option constant while allowing 
for the probability of each state to be different. Thus, calculating any of the typical measures of efficiency (such as 
the ratio of the probability of the chosen option and highest option probability) would differ from our results by only 
a constant scalar.    
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     Table 2. Efficiency: Average Rank of Assigned Option across All Six Choice Architectures 

CRT 
group 

Number        
of Subjects 

Choice 
Tournament 

Choice 
Joint 

Rating 
Joint 

Pricing 
Joint 

Rating 
Separate 

Pricing 
Separate 

Average 
Rank  

Low 42 3.190 2.310 3.441 3.976 3.406 4.658 3.497 

Medium 38 1.632 2.737 2.488 3.278 2.721 3.177 2.672 

High 40 1.275 1.575 1.475 1.934 3.399 3.521 2.196 

All 120 2.058 2.200 2.484 3.074 3.187 3.810 2.802 
 

     Figure 2. Optimality: Percentage of Optimal Assignments across All Six Choice Architectures

 

Figure 3. Money Left on Table as measured by Loss in Probability of Winning across Architectures 

 

 

Choice
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Rating

Separate
Pricing
Separate

Average

Low CRT 54.8 61.9 57.2 53.0 51.9 39.1 53.0

Medium CRT 84.2 73.7 72.1 66.5 61.4 58.7 69.4

High CRT 90.0 87.5 86.9 84.2 62.7 60.1 78.6

Average 75.8 74.2 71.8 67.7 58.5 52.3 66.7
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4.1  Optimality of Presentation Modes 

As noted in the introduction, previous literature has tested for consistency of preferences across response 

modes and presentation modes (e.g., Lichtenstein and Slovic, 1971; Slovic et al., 2007; Hsee, 1996). But to 

our knowledge, the optimality of response modes and presentation modes (whether some response modes 

or presentation modes systematically induce better decisions) has not been investigated.  

       In our experiment, the rating and pricing response modes enable us to compare joint presentation of 

alternatives (displaying all 16 options at once) with separate presentation (displaying only one option at a 

time). For a fixed response mode, we find that joint presentation performs significantly better in inducing  

a higher welfare ranking than separate presentation. For instance, rating all at once achieves a 0.703 better 

average ranking than rating separately (p < 0.05, two-tailed Wilcoxon signed rank test) and pricing all at 

once achieves a 0.736 better average ranking than pricing separately (p < 0.10, two-tailed Wilcoxon signed 

rank test). However, when computing welfare for each CRT group, this difference is only significant for 

the high CRT group4 (for high CRT subjects, rating options jointly outperforms rating separately (p < 

0.002), and pricing jointly outperforms pricing separately (p < 0.02), two-tailed Wilcoxon signed rank 

tests). Similarly, joint presentation produces more optimal choices than separate presentation mode. This 

finding holds for both pricing and rating response modes. In particular, for the rating response mode, joint 

presentation induced 71.8% optimal responses and separate presentation induced 58.5% optimal responses. 

This difference is highly significant across all subjects (p < 0.02, two-tailed Wilcoxon signed rank test). 

Similarly, for the pricing response mode, joint presentation induced 67.7% optimal responses and separate 

presentation induced 52.3% optimal responses. This difference is also significant across all subjects (p < 

0.02 two-tailed Wilcoxon signed rank test). However, when computing the optimality for each CRT group, 

the advantage of joint over separate presentation is only significant for the high CRT group5 (for high CRT 

                                                      
4 For the average rank metric, for the low CRT group, the p-value for rating jointly vs. rating separately is 0.881 and 
the p-value for pricing jointly vs. pricing separately is 0.453. For the medium CRT group, the p-value for rating jointly 
vs. rating separately is 0.734 and the p-value of pricing jointly vs. pricing separately is 0.8415. 
5 For the percentage of optimal choices, for the low CRT group, the p-value for rating jointly vs. rating separately is 
0.576 and the p-value for pricing jointly vs. pricing separately is 0.153.  For the medium CRT group, the p-value for 
rating jointly vs. rating separately is 0.204 and the p-value for pricing jointly vs. pricing separately is 0.358.   



19 
 

subjects, rating options jointly outperforms rating separately (p < 0.01), and pricing jointly outperforms 

pricing separately (p < 0.02), two-tailed Wilcoxon signed rank tests). The high CRT group experiences a 

large loss in performance under separate presentation, while the medium and low CRT groups only perform 

a little worse (but not significantly so). 

 The Wilcoxon signed rank test results for average welfare ranking also extend to the “money left 

on the table” measure which has the same ordinal ranking as the average welfare measure. In terms of effect 

size, high CRT subjects leave roughly 50% more money on the table under separate presentation than under 

joint presentation for both the rating and pricing response modes. In aggregate, the worst-performing 

architecture under the money-left-on-the-table metric (the pricing architecture under separate presentation) 

leaves twice as much money on the table as the two-best performing architectures for this metric (the choice 

tournament and the simple choice architecture). Thus, we find that for all 120 subjects taken collectively 

(and for the subset of 40 high CRT subjects), joint presentation performs better than separate presentation 

across the three welfare criteria in Table 2 and in Figures 2 and 3. An alternative way to read this result is 

that all subjects, regardless of CRT group, performed similarly poorly in the separate presentation mode. 

In the joint presentation mode, low and medium CRT subjects do not significantly improve, while high 

CRT subjects are better able to evaluate the large 16-item choice set and improve significantly when they 

can compare all options simultaneously. Indeed, a plausible explanation for the superior performance of 

joint presentation is that it makes cross-option comparisons easier. With separate presentation modes, the 

subject must recall previous options. This is a difficult task. While strategies for doing this may exist, it is 

not clear subjects realize that they should or could be applying them. 

 

4.2  Optimality of Response Modes  

For a fixed presentation mode, we can also consider whether one response mode performs systematically 

better than the others. Fixing the presentation mode at joint presentation of alternatives we observe that 

choice performed significantly better than pricing in terms of efficiency (two-tailed Wilcoxon signed rank 

test, p < 0.01). Neither the difference in efficiency between choice and rating or between rating and pricing 
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was significant. Within CRT groups, only the differences in efficiency for the low CRT group were 

significant: Choice outperformed rating (p < 0.05, two-tailed Wilcoxon signed rank test) and choice 

outperformed pricing (p < 0.01, two-tailed Wilcoxon signed rank test). The size of the effect is also large 

with the low CRT group performing more than one full rank better in the choice response mode than in 

either the rating or pricing response modes, as can be seen in Table 2.  

       None of the differences in percentage of optimal assignments were significant for different response 

modes. However, the pattern that choice performs better than rating and that rating performs better than 

pricing is persistent in our data, even though these differences are usually small and not significant. For 

instance, for all 120 subjects, we consistently observe that under joint presentation, choice outperforms 

rating and rating outperforms pricing for each of the three metrics we use. The money-left-on-the-table 

metric reveals that, fixing the presentation mode at joint presentation, the simple choice architecture leaves 

less money on the table than the pricing architecture (p < 0.01, two-tailed Wilcoxon signed rank test).  

       Under separate presentation, we again find that rating outperforms pricing for all 120 subjects for each 

of the three metrics. Moreover, in our study of choice, rating, and pricing tournament architectures with a 

different group of subjects (see Section 7), we observe the same ranking across response modes for each of 

the three metrics. Surprisingly, in every comparison involving all subjects, for each of our performance 

measures, we find the ranking that choice performs better than rating which performs better than pricing.  

The persistent ranking of response modes we observed is consistent with the possibility that people 

perform better on more constrained response modes than those that permit a larger range of possible 

responses for each option. For joint presentation, choice requires only one discrete response, which is more 

constrained than rating which permits seven possible ratings per option, which in turn is more constrained 

than pricing which permits any response between $0.00 and $20.00 per option. Indeed, for the joint 

presentation mode, we can rank all three response modes and observe overall behavior consistent with this 

ranking of ‘constrained responses’ for both the optimality and efficiency metrics (with choice 

outperforming rating and rating outperforming pricing). One reason more constrained response modes 

induce better performance might be that they reduce the complexity of the choice architecture. For rating 
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and pricing, subjects are confronted with complex options (each contingent on 12 possible states6), a 

complex choice set (16 options), and a complex response mode (seven possible ratings or many more 

possible valuations). The choice response mode minimizes this added layer of complexity, so subjects need 

only deal with the complexities of the options and the choice set. 

4.3  Heterogeneity in Cognitive Reflection and Performance  

From Table 2 and Figures 2 and 3, we see that the choice tournament performed best in terms of efficiency 

optimality, and money left on the table, validating its performance in Besedeš et al. (2015). However, this 

difference is not significant when comparing the choice tournament to the choice joint architecture or to the 

rating joint architecture. Moreover, the low CRT group generally performed best in the task of making one 

choice from all 16 options simultaneously, although this performance was not significantly better than the 

performance on the choice tournament. We also observe remarkable predictive power of the CRT in sorting 

out subject performance (see also, for example, Table 2 and Figures 2 and 3), regardless of the architecture. 

High CRT subjects achieved 78.6% optimal choices averaged across all architectures, but this reduces to 

69.4% for the moderate CRT group and to 53% for the low CRT group (The difference in optimal choices 

between high CRT and low CRT subjects is significant (p < 0.02; two-tailed difference in proportions test), 

but the difference between either of these groups and the moderate CRT group is not). The money left on 

the table, as shown in Table 5, is particularly large for the low CRT group (resulting in more than an 8 

percentage point loss in the probability of winning, on average across all architectures relative to choosing 

optimally). While in our experiment this is not a large amount of money (a little more than $1.50), an 8% 

loss in wealth due to poor financial investing, or due to suboptimal selection of one’s healthcare plan or 

insurance policy could be a significant amount of money over time. In contrast, the high CRT group leaves 

very little on the table.  

 

                                                      
6 We varied the complexity of response and presentation modes and kept the complexity of the options fixed. Huck 
and Weizsacker (1999) analyze deviations from expected value maximization by varying the complexity of lotteries.  
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4.4 Response Time 

 The experimental software recorded the response time for each subject and for each architecture. 

The median response times across choice architectures and CRT groups are presented in Table 3. Across 

all 120 subjects, we see that the joint pricing task had the longest median response time, requiring slightly 

more than three minutes for the median subject. In contrast, the joint choice task had the smallest median 

response time, requiring less than one and a half minutes for the median subject. These differences are 

highly statistically significant: The joint pricing architecture has a significantly longer distribution of 

response times than either rating architecture or the simple choice architecture (all p < 0.001, two-tailed 

Wilcoxon signed rank test). The difference in response times between the two pricing architectures and 

between the joint pricing task and the tournament architecture were not significant. 

Table 3. Median Response Times (in seconds) across CRT Groups and Choice Architectures 

CRT Group Tournament Choice Rating All Pricing All Rating separate Pricing separate 

Low 159.77 78.96 153.75 158.70 140.68 169.02 
Medium 167.79 79.05 131.02 177.19 125.09 128.72 
High 185.12 78.47 149.98 206.51 139.29 185.09 
All subjects 172.33 78.96 149.98 180.29 135.19 160.60 

 

 The simple choice architecture had significantly faster response times than any of the other 

architectures (all p < 0.001, two-tailed Wilcoxon signed rank test). It is not surprising that the choice 

architecture was fastest given that it required only a single response, whereas the other architectures 

required multiple ratings, prices, or choices. However, it is surprising how well the choice architecture 

performs given it is more efficient on the time dimension.  

 One might evaluate choice architectures on multiple dimensions such as the average rank assigned 

by the architecture (efficiency in terms of outcomes) and the time required by the architecture (efficiency 

in terms of time). For architectures evaluated on these two dimensions, we propose that a choice architecture 

A, strictly dominates another architecture B, if A provides a more efficient welfare ranking in a shorter 

amount of time. Comparing the median response times across all subjects in Table 3 and the average rank 

of assigned options in Table 2, we see that the simple choice architecture strictly dominates all rating and 
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pricing architectures (it assigns both a lower average rank and requires a shorter median response time). 

Moreover, when accounting for the time dimension, the simple choice architecture is not dominated by any 

other architecture since the only architecture with a lower average rank (the choice tournament architecture) 

had more than twice as long a median response time as the simple choice architecture.  

4.5 Pricing Strategies 

 While the previous section discussed heterogeneity in performance due to cognitive reflection, this 

section considers heterogeneity in strategies (e.g., for pricing options in the choice set) due to cognitive 

reflection. Figures 4, 5, and 6, display the strategies each subject used for the low, medium, and high CRT 

groups, respectively, in pricing all 16 options in both the all-at-once task (solid red lines) and the one-at-a-

time task (dotted blue lines). Each figure displays the prices (between $0.00 and $20.00) provided by each 

subject for each option sorted in descending order from best to worst (A through P). For the pricing all-at-

once task, a clear pattern that emerges with some regularity is a strategy that prices the best option higher 

than all of the others and assigns all other options the same price. This strategy may conserve cognitive 

resources as once the best option is identified, there is no need to deliberate how to assign prices to each of 

the inferior options. We refer to this strategy as an “L” strategy since it visually appears in the shape of the 

letter L. From Figure 4, we see that three out of 42 low CRT subjects used a perfect L strategy. Three of 38 

medium CRT subjects used a perfect L strategy as can be seen from Figure 5, while eight of 40 high CRT 

subjects used a perfect L strategy in Figure 6. There are also several additional subjects who used a strategy 

that could be termed a “noisy L” in which there is some oscillation in the horizontal portion of the L. For 

the pricing one-at-a-time task, an L strategy is unlikely to appear since prices are provided sequentially and 

a subject could not know if a better option was forthcoming. Indeed, the pattern that emerges from the 

pricing one-at-a-time task is one that more closely mimics that which would arise from pricing each option 

at its expected value, although for some subjects the pricing-one-at-a-time strategy closely parallels their 

pricing-all-at-once strategy. We show in Section 8 that, as suggested by Figures 4, 5, and 6, correlations 

between prices and expected values are higher for the ‘price one-at-a-time’ task than for the ‘price all-at-

once’ task in our primary study.  
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Figure 4. Pricing Strategies in Joint (Solid) and Separate (Dotted) tasks for Low CRT Subjects 

(Option (A – P) on Horizontal Axis; Price ($0 - $20) on Vertical Axis)
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Figure 5. Pricing Strategies in Joint (Solid) and Separate (Dotted) tasks for Medium CRT Subjects 

(Option (A – P) on Horizontal Axis; Price ($0 - $20) on Vertical Axis)
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Figure 6. Pricing Strategies in Joint (Solid) and Separate (Dotted) tasks for High CRT Subjects 

(Option (A – P) on Horizontal Axis; Price ($0 - $20) on Vertical Axis)
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4.6 Happiness Rating Strategies 

 While the previous section discussed heterogeneity in pricing strategies, this section considers 

heterogeneity in rating strategies (e.g., for rating options in the choice set) due to cognitive reflection. 

Figures 7, 8, and 9, display the strategies each subject used for the low, medium, and high CRT groups, 

respectively, in rating all 16 options in both the all-at-once task (solid red lines) and the one-at-a-time task 

(dotted blue lines). Each figure displays the ratings (between 1 and 7) provided by each subject for each 

option which are ordered in a descending order from best to worst (A through P). For the rating all-at-once 

task, the L strategy and ‘noisy’ L strategies again emerge with some regularity, in which a subject rates the 

best option higher than all of the others and assigns all other options the same (or approximately the same) 

rating. As noted, this strategy may conserve cognitive resources as once the best option is identified, there 

is no need to deliberate how to assign ratings to each of the inferior options. That such L strategies emerge 

in both the pricing and rating (all-at-once) tasks may suggest that a common decision process guided 

behavior in both tasks, despite the difference in response modes.  As before, L-strategies and noisy L 

strategies appear concentrated among high CRT subjects. From Figure 7, we see that two of 42 low CRT 

subjects used a perfect L strategy, none of 38 medium CRT subjects used a perfect L strategy as can be 

seen from Figure 8, while five of 40 high CRT subjects used a perfect L strategy in Figure 9. In addition, 

many other high CRT subjects used a noisy L strategy. For the rating one-at-a-time task, the pattern that 

emerges more closely mimics that which would arise from assigning ratings that were monotonically 

increasing in the expected value of an option.   
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Figure 7. Rating Strategies in Joint (Solid) and Separate (Dotted) tasks for Low CRT Subjects 

(Option (A – P) on Horizontal Axis; Rating (1 - 7) on Vertical Axis)
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Figure 8. Rating Strategies in Joint (Solid) and Separate (Dotted) tasks for Medium CRT Subjects 

(Option (A – P) on Horizontal Axis; Rating (1 - 7) on Vertical Axis)
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Figure 9. Rating Strategies in Joint (Solid) and Separate (Dotted) tasks for High CRT Subjects 

(Option (A – P) on Horizontal Axis; Rating (1 - 7) on Vertical Axis)
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5.    A Simple Error Rate Model of Decision Quality 

We next consider in more depth the optimal (and efficient) architectures for low, moderate, and high CRT 

groups. For the low CRT group, the simple choice architecture has the highest percentage of optimal 

assignments, the lowest average ranking (highest efficiency), and the smallest amount of money left on the 

table among all architectures. (However, the differences in performance relative to the tournament 

architecture are not statistically significant).7 In terms of efficiency, the simple choice architecture was the 

only architecture for the low CRT group to assign better than the third best of the 16 options, on average. 

Moreover, it assigned nearly a full rank better than the tournament architecture which had the second-best 

efficiency ranking for the low CRT group. In particular, as shown in Table 2, simultaneous choice produced 

an average rank of 2.31 out of 16 options (assigning low CRT subjects nearly the second-best option overall, 

on average). In contrast, the tournament produced an average rank of 3.19, suggesting that choosing among 

all 16 options at once was better for the low CRT group. In terms of optimality, choosing from all 16 options 

at once was the only architecture to produce over 60% optimal assignments for the low CRT group, 

approximately a 7 percentage point improvement over the tournament architecture. We consider the 

implications of these differences in performance for the low CRT group to illustrate how complexity and 

cognitive reflection might lead different architectures to be optimal for different populations, with the 

caveat that the observed differences between the two choice-based architectures are not significant.   

  As can be seen from Table 2 and Figures 2 and 3, the medium and high CRT groups both performed 

best on the tournament architecture. In terms of optimality, tournament offered roughly a 10 percentage 

point improvement over the simple choice architecture for the moderate CRT group, but produced less than 

a 3 percentage point improvement over that architecture for the high CRT group. In terms of efficiency, the 

tournament architecture achieved nearly a full rank better, on average, than the next best architecture for 

                                                      
7 In contrast, the tournament architecture performs significantly better than the simple choice architecture for the 
medium CRT group in terms of efficiency (p < 0.05, two-tailed Wilcoxon signed rank test), but not in terms of the 
percentage of optimal choices. At the aggregate level, the performance of the tournament architecture is not 
significantly different from the performance of the simple choice architecture. 
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the moderate CRT group (two-tailed Wilcoxon signed rank test, p = 0.048), but produced only a 0.20 better 

rank, on average, compared to the next best architecture for the high CRT group.  

  What can explain the higher percentage of optimal assignments and higher efficiency for the simple 

choice architecture for the low CRT group and the better performance of the tournament architecture for 

the higher CRT groups? If the true effect is not entirely due to chance, the better performance of the simple 

architecture for the low CRT group may seem particularly puzzling. Both the simple choice architecture 

and the tournament involve the choice response mode, but the tournament presents only four options at 

once, whereas the simple choice architecture presents all 16 options. Surely if one can choose the best 

option from a set of 16, that person could choose the same best option from a set of 4. Since we have fixed 

the response mode, should we not expect better performance on the tournament architecture since it presents 

the decision maker with fewer options to choose from at each stage?  

  To address these questions we construct a simple error rate model as an interpretive framework for 

understanding the differences in performance between the simple choice and tournament architectures for 

the low, moderate, and high CRT groups. To begin, consider a world with three types of agents – those with 

low, moderate, and high degrees of cognitive reflection (labeled types 𝑙,𝑚, and ℎ, respectively). Suppose 

that for each choice, agents of type 𝜃 ∈ ሼ𝑙,𝑚, ℎሽ have an error rate of 𝜖ఏሺ𝑛ሻ, for choice sets of size 𝑛. It 

seems natural to make the following two predictions: 

(i) 𝜖௟ሺ𝑛ሻ ൐ 𝜖௠ሺ𝑛ሻ ൐ 𝜖௛ሺ𝑛ሻ for any 𝑛. 

(ii) 𝜖ఏሺ𝑛ሻ ൐ 𝜖ఏሺ𝑘ሻ for all 𝑛 ൐ 𝑘, and for all 𝜃 ∈ ሼ𝑙,𝑚, ℎሽ. 

  Prediction (i) is a monotonicity condition on agents. It predicts that agents with higher cognitive 

reflection have smaller error rates. Prediction (ii) is a separate monotonicity condition on the size of the 

choice set. It predicts that for a given level of cognitive reflection, larger choice sets induce larger error 

rates than smaller choice sets. This latter condition may be further augmented to control for the quality of 

the best option relative to the alternatives (admitting the possibility that some choices are inherently easy 

and others are inherently difficult), but given that the same options were used in the large and small choice 
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sets for the tournament and simple choice architectures, this seems unlikely to be an important dimension 

for our experiment.  

  We take the empirically observed percentages of optimal choices in the simple choice architecture 

as providing empirical estimates of the error rates from a 16-option choice set (i.e., as empirical estimates 

of 𝜖ఏሺ16ሻሻ. That is, for the data on the simple choice architecture from Figure 2, we have 1 െ 𝜖௟ሺ16ሻ ൌ

0.619; 1 െ 𝜖௠ሺ16ሻ ൌ 0.737; 1 െ 𝜖௛ሺ16ሻ ൌ 0.875. Next, we seek to estimate error rates for a 4-item choice 

set. Note that error rates for a four-item choice set cannot be determined in the same way as for the 16-item 

choice set, since in the tournament architecture, each subject made five discrete responses (one for each of 

the initial four-option choice sets and one ‘final four’ round). Performance in the three of the four choice 

sets not containing the optimal option is irrelevant to the selection of the optimal alternative. Subjects of 

type 𝜃 thus have error probability 𝜖ఏሺ4ሻ in the first round of the tournament, and if they select the optimal 

option in the round in which it initially appears, they face a second choice among the final four options, 

again with error rate 𝜖ఏሺ4ሻ  (assuming a constant error rate for a given cognitive type and given choice set 

size for simplicity). The overall probability of choosing optimally in the tournament architecture for a 

subject of type 𝜃 is then ሾ1 െ 𝜖ఏሺ4ሻሿଶ. 

    Taking the empirically observed percentages of optimal assignments in the tournament architecture 

as providing empirical estimates of the quantity ሾ1 െ 𝜖ఏሺ4ሻሿଶ, we have ሾ1 െ 𝜖௟ሺ4ሻሿଶ ൌ 0.548; ሾ1 െ

𝜖௠ሺ4ሻሿଶ ൌ 0.842; ሾ1 െ 𝜖௛ሺ4ሻሿଶ ൌ 0.900. Solving for 𝜖ఏሺ4ሻ, we can identify the unique error rates for each 

type which fits the observed data exactly8. Note that this simple model would not fit the observed data 

exactly if 𝜖ఏሺ4ሻ ൐ 𝜖ఏሺ16ሻ, or if it is not the case that 𝜖௟ ൐ 𝜖௠ ൐ 𝜖௛ for either the four-option or sixteen-

option choice set. That is, conditions (i) and (ii) are necessary for this simple error rate model to fit the 

observed data exactly. The implied error rates are displayed in Table 4, from which it is clear that conditions 

(i) and (ii) both hold.        

                                                      
8 Alternatively, we could observe the error rates for four-option choice sets containing the optimal option directly. 
Doing so yields ሺ𝜖௟ሺ4ሻ, 𝜖௠ሺ4ሻ, 𝜖௛ሺ4ሻሻ ൌ ሺ0.260, 0.069, 0.051ሻ which are close to the values in Table 3. That these 
error rates are not identical to those in Table 3 suggests that error rates between rounds may not be independent. 
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               Table 4. Error Rates Inferred from Data 

Type 𝜖ఏሺ4ሻ 𝜖ఏሺ16ሻ 

𝜃 ൌ 𝑙 0.260 0.381 

 𝜃 ൌ 𝑚 0.082 0.263 

𝜃 ൌ ℎ 0.051 0.125 
 

   Using this simple error rate model to interpret the optimal architectures for agents who differ in 

cognitive reflection, we see that low CRT subjects perform best on the simple choice architecture because 

it provides the smallest number of opportunities for error (it requires just one discrete choice response). The 

effect of choice overload, which may be quantified by the difference 𝜖௟ሺ16ሻ െ 𝜖௟ሺ4ሻ ൌ 0.121 (a 12 

percentage point increase in error probability for low CRT subjects when moving from the four-option to 

the sixteen-option choice set) is weaker than the decline in performance due to making multiple choices 

which are prone to error. This latter effect can be quantified by the difference 1 െ 𝜖௟ሺ4ሻ െ ሾ1 െ 𝜖௟ሺ4ሻሿଶ ൌ

0.192 (a 19 percentage point reduction in success probability due to the two-stage tournament procedure). 

Since implied error rates in a four-option choice set are considerably lower for moderate and high CRT 

subjects, choice overload has a comparatively greater effect, making the tournament architecture superior 

to the simple choice architecture for these subjects.   

6.    Identifying Optimal Choice Architectures 

We briefly consider how one might identify the optimal architecture in our experiment, given the 

heterogeneity in performance by CRT scores. Viewing the three different CRT groups as representing 

different populations, we consider three welfare criteria to see if they provide a consensus on which 

architecture should be used by a social planner or policy maker who wants to benefit society.    

  The strongest welfare criterion is Pareto efficiency, which would advocate an architecture that 

makes at least some CRT groups better off without making any group worse off. As we can see from Table 

2 and Figures 2 and 3, none of the architectures is Pareto efficient. The tournament architecture maximizes 

the welfare (in terms of both optimality, average rank assigned, and smallest amount of money left on the 

table) for the medium and high CRT groups, but does so at the expense of the low CRT group whose 
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chances of choosing the best option are reduced by approximately 7 percentage points and whose average 

rank of assigned option worsens by nearly a full rank, relative to the simple choice architecture. 

  The maximin criterion proposed by political philosopher John Rawls (1971) advocates maximizing 

the welfare of the population in society that is least well-off. In our experiment, this criterion would 

recommend the architecture in which subjects make one direct choice from the large choice set as it 

improves the welfare of the low CRT group who have the lowest welfare in terms of probability of 

optimality, average rank of assigned option, and money left on the table, relative to the other CRT groups. 

  The utilitarian criterion of Harsanyi (1955) would recommend choosing the architecture that 

maximizes the average social welfare. In many cases it is difficult to clearly infer which policy is optimal 

in this regard since it requires knowledge of the utilities of all members in society which are difficult to 

observe. However, in our experiment, since we can rank all options by stochastic dominance, Harsanyi’s 

criterion makes the unambiguous recommendation for the tournament-style architecture as it optimizes both 

the average probability of choosing the optimal option and the average rank assigned, when taking into 

account all participants in the experiment.    

  The Kaldor-Hicks criterion (Hicks, 1939; Kaldor, 1939) views an outcome to be efficient if the 

group that benefits could in principle compensate the group that is made worse off to produce a Pareto 

improvement, even if such compensation does not actually occur. If welfare was evaluated based on money 

left on the table, then the tournament architecture is Kaldor-Hicks efficient since the medium CRT group 

and the high CRT group could each compensate the low CRT group such that everyone is better off under 

the tournament architecture. For instance, the medium CRT group could pay one percentage point in the 

probability of winning to the low CRT group in which case money left on the table would be 0.057 for the 

low CRT group, 0.036 for the medium CRT group, and 0.013 for the high CRT group. In contrast, the low 

CRT group cannot compensate the others to make the simple choice architecture Kaldor-Hicks efficient.   

  Finally, note that if one is able to engage in ‘architecture differentiation’ by providing different 

architectures to the different CRT groups, the low CRT group would be assigned the simple choice 

architecture, and the medium and high CRT groups would both be assigned the tournament architecture. 
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This assignment holds regardless of whether we seek an architecture that maximizes the probability of 

choosing the optimal option, or that maximizes efficiency, or that minimizes the amount of money left on 

the table. Under this assignment of architectures, the average rank of the option assigned across all members 

of society (or at least across all subjects in our experiment) would improve by 15% from 2.05 to 1.75.  

7.   Study with Choice, Rating, and Pricing Tournaments 

 In our primary study described in the preceding sections, a ‘tournament’ style architecture was 

conducted only for the choice response mode. This was done for two reasons. First, the main objective of 

that study was to focus on ways different response modes are most often presented in practice. The choice 

tournament was included due to its previous success in lab experiments as a means to measure the success 

of other architectures should they have outperformed choice all – at – once. Second, we worried about 

fatigue or boredom impacting subjects if they were asked to do too many tasks. However, given the success 

of the tournament presentation mode with the choice response mode, it is worth directly investigating the 

performance of other response modes in a tournament structure. In this section we report the results of an 

additional study we ran for this purpose. In particular, we conducted tournaments for choice, rating, and 

pricing response modes. 

7.1 Experimental Design for Choice, Rating, and Pricing Tournaments 

Using a within-subjects design, we conducted a study with three choice architectures – a choice tournament, 

identical to the one used in the primary study described above, as well as a ‘happiness rating’ tournament 

and a ‘pricing’ tournament architecture. In all three tournament architectures, subjects were presented with 

four options (out of sixteen) on each screen, and they were asked to either choose one of the options or rate 

each option on a happiness scale or assign a price to each option. The option selected or assigned the highest 

rating or the highest price for each four-option set was sent to a ‘final four’ round, where subjects were then 

asked to choose or rate or price each of the options in the final four round. Ties (which could occur in rating 

and pricing tournaments but not in the choice tournament) were broken randomly.   

The sixteen options in this study were the same as those used in the primary experiment, but only 

the first three PDF’s (from Table 1) were used in this study. The payment protocol was the same as in the 
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primary experiment with subjects receiving either $0 or $20 depending on how much they earned in the 

one task that was randomly selected for payment. After all three tasks were completed, subjects completed 

a survey, received payment in private, and were dismissed from the study. Sixty new subjects were recruited 

for this study.  

7.2 Results for Choice, Rating, and Pricing Tournaments 

Summary statistics for the study of choice, rating, and pricing tournaments are given in Table 5. In addition 

to the different CRT distribution relative to our primary study, this follow-up study had slightly younger 

subjects (average age of 19.2 years in the primary study and 18.6 years in this tournament study), and fewer 

male subjects (there were 61 males of 120 subjects in the primary study and 19 males of  60 subjects in this 

tournament study).   

Table 5. Results from Choice, Rating, and Pricing Tournaments 

                                    Average Rank of Assigned Option 

CRT Group Number of subjects      Select Optimal Rate Optimal Price Optimal 

Low  32 3.344 4.625 3.969 

Medium 12 3.333 3.333 3.583 

High  16 2.563 2.813 4.500 

Overall 60 3.133 3.883 4.033 
 

                                      Percentage of Optimal Assignments 

CRT Group Number of subjects Select Optimal Rate Optimal Price Optimal 

Low  32 0.469 0.375 0.375 

Medium  12 0.583 0.583 0.500 

High  16 0.813 0.750 0.375 

Overall 60 0.583 0.517 0.400 
                                       

                                      Money Left on the Table 

CRT Group Number of subjects Select Optimal Rate Optimal Price Optimal 

Low  32 0.094 0.138 0.112 

Medium  12 0.085 0.085 0.098 

High  16 0.061 0.072 0.129 

Overall 60 0.083 0.110 0.114 
 

We make two observations: First, for the tournaments, choice performs better than rating which performs 

better than pricing. This is the same ranking we observed across all three response modes in the all-at-once 
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tasks from the primary study and it is also the ranking we observed between rating and pricing in the one-

at-a-time tasks from the primary study. Thus, although the differences are not always large, we consistently 

observe that the choice response mode performs better than ratings which performs better than prices. As 

noted in Section 4.2, this might be due to choice response modes being simpler in that there are fewer 

possible responses that the decision maker can provide, whereas rating and pricing response modes have a 

larger ‘message space.’ Second, we find that high CRT subjects do much better than low CRT subjects in 

the choice and rating tournaments, but not in the pricing tournament, although with only 16 high CRT 

subjects in this study it is difficult to draw strong conclusions. While these trends replicate our qualitative 

findings from the primary study, we also observe that performance was lower in the choice tournament in 

this new study, with only 58.3% of subjects selecting the optimal option. Part of this drop was due to the 

larger proportion of low CRT subjects who comprised approximately one third of the primary study but 

constituted over half of the subjects in this follow-up study. In addition, we observe little variation in the 

amount of ‘money left on the table’ across tournament architectures. The higher amount of money left on 

the table for the choice tournament, relative to our primary study, may also partly reflect the differences in 

the demographics of our subjects between studies as noted above.  

8. Incentivized Pricing Study 

The numerical values of the price responses discussed in the previous sections of this paper were 

not incentivized. That is, although the subject had to bear the consequences of the option selected based 

upon the subject’s stated prices, the subject did not actually have to pay the stated price. That is, those prices 

gave an ordinal but not a cardinal ranking.  It is plausible that incentivized pricing may lead people to think 

more earnestly about how much a given option is worth and thus lead to optimal decision making. In this 

section we describe an additional study that was conducted to examine this issue directly. 

8.1  Experimental Design for Incentivized Pricing Study 

This study used a within-subject design that involved two presentation modes: one-at-a-time and 

all-at-once. In both cases, the subject is required to enter 16 prices that each represent the maximum amount 

the subject is willing to pay for one of the respective 16 options. The two tasks were presented in random 
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order and the two pdfs that were observed were drawn randomly without replacement from the 6 pdfs 

described in Table 1 for the primary study. The option labels and card numbers were randomized for each 

subject as in the other studies discussed above. After both tasks were completed, one task was randomly 

selected to determine the subject’s actual payoff. The subject then completed the survey, received payment 

in private and was dismissed from the study. Sixty new subjects were recruited for this study.  

After a subject enters a price for each of the 16 options in the task, a random price was drawn 

independently for each option. The computer automatically determined which option yielded the greatest 

revealed surplus to the subject and this is the option that was selected for the subject. The subject was 

required to pay the random price associated with the selected option, shuffled the deck of cards, and then 

drew a card from the deck to determine if the subject earned the additional payment. Formally, let 𝑊𝑇𝑃௜ 

and 𝑃௜ denote a subject’s stated willingness to pay and the random price for Option 𝑖. Option 𝑖∗ was selected 

for the subject where 𝑖∗ ≡ argmax
௜

ሺ𝑊𝑇𝑃௜ െ 𝑃௜ሻ. This procedure is such that it is incentive compatible for 

subjects to truthfully reveal their willingness to pay for each option, but it also means that subjects are 

unlikely to end up actually purchasing the option that they indicated is their most preferred (i.e. the one 

they priced the highest).      

Because a subject had to be able to actually pay for the selected option, for each task a subject was 

given an endowment. To keep the total stakes comparable to those in the other tasks presented in this paper, 

the additional payment from an option was reduced to $10. Thus, the prices were randomly drawn from the 

uniform distribution from $0.00 to $10.00. For this reason the endowment was set to $10. Hence, the 

earnings of a subject in a given tasks were $10 - 𝑃௜∗ if the subject failed to select a card contained in the 

selected option and $10 - 𝑃௜∗ + $10 if the subject selected a card that was contained in the selected option.   

8.2  Results for Incentivized Pricing Study 

 Due to the smaller sample sizes for each CRT group relative to our baseline study (with no CRT 

group having more than 30 subjects), we refrain from attempting to identify statistically significant 

differences for each group in this section. Across all subjects, we find that the differences in average rank 
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and in the percentage of optimal choices induced by the incentivized pricing task are not significantly 

different for the joint and separate presentation modes.  

Relative to the primary experiment, we do find that the elicited prices in the incentivized pricing 

study were more highly correlated with the expected values of the lotteries. Table 6 displays the median 

correlation coefficient between the pricing tasks and the expected values of the lotteries as well as between 

the two pricing tasks for each CRT group and across all subjects. This data is provided for both the primary 

study and the incentivized pricing study. For the primary study, the median correlation coefficient for each 

CRT group is higher in the pricing one-at-a-time task than in pricing the options all at once, indicating that 

subjects were more likely to price lotteries in a ranking consistent with their expected values when evaluated 

in isolation.  In addition, the correlation within subjects between pricing tasks is higher for the high CRT 

group (0.556) than for the medium CRT group (0.480) and the low CRT group (0.262) in the primary study, 

suggesting that subjects with higher CRT scores were more consistent in their pricing strategies across the 

one-at-a-time and all-at-once tasks. 

For the incentivized pricing study, in the pricing ‘one-at-a-time’ task, the median correlation 

coefficient for correlating the expected values of the lotteries to subjects’ elicited prices increases from 

0.664 for the low CRT group to 0.914 for the high CRT group. For the pricing ‘all-at-once’ task, the median 

correlation coefficient increases from 0.568 for the low CRT group to 0.860 for the high CRT group. These 

results are shown in Table 6 along with the median correlation coefficient for elicited prices between tasks.  

Table 6 also reveals that the low CRT group was largely unaffected by incentives with similar correlations 

in the primary study and the incentivized pricing study described in this section. The incentivized pricing 

study did however produce more consistent rankings for the low CRT group with correlations within 

subjects and between tasks increasing from 0.262 in the primary study to 0.473 in the incentivized pricing 

study. Incentives also increased the correlation between elicited prices and expected values for both the 

medium and high CRT groups.  From Table 6, we also see that for the incentivized pricing study, the median 

correlation coefficient for correlating the joint and separate pricing tasks is much higher for the high CRT 

group than for the other groups, which was also observed in the primary study.  
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In addition to the different CRT distribution relative to our primary study, this follow-up study had 

slightly younger subjects (average age of 19.2 years in the primary study and 18.4 years in this pricing 

study), and fewer male subjects (there were 61 males of 120 subjects in the primary study and 25 males of  

60 subjects in this pricing study).   

Table 6. Median Correlations between Pricing Tasks and Expected Values 

                     Median Correlations between Pricing Tasks and Expected Values in Primary Study 

CRT 
Group 

Number of 
Subjects 

EV vs. Pricing  
One at a Time 

EV vs. Pricing  
All at Once 

Pricing One a Time vs. 
Pricing All at Once 

Low  38 0.625 0.515 0.262 
Medium 35 0.640 0.622 0.480 
High 40 0.630 0.517 0.556 
Overall 113 0.627 0.563 0.401 

 

                       Median Correlations between Pricing Tasks and Expected Values in Incentivized Study 

CRT 
Group 

Number of 
Subjects 

EV vs. Pricing  
One at a Time 

EV vs. Pricing  
All at Once 

Pricing One a Time vs. 
Pricing All at Once 

Low  30 0.664 0.568 0.473 
Medium 22 0.771 0.740 0.441 
High 5 0.914 0.860 0.872 
Overall9 57 0.750 0.642 0.506 

 

 Metrics of performance on the incentivized pricing task are shown in Table 7.  The option that is 

actually selected in this study depends on 16 random prices and is not actually informative with regards to 

the quality of decision making. What one really cares about is the option with the highest stated willingness 

to pay.  For ease of exposition and to facilitate comparison to the primary study, we refer to the option with 

the highest stated price as the assigned option.10   

Between subjects, we find that incentives do not affect the percentage of optimal assignments for 

the low CRT group (0.391 from the primary study vs. 0.392 with all options incentivized) for pricing one 

                                                      
9 Seven subjects in the primary study and one subject in the incentivized pricing study had correlation coefficients that 
were undefined (they assigned the same price to all options) and so are not included in the statistics in Table 6. Two 
subjects in one session did not enter their ID number into the survey and so we could not link their CRT scores to their 
pricing data. The software for conducting this study differed from the software for the other two which automated the 
link between the task and the survey.  
10 In expectation, the option with the highest stated price is the most likely to be assigned since prices are drawn from 
the same distribution for each option.   
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at a time and (0.530 from the primary study vs. 0.507 with all options incentivized) for pricing all at once. 

The average rank for pricing one at a time for the low CRT group also is very similar to that from the 

primary experiment (4.658 with optimal option incentivized vs. 4.675 with all options incentivized).  

Incentives appear to improve the average rank for the low CRT group when considering all options at once 

(3.976 with optimal option incentivized vs. 2.926 with all options incentivized).  

For the medium CRT groups, the percentage of optimal assignments in the all-at-once pricing task 

was higher in the primary study (0.665) than in the incentivized study (0.411) and the average rank was 

also better in the primary study (3.278) than in the incentivized study (3.582).  However, the percentage of 

optimal assignments in the one-at-a-time pricing task was higher in the incentivized study (0.633) than in 

the primary study (0.587).  The average rank for the one-at-a-time task was also better in the incentivized 

study (2.659) than in the primary study (3.177). 

Incentives appear more effective for the high CRT group, although it is difficult to draw 

conclusions with so few subjects. The data at least suggests that incentives can improve the performance of 

high CRT subjects on the one-at-a-time task (60.1% optimal assignments with optimal option incentivized 

vs. 70% with all options incentivized). Similarly, the average rank of assigned options is much better for 

the one-at-a-time pricing task with all options incentivized than it is with only the optimal option 

incentivized (average ranks of 1.30 vs. 3.52, respectively). Indeed, the average rank of 1.30, if it holds for 

a larger group of high CRT subjects, could make the incentivized pricing one-at-a-time task competitive 

with the choice tournament. In contrast, the percent of optimal assignments is lower for the high CRT group 

in the all-at-once task than for the low CRT group, but that is also likely due to small sample size.    

Table 7. Average Rank and Percent of Optimal Assignments for Incentivized Pricing Tasks 

  Average Rank of Assigned Options Percent of Optimal Assignments 
CRT Group Subjects One at a Time All at Once One at a Time All at Once 

Low 30 4.675 2.926 0.392 0.507 
Medium 23 2.659 3.582 0.633 0.411 

High 5 1.300 2.250 0.700 0.250 
Overall 58 3.585 3.127 0.514 0.447 
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9.  Discussion      

In Section 2, we laid out five questions that our study was intended to answer. With regard to 

question (i), our results show people perform better when presented with all options simultaneously rather 

than in isolation. With regard to (ii), we find some evidence that more numerical or calculation-based 

response modes (such as a monetary valuation task) do not improve decision making relative to more 

qualitative or feeling-based response modes (such as a happiness rating task). With regard to (iii), we find 

that, in general, more constrained response modes (those with fewer possible responses per option) perform 

better than less constrained response modes. With regard to (iv), we find that heterogeneity in cognitive 

reflection is remarkably effective in sorting out heterogeneity in performance across architectures. When 

using percentage of optimal choices and money left on the table as metrics, those with higher levels of 

cognitive reflection consistently perform better than those with lower levels of cognitive reflection across 

all six architectures in our experiment. Also participants who differ in cognitive reflection do not perform 

best on the same architectures. We find that the simple choice architecture (where all options are presented 

simultaneously) induces the best overall decisions for subjects with low cognitive reflection, and that the 

sequential tournament performed best for subjects with moderate to high cognitive reflection. The rankings 

observed for the above results are generally consistent across our three performance metrics (proportion of 

optimal responses, average welfare ranking, and money left on the table). With regard to (v), we find that 

no architecture is Pareto efficient and the optimal architecture depends on one’s preferred welfare criterion. 

In particular, Rawls’ maximin criterion recommends implementing the simple choice architecture, whereas 

Harsanyi’s utilitarian criterion recommends implementing the sequential tournament architecture.   

More broadly, there has been relatively little research assessing the optimality of different features 

of a choice architecture. The possible components of a choice architecture that are behaviorally relevant are 

well known and include, for instance, the frame of a decision, and the presence of a default option, in 

addition to the response mode and presentation mode. Thus far the literature on framing and default options 

has largely focused on inconsistencies or preference reversals (Thaler 1980, Tversky and Kahneman, 1981) 

rather than on which frames or default options might induce better decisions.  There have been a few 
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exceptions: see Read et al. (2005) on temporal frames which induce more patient behavior; Thaler and 

Benartzi (2004) on improving savings decisions by systematically modifying the default option; and 

Johnson and Goldstein (2003) on how default options can save lives through increased organ donations. 

As noted earlier, previous research has studied preference reversals across response modes (e.g., 

Lichtenstein and Slovic, 1971; Grether and Plott 1979; Tversky et al., 1990; Slovic et al., 2007), and 

preference reversals across presentation modes (e.g., Hsee 1996; Hsee et al., 1999; Hsee and Zhang, 2010). 

However, little research has focused on the optimality of response modes or presentation modes11. Our 

design enables us to test both of these features of a choice architecture in individual decisions, within 

subjects, providing evidence that choice outperforms happiness ratings, which outperforms pricing, holding 

the presentation mode fixed, and that joint presentation yields better performance than separate 

presentation, holding the response mode fixed. 

Surprisingly, we also found that for subjects with low cognitive reflection, choosing among more 

options at a time produced higher decision quality than choosing directly from a smaller choice set. This 

observation illustrates a fundamental tradeoff between presentation complexity and response complexity: 

For a fixed set of alternatives, a choice architecture designed with smaller presentation sets must also be 

designed to elicit multiple responses. If error rates are sufficiently high, as they appear to be for the low 

cognitive reflection subjects in our experiment, then smaller presentation sets can reduce decision quality 

because they present multiple opportunities for error. 

Fernandes et al. (2014) observe, “Public policy tools drawn from economics point to three broad 

classes of interventions to help consumers make better decisions: offering more choices; providing better 

information to consumers about options they might consider; and providing incentives for consumers or 

sellers to change their behavior.” Our results suggest that a fourth class of interventions – those which 

manipulate the structure of the decision task (e.g., the presentation mode or response mode) or the flexibility 

                                                      
11 But see Hsee (1998) and List (2002) on between-subject valuations for a dominant and a dominated option, and see 
Bohnet et al. (2015) on using joint presentation mode to improve profit maximizing performance evaluation 
procedures by corporations. 
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of the decision task (e.g., the range of possible responses permitted by the architecture) can also be effective 

in improving decisions. In addition, our findings suggest that performance is best on choice tasks, perhaps 

because they are simple, familiar, and intuitive. It is also important to know the population for whom the 

architecture is being designed, as our results pertaining to heterogeneity in cognitive reflection suggest that 

there is not one architecture which consistently optimizes performance for everyone. Knowing the 

population the choice architect is trying to help may lead to improved tradeoffs among design features when 

engineering choice architectures to optimize decision quality.  
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