
CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

Homework 1 - Tools and Cache-friendly
programming
Due: Jan 22 @ 4:55pm on Canvas
Deliverables: Code and writeup

This homework is a hands-on exercise that will try several of the coding tools available
on PACE ICE, the Georgia Tech instructional cluster. We will be using the tools to study
dense matrix multiplication. You should use this assignment to become familiar with the
tools that we will be using throughout the course.

For this homework, we will be focusing on optimizing and using tools on serial code.
Do not use multithreading or multiple nodes.

Your homework should be completed individually (not in groups).

Code and some parts of the exercises are from MIT 6.172.

Setup
This section will explain how to get onto the computing environment, download, and run
the code.

Log into PACE ICE
Please check this Getting Started with ICE guide, which has useful information about
how to use the instructional cluster.

The first step is to log on, which you should be able to do since you are registered for
this course. If there are any issues, please contact the course staff.

You will also need to be connected to Georgia Tech's VPN to use either ssh or
OnDemand. Connect to the client-based GlobalProtect VPN before attempting to
access PACE resources.

1

https://ocw.mit.edu/courses/6-172-performance-engineering-of-software-systems-fall-2018/
https://gatech.service-now.com/home?id=kb_article_view&sysparm_article=KB0042102
https://gatech.service-now.com/home?id=kb_article_view&sysparm_article=KB0042139


CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

From the terminal
If you are familiar with computing terminals (e.g., Windows Powershell or Mac terminal),
you can use it to access the cluster via SSH to login-ice.pace.gatech.edu. Connect
with your GT username and password.

From the terminal, enter ssh <your-username-here>@login-ice.pace.gatech.edu,
then provide your GT password at the prompt. No asterisks will appear, so enter your
password then <Enter>.

For example, ssh hxu615@login-ice.pace.gatech.edu.

From the web-based interface
You can also access ICE through a web browser (requires VPN connection as
described above).

Access it here: https://ondemand-ice.pace.gatech.edu/

Getting the code
Clone from the git repo:

$ git clone https://github.com/cse6230-spring24/hw1.git

Homework submission instructions
There are two parts to the homework: a writeup and the code. The writeup should be in
pdf form, and the code should be in zip form. You can submit multiple files - you should
submit 2 - by choosing “+ Add Another File” in Canvas under “Homework 1.”

To get the code from PACE ICE to your local machine to submit, first zip it up on PACE
ICE:

$ zip hw1.zip hw1/

Then from the terminal (or terminal equivalent) your local machine (e.g., your personal
laptop), scp the code over.

$ scp <your-username-here>@login-ice.pace.gatech.edu:<path-to-hw1.zip>

<local-file-location>

2

https://ondemand-ice.pace.gatech.edu/


CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

For example, if I had hw1.zip in my home directory on PACE ICE and wanted to copy it
into my current directory on my local machine, I would run:

$ scp hxu615@login-ice.pace.gatech.edu:~/hw1.zip .

Note: There is not a lot of space available on the home directories on PACE ICE. Each
Pace-ICE user is also provided with a local scratch directory (at ~/scratch) where they
should store their files.

Cluster basics (from PACE ICE documentation)
There are two types of machines on PACE ICE: head nodes and compute nodes.

Head nodes
● Where you log in
● Submit jobs from here
● Can edit and compile small-scale programs
● Access storage
● Login nodes are shared by all. Please do not use the login nodes for any

resource-intensive activities, as it prevents other students from using the cluster.
PACE will stop processes that continue for too long or use too many resources,
in order to ensure functionality of the login node. Please use a compute node for
all computational work. An interactive job provides an interactive environment on
a compute node for debugging and other resource-intensive activities.

Compute nodes

● For running all computations
● Assigned by the scheduler and accessed only when assigned
● Access storage
● May vary in their computational capability

To complete the homework, you probably want to use an interactive job, which allows
interactive use so you can work “live” on a compute node. Here is the documentation for
how to start one of these jobs.

For example, the following command uses salloc to allocate 1 node with 4 cores for 1
hour for an interactive job:

3

mailto:hxu615@login-ice.pace.gatech.edu
https://gatech.service-now.com/home?id=kb_article_view&sysparm_article=KB0042096#interactive-jobs
https://gatech.service-now.com/home?id=kb_article_view&sysparm_article=KB0042096#interactive-jobs


CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

$ salloc -N1 --ntasks-per-node=4 -t1:00:00

Since this homework focuses on single-node and single-threaded code, you only need
to ask for one node and 1 task per node.

Part 0: Building and running the code
Part 0 and 1 of this homework requires gcc/10.3.0-o57x6h, which is loaded by default
on PACE.

To compile the code, go into the homework directory and type make. That is, from the
directory where you cloned the homework, type:

$ cd hw1

$ make

You should see some output like:

gcc -O1 -DNDEBUG -Wall -std=c99 -D_POSIX_C_SOURCE=200809L -c testbed.c

-o testbed.o

gcc -O1 -DNDEBUG -Wall -std=c99 -D_POSIX_C_SOURCE=200809L -c

matrix_multiply.c -o matrix_multiply.o

gcc -o matrix_multiply testbed.o matrix_multiply.o

Notice that we are compiling with optimization level 1 (i.e., -O1).

Exercise: Modify the Makefile so that the program is compiled using optimization level
3 (i.e., -O3).

You can then run the built binary by typing ./matrix_multiply. The program should
print out something then crash with a segmentation fault.

4



CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

Part 1: Debugging

Using GDB
While running your program, if you encounter a segmentation fault, bus error, or
assertion failure, or if you just want to set a breakpoint, you can use the debugging tool
GDB.

Exercise: Start a debugging session in GDB:

$ gdb –args ./matrix_multiply

This command should give you a GDB prompt, at which you should type run or r:

$ (gdb) run

Your program will crash, giving you back a prompt, where you can type backtrace or
bt to get a stack trace:

(You may see an error like “Missing separate debuginfos, use: debuginfo-install
glibc-2.17-326.el7_9.x86_64” - it is ok to ignore the error.)

This stack trace says that the program crashes in matrix_multiply_run, but doesn’t
tell any other information about the error. In order to get more information, build a
“debug” version of the code. First, quit GDB by typing quit or q. Next, build a “debug”
version of the code by typing make DEBUG=1:

5



CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

The major differences from the optimized build are ‘-g’ (add debug symbols to your
program) and ‘-O0’ (compile without any optimizations). Once you have created a
debug build, you can start a debugging session again:

Now, GDB can tell that a segmentation fault occurs at matrix_multiply.c line 90. You
can ask GDB to print values using print or p:

6



CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

This suggests that B->values[4] is 0x0, which means B doesn’t have row 5. There is
something wrong with the matrix dimensions.

Using assertions
The tbassert package is a useful tool for catching bugs before your program goes off
into the weeds. If you look at matrix_multiply.c, you should see some assertions in
matrix_multiply_run routine that check that the matrices have compatible
dimensions.

Exercise: Uncomment these lines and a line to include tbassert.h at the top of the
file. Then, build and run the program again using GDB. Make sure that you build using
make DEBUG=1. You should see:

Now, GDB says that “Assertion ‘A->cols == B->rows’ failed”, which is much
better than the former segmentation fault. The assertion provides a printf-like API that
allows you to print values in your own output, as above. However, even if you don’t print

7



CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

values in your assertions, the debug build still has the symbols for GDB, as above.
Unlike the above, however, if you try to print A->cols, you will fail. The reason is that
GDB is not in the stack frame you want. You can get the stack trace to see which frame
you want (#3 in this case), and type frame 3 or f 3 to move to frame #3. After that, you
can print A->cols and B->cols.

You should see the values 5 and 4, which indicates that we are multiplying matrices of
incompatible dimensions.

You will also see an assertion failure with a line number for the failing assertion without
using GDB. Since the extra checks performed by assertions can be expensive, they are
disabled for optimized builds, which are the default in our Makefile. As a result, if you
make the program without DEBUG=1, you will not see an assertion failure.

You should consider sprinkling assertions throughout your code to check important
invariants in your program, since they will make your life easier when debugging. In
particular, most nontrivial loops and recursive functions should have an assertion of the
loop or recursion invariant.

8



CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

Exercise: Fix testbed.c, which creates the matrices, rebuild your program, and verify
that it now works. You should see “Elapsed execution time...” after running

$ ./matrix_multiply

Next, check the result of the multiplication. Run

$ ./matrix_multiply -p

The program will print out the result. The result seems to be wrong, however. You can
check the multiplication of zero matrices by running

$ ./matrix_multiply -pz

Using a memory checker
Some memory bugs do not crash the program, so GDB cannot tell you where the bug
is. You can use the memory checking tool Valgrind to track these bugs.

Valgrind won’t be initially loaded in the environment when you’re running an interactive
job on the PACE cluster. To load the module for your environment, run:

$ module load valgrind

Then run:

$ make clean && make DEBUG=1

to get rid of the existing build and get a fresh build. Then run Valgrind using

$ valgrind ./matrix_multiply -p

You need the -p switch, since Valgrind only detects memory bugs that affect outputs.
You should also use a “debug” version to get a good result. This command should print
out many lines. The important ones are:

9



CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

This output indicates that the program used a value before initializing it. The stack trace
indicates that the bug occurs in testbed.c:139, which is where the program prints out
matrix C.

Exercise: Fix matrix_multiply.c to initialize values in matrix C before using them.
Keep in mind that the matrices are stored in structs. Rebuild your program, and verify
that it outputs a correct answer.

Memory management
The C programming language requires you to free memory after you are done using it,
or else you will have a memory leak. Valgrind can track memory leaks in the program.
Run the same Valgrind command, and you will see these lines at the very end:

10



CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

This output suggests that there are indeed memory leaks in the program. To get more
information, you can build your program in debug mode and again run Valgrind, using
the flag --leak-check=full:

$ valgrind --leak-check=full ./matrix_multiply -p

The trace shows that all leaks are from the creations of matrices A, B, and C.

Exercise: Fix testbed.c by freeing these matrices after use with the function
free_matrix. Rebuild your program, and verify that Valgrind doesn’t complain about
anything.

Part 2: Profiling
Callgrind is a profiling tool under Valgrind that can construct a call graph for a program's
run. By default, the collected data consists of the number of instructions executed, their
relationship to source lines, the caller/callee relationship between functions, and the
numbers of such calls. Optionally, a cache simulator can produce further information
about the memory access behavior of the application.

The profile data is written out to a file at program termination which can be later used for
presentation of the data, and interactive control of the profiling.

To use callgrind, pass it in as one of the parameters to Valgrind:

$ valgrind --tool=callgrind [callgrind options] your-program [program

options]

Note: To get accurate information about the line numbers, function names, file names,
etc. through callgrind, the executable must be compiled with debug symbols.

For example, to run it on our matrix multiply code, run:

$ make clean && make DEBUG=1

11



CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

$ valgrind --tool=callgrind ./matrix_multiply

You should see an output like this:

After program termination, a profile data file named callgrind.out.<pid> is
generated, where pid is the process ID of the program being profiled. The data file
contains information about the calls made in the program among the functions
executed, together with events of type Instruction Read Accesses (Ir).

To generate a function-by-function summary from the profile data file, we will use
callgrind_annotate which reads in the profile data and, and prints a sorted lists of
functions, optionally with source annotation.

The partial output around run_matrix_multiply should look similar to this:

$ callgrind_annotate callgrind.out.<pid>

12



CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

Exercise: In testbed.c, increase the size of the matrix dimension (kMatrixSize) to
1000. This will make the program multiply matrices of size 1000x1000. You can also
experiment with other matrix dimensions.

Optional: For graphical visualization of the data, you can try KCachegrind, which is a
KDE/Qt based GUI that makes it easy to navigate the large amount of data that
Callgrind produces.

Other Profiling Tools. Choosing a code profiling tool depends on the task's needs,
personal preference, and software availability. Here is a list of popular tools:

- Intel Vtune Profiler – See these instructions to use vtune on pace-ice.
- Perf

13

http://kcachegrind.sourceforge.net/cgi-bin/show.cgi/KcacheGrindIndex
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://gatech.service-now.com/home?id=kb_article_view&sysparm_article=KB0042008
https://perf.wiki.kernel.org/index.php/Main_Page


CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

- Nvidia Nsight for GPUs

Part 3: Cachegrind
Cachegrind (a Valgrind tool) is a cache and branch-prediction profiler. Recall from class
that a read from the L1 cache can be around 100x faster than a read from RAM!
Optimizing for cache hits is a critical part of performance engineering.

Cachegrind simulates how your program interacts with a machine’s cache hierarchy and
branch predictor and can be used even in the absence of available hardware
performance counters.

Here is an example on how to identify cache misses, branch misses, clock cycles, and
instructions executed by your program using Cachegrind:

$ valgrind --tool=cachegrind --branch-sim=yes <program_name>

<program_arguments>

For example, to run it on our matrix multiply code, run:

$ valgrind --tool=cachegrind --branch-sim=yes ./matrix_multiply

Note: Although valgrind --tool=cachegrind measures cache and branch predictor
behavior using a simulator, it bases its simulation upon the architecture on which it is
run. You should expect different results when running on different machines.

Exercise: In testbed.c, verify that the size of the matrix dimension (kMatrixSize) is
1000 (you should have changed this in Part 2).

Now, run make clean; make to rebuild it, and then run with Cachegrind.

You should see output like the following:

14

https://developer.nvidia.com/nsight-compute-2019_5


CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

Part 4: Performance optimizations
We want to identify performance bottlenecks and incrementally improve the
performance of the matrix multiply as explained during lecture and through the tasks
below.

15



CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

Note: Make sure you’re evaluating the non-debug version for the rest of your
experiments.

Exercise:We should have increased the size of the matrices to 1000x1000 in the
previous section. If you have not done so, do so now.

Now let’s try one of the techniques from the first lecture. Right now, the inner loop
produces a sequential access pattern on A and skips through memory on B.

Let’s rearrange the loops to produce a better access pattern.

Exercise: First, you should run the program as is to get a performance measurement.
Next, swap the j and k loops in matrix_multiply_run in matrix_multiply.c, so that
the inner loop strides sequentially through the rows of the C and B matrices. Rerun the
program, and verify that you have produced a speedup.

Also, you can run with -v to verify that the result is still correct. That is, run

$ ./matrix_multiply -v

You should see output like this:

Note: Runtimes and Cachegrind results should be measured without -v.

Exercise: Next, implement one level of matrix blocking/tiling as discussed in lecture. Be
sure to verify that the result is still correct.

16



CSE 6230 - Spring 2024
Instructor: Prof. Helen Xu

What is the best tile size? Try several sizes and report the resulting runtimes in the
writeup.

That’s the end of this homework! Submit your writeup and code as described in the
“Homework submission instructions” above.

17


