
(Module 1)

Vertically Integrated Projects (VIP) Program

 Overview
◦ What is an Embedded

System?

◦ Application examples

◦ Key characteristics

◦ Recent trends

◦ Embedded System Designer

◦ Role of the Design Team

 Software
◦ Compilers and Languages

◦ System Development

 Debugging

 Resource scarcity

 Approach principles

 Software (cont.)
◦ System Architecture

 System sketches (diagrams)

 From diagrams to architecture

 The Model-View-Controller
(MVC) pattern

 Hardware
◦ Examples

◦ Datasheets

◦ Schematics

◦ Debugging tools

 H/S Integration
◦ System development

◦ Dealing with errors

2

 Elecia White, Making Embedded Systems,

O’Reilly, 2011.
◦ Not language-specific

◦ Points to many other good references.

◦ Includes interview-type questions

 E. A. Lee and S. A. Seshia, Introduction to

Embedded Systems - A Cyber-Physical Systems

Approach, LeeSeshia.org, 2011.
◦ Available online

3

 In your own words…

◦ A system where different things are brought together to perform a
particular application

◦ An electronic device with computing capability, but whose main
purpose isn't computing (i.e. cellphone, appliance,..., not a laptop)

◦ Combination of h/w and s/w designed for a specific set of
purposes (as opposed to a PC which can be programmed to
close to anything)

◦ A system that contains a micro computer controller

◦ A computerized system that operates under resource constraints

◦ A miniature computation system developed for low power, high
performance devices

5

 Is a computerized system that is purpose-built for

its application.

Elecia White
Making Embedded Systems

6

7

 Modern Cars

◦ Use ~100 processors

◦ Complex software for

 Engine & emissions control

 Stability & traction control

 Diagnostics

 Gearless automatic transmission

8 http://www.howstuffworks.com/car-computer.htm

Qorivva MPC560xP

MCU family (32-bit)

For Chassis and

Safety Applications

9

CoolBio ultra-low power biomedical

signal processor

• 0.01x mW/MOPS

• Less than 1 mA @ 1 V

• Less than 10 mm2 of Si

Kochkin’s 2008 survey

Americans with hearing impairment:

• 35 million = 11.3% of population

• > 40 million by 2025

10

Samsung S3C2410

• 16/32-bit ARM920T processor.

• Clocked up to 203MHz

• Instruction and Data: 16KB each

Prof. Maysam Ghovanloo, Georgia Tech

Tongue Drive System

11

12

 Not a personal computer

 Real-time processing
◦ Reactive to changes in the

environment

 Never terminates the

program

 Not general purpose –
specific
◦ Application known a priori

 A computing device of a

larger system

 Integrated with
sensors and actuators
(cyberphysical)

 Interacts with the
external world

 Its operation is time-
constrained

 Increasingly high
performance and
networked

13

 Multimedia demands increasing computation
◦ E.g. HDTV, cellphones, mp3 players, tablets

 Low power demand enables higher efficiency
◦ Reducing current consumption in devices (e.g. FinFET’s)
◦ Idle time becomes more important than active

 Energy harvesting alternatives are critical
◦ Could the ear generate energy to power a cochlear implant?

 Trend enables novel applications
◦ Computing
◦ Communications

◦ Sensors
◦ Controls

 Devices are increasingly networked
◦ Cars with web servers
◦ Buildings with networked environmental control

 Increasing need for flexibility and modularity
◦ Reduce time-to-market under ever changing standards

14

MIT-Harvard

Image: Patrick P. Mercier

15

 Interdisciplinary learning
◦ Hardware and software skill sets must be integrated

 Diverse background in team members and teamwork
make the job in embedded systems easier

 Team skills need to include the ability to:
◦ Read a datasheet

◦ Understand the components of a new processor

◦ Get to know a new processor

◦ Go through schematics

◦ Put together a debugging toolbox

◦ Test hardware (and software)

16

 Embedded systems use cross compilers
◦ Creates code that can run on the specified target

platform

◦ Larger processors make use of Unix-compatible cross

compilers

 Embedded software compiler’s languages
◦ C, or C/C++ (only a subset of C++)

◦ Java may become popular, but only works on systems

with larger memory storage capacity

18

 Memory (RAM)

 Code space (ROM or Flash)
◦ May be traded for processor cycles, more space but faster

 Processor cycles or speed
◦ Tradable for battery life, i.e. lower power consumption

 Power consumption (battery life)
◦ Usually a design driver in stand-alone applications

 Processor peripherals
◦ May be created using I/O lines and processor cycles

19

 Some “bugs” during the debugging process are caused by
resource scarcity

 Other are only expressed during board-bring up

◦ Introduces uncertainty on sources of the bugs
 Is the bug a problem on hardware or software?

◦ Bugs may damage hardware – application specific
 Requires paying attention to details and learning fast

 Same challenges found in one system may not apply to a different
system

 Consider the function of the final product
◦ Bugs may result in catastrophes

 Consider aviation, medicine, or other critical fields of application

20

 Some challenges may be overcome by making use of the
following principles

◦ Flexibility

 Allows to introduce changes in system design adapting to constraints
found in different hardware configurations

 Employs modularity and encapsulation to define functional software
elements

◦ Modularity

 Separates the functionality of a system into subsystems

 Hides the data used by subsystems and defines classes of objects
 Such is the case in object-oriented programming

 Enables code changes with minimal or no impact to other modules

◦ Encapsulation

 Establishes the interfaces (inputs, outputs, properties) of modules

 Isolates software elements
 In object-oriented design it defines classes

21

22

 Isolates the GUI center of the application from the
user interface for independent testing
◦ The Model

 Contains the domain-specific data and logic

◦ The View

 Is the interface to the user (input and output)

◦ The Controller

 Bridges the Model and the View

 For example:
◦ The View-Controller modules may allow to exchange

displays and inputs (e.g. keyboard and screen in a PC
for a touchscreen in a tablet)

23 Elecia White, Making Embedded Systems, O’Reilly, 2011.

24

 Audio illustration

Elecia White, Making Embedded Systems, O’Reilly, 2011.

26

DE2i-150 FPGA Development Kit
Snapdragon™ S3-based Dragonboard™

Arduino R3 SMD Raspberry Pi Model B
Beagleboard

 Microcontroller: ATmega328
◦ Maximum operating frequency = 20 MHz

 Memory
◦ Flash Memory: 32 KB (ATmega328)

 0.5 KB used by bootloader

◦ SRAM: 2 KB (ATmega328)

◦ EEPROM: 1 KB (ATmega328)

 Operating Voltage: 5V

 Input Voltage: 7-12V

 Input Voltage (limits): 6-20V

 Digital I/O Pins: 14 (6 provide PWM output)

 Analog Input Pins: 6

 DC Current per I/O Pin: 40 mA

 DC Current for 3.3V Pin: 50 mA

 Clock Speed 16 MHz

27

 Processor: Intel Atom N2600

 FPGA: Altera Cyclone IV GX

 Intel® Chipset NM10

 Audio Input & Output

 HDMI 1.3a

 VGA

 PCIe Mini Card (Half-Size)

 mSATA Card (Full-Size)

 USB 2.0 Host x4

 10/100/1000 M Ethernet

 SATA Gen2

 DDR3 SO-DIMM Socket

 VGA Display, TV Decoder (Composite Input)

 Gigabit Ethernet

 SD Card Socket

 IR Receiver, RS232

 Accelerometer

 HSMC & GPIO Expansion Connector

 EEPROM, Flash (64 MB), SSRAM (2 MB), SDRAM (64 MB x2), and

EPCS64 (for FPGA Configure)

 Two PCIe x1 (Connected to Intel Atom)

 On board Oscillator and SMAx2 for External Clock Input & Output

 LED, 2x16 LCD, Button, Switch & 7-Segment

 On-board USB Blaster 28

 APQ8060 dual core processor

 Adreno 220 Graphics

 1500 mAH battery

 3.61” WVGA Display
◦ Cap Sense Multi-touch screen

 5MP main camera

 2MP camera for video telphony

 BT/WiFi expansion card

 Sensors expansion card
◦ Pressure and temperature

◦ 3-axix accelerometer

◦ 3-axis gyro

◦ Proximity and ambient light

◦ 3-axis compass

29

30

 Sections to explore
◦ First: driver-useful information

 Operation information

 Initialization

 Communication

 Timing diagrams

 Describe digital states

 Show transition relationships

 Start on left hand side

 Time progresses from left to right

◦ Next: Other sections

 Find example applications

(may give hints on

implementations)

31

32

SN74HC595

Shift Register (8-bit)

 Represent devices and

their connections

 Include
◦ Chips

 Microcontrollers

 Processors

 Peripherals

◦ Circuit elements

 Passive: resistors, capacitors, etc.

 Active: inverters, op-amps, etc.

◦ Logical components

 And, or, not, nand, nor

◦ Connections

 Power, ground, wiring, pull-up, etc.

33

Common Schematic Components

34

 Arduino Uno ATmega8

 Equip your station with
◦ Handtools

 Needle-nose pliers

 Tweezers

 Include mini-pliers

 Screwdrivers

 Box cutter

◦ Measurement devices
 Oscilloscope

 Digital multimeter

◦ Vision support/protection
 Magnifying glass

 Safety glasses

 Flashlight

◦ Miscellanous
 Electrical tape

 Sharpies

 Cable ties
 Velcro

 Zip ties

35

 Conception

 Prototyping

 Board bring-up

 Debugging

 Testing

 Release

37

 Three different diagrams are recommended

(White 2011)

◦ Architecture block diagram

 Helps define software modules

◦ Hierarchy of control organization chart

 Establishes relationships of modules

(i.e. which module calls which other one)

◦ Software layering view

 Allows to size modules by their complexity

 Helps identify modules to be combined

38

Main Processor

PWM I/O Backlight

Parallel LCD Driver

S

c

r

e

e

n

B

uf

fe

r

Rendering

I

m

a

g

e

s

T

e

x

t

Generated Graphs

F

l

a

s

h

D

r

i

v

e

r

S

P

I

L

C

D

B

a

c

kl

ig

ht

Flash

Version

Image

data

Font

data

Main

Display

Renderi
ng

Text
and
fonts

Images

Flash

SPI

Generat
ed

graphic
s

LCD

Parallel
interfac

e

Sensor Logging

Print
serial

number

Rendering

Logging

Images LCD Backlight

Generated graphics

Fonts
S

N

Flash Parallel I/O PW M Out

S

P

I

 Architecture block diagram

◦ Hardware block diagram

39

Elecia White, Making Embedded

Systems, O’Reilly, 2011.

◦ Software architecture

Processor Flash
SPI

Processor Flash

SPI

 A more detailed software architecture block diagram
◦ Continue adding modules as required by design elements

40

Main Processor

PWM I/O Backlight

Parallel LCD Driver

Screen

Buffer

Rendering

Images

Text

Generated Graphs

Flash

Driver SPI

LCD

Backlight

Flash

Version

Image data

Font data

 Hierarchy of control diagram

◦ “Main” defines the top level

◦ Lower levels are called by

those higher in the

hierarchy

◦ Helps document

shared resources

 Robustness may be

compromised when

sharing resources

41

Main

Display

Rendering

Text and
fonts

Images

Flash

SPI

Generated
graphics

LCD

Parallel
interface

Sensor Logging

Print serial
number

 Software layering view
◦ Represents objects by their estimated size

◦ Draw from the bottom, from processor

◦ Facilitates grouping resources

 Horizontally or vertically

42

Rendering
Logging

Images LCD Backlight

Generated

graphics

Fonts SN

Flash Parallel I/O PWM Out

SPI

 What is a prototype?
◦ It is a physical model of the product

that is tested to validate conceptual
design decisions

 Objective
◦ To demonstrate that the concept

performs the functions that satisfy the
design specifications (customer
needs)

 It may include a succession
of proof-of-concept models

 It is not intended to look like
the final product
◦ Layout, size, connections, structure,

and packaging

43

UCSD Aquanode Prototype

 What is board bring-up?
◦ Is the process of electrically and

functionally validating hardware

components in a printed circuit board

assembly (PCBA)

 Objective
◦ To power up the hardware and verify

every testable component in the PCBA

 How is it done?
◦ Taking small steps first; e.g. testing an

I/O device with an LED or oscilloscope

◦ With in-detail understanding of how the

processor and peripherals work

 Reading their datasheets

44

 Works different from computer programming debugging
◦ For an embedded system it makes use of dedicated ports and demands

system resources.

 For a cross-compiler, need a cross-debugger

 The cross-debugger
◦ Makes use of a dedicated debug interface

 Emulator

 In-circuit emulator (ICE)

 JTAG standard (“jay-tag”)

◦ Communicates with target processor
◦ Makes use of processing capacity

 Limited debugging operations on processors
◦ Reduces production cost
◦ Maximum number of hardware breakpoints = 2

 Debugging alternative: Use printf (most commonly used)

45

 Types of test
◦ Power-on self test (POST)

 Verifies that all components run properly

◦ Unit tests
 May require to test all possible software

paths (time consuming!)

 Aims to detect all bugs before deployment

 Alternative: test cases likely to occur (!)

◦ Bring-up tests
 Developed earlier for components that may

not have worked as expected

 Sometimes built upon for more
comprehensive tests, or added to unit tests

 Test software should make
hardware testing easier
◦ Think about a production line

 Proper s/w documentation
◦ Promotes better quality control
◦ Facilitates s/w certification

46

 Ends the design stage

 Should involve s/w certification
◦ Expensive (!)

◦ Time consuming (again, expensive)

 Delivers design data to
manufacturing
◦ Engineering drawings, design

notebooks

◦ Bill of materials

◦ Software (source code, compiled files)

◦ Documentation (datasheets, specs,
reports)

47

 Applications to keep in mind

◦ Medical

 ICU at home for life support monitoring

◦ Assistive technology for

 senior citizens

 individuals with disabilities

◦ Automation in transportation systems

 Motor vehicles

 Aircraft

◦ Home-automation

48

Why software certification is important

 Possible sources of errors
◦ Written code

◦ Environmental conditions

 Options of error handling

◦ “Graceful degradation”: The system does not collapse
while the software does the best it can

 Example: A long-term sensor system for data logging

◦ Immediate stop: The system triggers an alarm and enters
safe mode

 Example: A non-life-critical medical system with redundancy

 49

 Some options
◦ assert(): if the argument is false (equals to zero)

abort is called and a message is printed out to the

standard error device.

◦ printf() prints a message to a system console or log.

◦ An LED that blinks on error conditions.

◦ An error handling library

 Make each function return an error code

 Include error functions:

 ErrorSet()

 ErrorGet()

 ErrorPrint()

 ErrorClear()

50

 After this presentation you should know about:
◦ Basics

 What is an embedded system

 Key characteristics

 Recent trends

 Makeup of a design team

◦ Challenges for software development

 System development and architecture

◦ Skills and tools needed to approach hardware

 Reading a datasheet and schematics

 Debugging tools

◦ Hardware/software integration

 The cycle of system development

51

 I/O Software Interface

 Outputs

 Inputs

 Timers

 Runtime uncertainty

52

