
(Module 2)

Vertically Integrated Projects (VIP) Program

 I/O Software Interface
◦ Configuring registers

◦ The header file

◦ Subsystem interfaces

◦ Toggling an output

 Outputs
◦ Types

 Digital

 PWM

◦ Setting output pins

◦ Turning on and off an LED

2

 Inputs
◦ Types

 Digital

 Analog

◦ A switch for a digital input

 Modified software architecture

 Button as interrupt signal

 Debouncing digital inputs

◦ Analog inputs

 Analog to digital conversion

 Configuring registers

◦ Registers are memory-mapped

 i.e. each register may be accessed through an address

◦ Based on bit-wise operations and Boolean algebra

 Setting the third bit in the register to 1

 Setting the third bit in the register to 0

3

register = register | (1 << 3);

register |= (1 << 3); // more compact

register &= ~(1 << 3);

 The Header File
◦ Many times provided by processor or compiler vendor

◦ Defines constants naming raw register addresses

 Example, in LPC13xx.h

4

typedef struct{

__IO uint32_t DATA;

uint32_t RESERVEDO[4095]; // 12 bits of the address bus

 // are used for bit masking

 // (See manual 7-4.1)

__IO uint32_t DIR // direction set for output

__IO uint32_t IS // interrupt sense

__IO uint32_t IBE // interrupt in both edges

...

} LPC_GPIO_TypeDef;

#define LPC_AHB_BASE (0X50000000UL)

#define LPC_GPIO0_BASE (LPC_AHB_BASE + 0x00000)

#define LPCGPIO01 ((LPC_GPIO_TypeDef *) LPCGPIO01_BASE)

 The Header File
◦ Example of “define” statements

◦ Purpose

 To configure processor-independent output subsystems

 Allows handling of different devices and hardware upgrades

5

#define LED_SET_DIRECTION (P1DIR)

#define LED_REGISTER (P1OUT)

#define LED_BIT (1 << 3)

LED_SET_DIRECTION |= LED_BIT; // set the output

LED_REGISTER |= LED_BIT; // turn on LED

LED_REGISTER &= ~LED_BIT; // turn off LED

// ioMapping.h

#if COMPILING_FOR_V1

#include “ioMapping_v1.h”

#elif COMPILING_FOR_V2

#include “ioMapping_v2.h”

#else

#error “No I/O map selected. What is your target?”

#endif

 Subsystem Interfaces
1) An I/O Write function

 Defines the state of a pin (HIGH or LOW) at a given port

 Makes use of less code space, but makes use of more RAM

2) Two functions with equivalent effect: I/O Set and I/O Clear

 Sets or clears the state of a pin at a given port

 Makes use of less RAM, but may require more code space

3) Another alternative: I/O Toggle

 Switches the state of a pin at a given port

 Employs a comparable number of processing cycles than the I/O

Set – I/O Clear combination

6

IOWrite(port, pin, state);

IOSet(port, pin);

IOClear(port, pin);

IOToggle(port, pin);

 Toggling an output
◦ Option with I/O Write

◦ Option with I/O Toggle

7

void main(){

IOSetDir(LED_PORT, LED_PIN, OUTPUT);

while (1) { // spin forever

 IOToggle(LED_PORT, LED_PIN);

 DelayMs(DELAY_TIME);

 }

}

void main(){

IOSetDir(LED_PORT, LED_PIN, OUTPUT);

while (1) { // spin forever

 IOWrite(LED_PORT, LED_PIN, HIGH);

 DelayMs(DELAY_TIME);

 IOWrite(LED_PORT, LED_PIN, LOW);

 DelayMs(DELAY_TIME);

 }

}

8

Main

LED

I/O pin
handler

Processor
header

I/O
mapping

V1 V2

Main

I/O pin
handler

Processor
header

I/O
mapping

V1 V2

Main

Processor
header

digitalWrite(pin, state);

 Digital
◦ Voltage = 5 V

 Digital: 1

 Boolean: TRUE

 Level: HIGH

9 Image from http://learn.parallax.com/node/176

Voltage = 0 V

 Digital: 0

 Boolean: FALSE

 Level: LOW

 Pulse width modulation (PWM)

◦ Produces the effect of a analog output

(Fig 1, red) by changing the width

(sometimes also the polarity) of a train of

pulses (Fig 1, blue)

◦ The train of pulses (Fig 2, pink) is

obtained by modulating its duty cycle

 A triangular or sawtooth signal (Fig 2, blue)

 A carrier or modulating signal (Fig 2, green)

◦ Disadvantage: introduces harmonic

components to electrical systems

10

Fig 2

Fig 1

analogWrite(pin, value);

11

 What if there is no PWM on your board?

◦ Then, you can employ:

 Digital outputs

 Breadboard

 Op-amp circuit

“Scaling” resistor

 Setting output pins (s/w side)
◦ Set pin 10 (SCLK/I01_2) to be an output:

◦ Example processors

 LPC13XX

 MSP430

 ATtiny

12

VCC

I01_0/MOSI

RESET

I01_1/MISO

I02_0/ADCO

GND

ADC3/I02_3

I01_3

SCLK/I01_2

ADC2/I02_2

AREF

ADC1/I02_1

12

11

10

9

8

7

1

2

3

4

5

6

LPC_GPIO01->DIR |= (1 << 2);

P1DIR |= (1 << 2);

DDRB |= (1 << 2);

 Turning on the LED
◦ Set I01_2 to HIGH:

◦ Example processors

 LPC13XX

 MSP430

 ATtiny

13

VCC

I01_0/MOSI

RESET

I01_1/MISO

I02_0/ADCO

GND

ADC3/I02_3

I01_3

SCLK/I01_2

ADC2/I02_2

AREF

ADC1/I02_1

12

11

10

9

8

7

1

2

3

4

5

6

LPC_GPIO01->DATA |= (1 << 2);

P1OUT |= BIT2;

PORTB |= 0x4;

 Turning off the LED
◦ Set I01_2 to LOW:

◦ Example processors

 LPC13XX

 MSP430

 ATtiny

14

VCC

I01_0/MOSI

RESET

I01_1/MISO

I02_0/ADCO

GND

ADC3/I02_3

I01_3

SCLK/I01_2

ADC2/I02_2

AREF

ADC1/I02_1

12

11

10

9

8

7

1

2

3

4

5

6

LPC_GPIO01->DATA &= ~(1 << 2);

P1OUT &= ~(BIT2);

PORTB &= ~0x4;

 Including a switch for digital input
◦ Set pin 9 to be an input and pin 11 to be an output:

◦ Setup procedure

 Include the input pin in the header file

 Set the pin as an input if necessary

 Configure pin to be pull-up (5 V when open) if necessary.

◦ Behavior

 The switch will connect pin 9 to ground when closed

15

VCC

I01_0/MOSI

RESET

I01_1/MISO

I02_0/ADCO

GND

ADC3/I02_3

I01_3

SCLK/I01_2

ADC2/I02_2

AREF

ADC1/I02_1

12

11

10

9

8

7

1

2

3

4

5

6

 Higher level software architecture
◦ Includes a button subsystem

◦ A façade simplifies the button

subsystem interface

◦ Button reuses:

 I/O pin handler

 I/O mapping header file

◦ Implementation

16

Main

LED

I/O pin
handler

I/O
mapping

Processor
header

V1 V2

Button

main:

initialize LED

initialize button

loop:

if button pressed, turn LED off

else toggle LED

do nothing for a period of time

repeat

Can you see why interrupts are useful?

 Button as interrupt signal
Configuring the button pin as an interrupt

◦ Pin interrupt setting is separate from input setting

◦ Adds three functions to the I/O software interface

 IOConfigureInterrupt(port, pin, trigger type, trigger state)

 IOInterruptEnable(port, pin)

 IOInterruptDisable(port, pin)

◦ Configuration might also be per-bank or per pin

 I/O pins with individual interrupt allow for modular and uncoupled
software design

◦ Interrupts will be treated in a later module. For now, they

introduce the challenge of dealing with bouncing digital input
signals

17

 Bouncing digital inputs

◦ Causes

 Mechanical

 Electrical

◦ Consequence

 Defective falling and rising

edges

◦ Input devices (e.g. switches)

may have datasheets

describing bouncing

characteristics

18

 Debouncing digital inputs

◦ Manages defective signal edges

◦ Makes use of multiple readings (data samples)

◦ After several consistent samples, notify the system about
input state change

◦ Example pseudo-code

19

main loop:

 if time to read button,

 read button

 if button is released

 set button set to false

 set delay period

 if time to toggle the LED

 toggle LED

 repeat

read button:

 if raw data equals debounced value

 reset the counter

 else

 decrement the counter

 if counter is zero,

 set button value to raw data

 set changed to true

 reset the counter

 Analog inputs
◦ Voltages

 Minimum 0 V

 Maximum Vmax

◦ Digital encoding

 a/Vmax = d/M

 a: analog value

 Vmax: maximum input voltage

 d: digital encoding

 M: steps in digital scale

 M = 2n-1

 n: number of bits in digital encoding

 Resolution: largest voltage change

required to shift one bit

20

Vmax = 7.5V

0V

1111

1110

0000

0010

0100

0110

1000

1010

1100

0001

0011

0101

0111

1001

1011

1101

0.5V

1.0V

1.5V

2.0V

2.5V

3.0V

3.5V

4.0V

4.5V

5.0V

5.5V

6.0V

6.5V

7.0V

Embedded Systems Design: A Unified Hardware/Software

Introduction, (c) 2000 Vahid/Givargis

21

 Analog Inputs
◦ Ideal Transfer Curve of a 4-bit ADC

From the Communications

Museum of Macao

 Analog to digital conversion
◦ Example

22

4

3

2

1

t1 t2 t3 t4

t

a
n
a
lo

g
 i
n
p
u
t
(V

)

0100

1000

0110

0101

t1 t2 t3 t4
t

D
ig

it
a
l
e
n
c
o
d
in

g

Sample times

Embedded Systems Design: A Unified Hardware/Software

Introduction, (c) 2000 Vahid/Givargis

 Handling Uncertainty
◦ Alternating LED activation

 Dependency injection

◦ Clocks and timers

 Scheduling
◦ Communication between tasks

◦ State machines

◦ Interrupts

◦ Watchdog

 Communication with peripherals

 Managing resource scarcity

 Reducing power consumption (from the s/w side)

23

24

 Circuit on the bread board in Fritzing

 Schematic in Fritzing

25

 Printed circuit board manufacturing from Fritzing

26

 Pseudo-code

27

variables declaration

pin setup

main:

for i<98

 take sensor voltage value

 convert to °F and °C

 wait for a small time

calculate mean temperatures

setRGB LED

if averageF < 64

 blink red and board LEDs

elseif averageF > 70

 blink yellow and board LEDs

else

 blink board LED

setRGB:

variables declaration

trapMF value for RED

trapMF value for GREEN

trapMF value for BLUE

set PWM for RED GREEN and BLUE

trapMF:

variable declaration

output=constraint(map(arguments1))

 -constraint(map(arguments2))

