
(Module 2) 

Vertically Integrated Projects (VIP) Program 



 I/O Software Interface 
◦ Configuring registers 

◦ The header file 

◦ Subsystem interfaces 

◦ Toggling an output 

 

 Outputs 
◦ Types 

 Digital 

 PWM 

◦ Setting output pins 

◦ Turning on and off an LED 
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 Inputs 
◦ Types 

 Digital 

 Analog 

◦ A switch for a digital input 

 Modified software architecture 

 Button as interrupt signal 

 Debouncing digital inputs 

◦ Analog inputs 

 Analog to digital conversion 



 Configuring registers 
 

◦ Registers are memory-mapped 

 i.e. each register may be accessed through an address 

 

◦ Based on bit-wise operations and Boolean algebra 

 

 Setting the third bit in the register to 1 

 

 

 

 Setting the third bit in the register to 0 

 

 

 

 

3 

register = register | (1 << 3);  

register |= (1 << 3);           // more compact 

register &= ~(1 << 3); 



 The Header File 
◦ Many times provided by processor or compiler vendor 

◦ Defines constants naming raw register addresses 

 Example, in LPC13xx.h 
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typedef struct{ 

__IO uint32_t DATA; 

uint32_t RESERVEDO[4095];  // 12 bits of the address bus 

                           // are used for bit masking 

                           // (See manual 7-4.1) 

__IO uint32_t DIR          // direction set for output 

__IO uint32_t IS           // interrupt sense 

__IO uint32_t IBE          // interrupt in both edges 

... 

} LPC_GPIO_TypeDef; 

 

#define LPC_AHB_BASE     (0X50000000UL) 

#define LPC_GPIO0_BASE   (LPC_AHB_BASE + 0x00000) 

#define LPCGPIO01        ((LPC_GPIO_TypeDef  *) LPCGPIO01_BASE) 



 The Header File 
◦ Example of  “define” statements 

 

 

◦ Purpose 

 To configure processor-independent output subsystems 

 

 

 Allows handling of different devices and hardware upgrades 
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#define LED_SET_DIRECTION (P1DIR) 

#define LED_REGISTER      (P1OUT) 

#define LED_BIT           (1 << 3) 

LED_SET_DIRECTION |= LED_BIT;  // set the output 

LED_REGISTER |= LED_BIT;       // turn on LED 

LED_REGISTER &= ~LED_BIT;      // turn off LED 

// ioMapping.h 

#if COMPILING_FOR_V1 

#include “ioMapping_v1.h” 

#elif COMPILING_FOR_V2 

#include “ioMapping_v2.h” 

#else 

#error “No I/O map selected. What is your target?” 

#endif 



 Subsystem Interfaces 
1) An I/O Write function 

 Defines the state of a pin (HIGH or LOW) at a given port 

 Makes use of less code space, but makes use of more RAM 

 

2) Two functions with equivalent effect: I/O Set and I/O Clear 

 Sets or clears the state of a pin at a given port 

 Makes use of less RAM, but may require more code space 

 

 

3) Another alternative: I/O Toggle 

 Switches the state of a pin at a given port 

 Employs a comparable number of processing cycles than the I/O 

Set – I/O Clear combination 

 

6 

IOWrite(port, pin, state); 

IOSet(port, pin); 

IOClear(port, pin); 

IOToggle(port, pin); 



 Toggling an output 
◦ Option with I/O Write 

 

 

 

 

 

 

◦ Option with I/O Toggle 
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void main(){ 

IOSetDir(LED_PORT, LED_PIN, OUTPUT); 

while (1) { // spin forever 

 IOToggle(LED_PORT, LED_PIN); 

 DelayMs(DELAY_TIME); 

    } 

} 

void main(){ 

IOSetDir(LED_PORT, LED_PIN, OUTPUT); 

while (1) { // spin forever 

 IOWrite(LED_PORT, LED_PIN, HIGH); 

 DelayMs(DELAY_TIME); 

 IOWrite(LED_PORT, LED_PIN, LOW); 

 DelayMs(DELAY_TIME); 

    } 

} 
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 Digital 
◦ Voltage = 5 V 

 Digital: 1 

 Boolean: TRUE 

 Level: HIGH 

9 Image from http://learn.parallax.com/node/176 

 
Voltage = 0 V 

 Digital: 0 

 Boolean: FALSE 

 Level: LOW 



 Pulse width modulation (PWM) 
 

◦ Produces the effect of a analog output 

(Fig 1, red) by changing the width 

(sometimes also the polarity) of a train of 

pulses (Fig 1, blue) 

 

◦ The train of pulses (Fig 2, pink) is  

obtained by modulating its duty cycle 

 A triangular or sawtooth signal (Fig 2, blue) 

 A carrier or modulating signal (Fig 2, green) 

 

◦ Disadvantage: introduces harmonic 

components to electrical systems 
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Fig 2 

Fig 1 

analogWrite(pin, value); 
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 What if there is no PWM on your board? 
 

◦ Then, you can employ: 

 Digital outputs 

 Breadboard 

 Op-amp circuit 

“Scaling” resistor 



 Setting output pins (s/w side) 
◦ Set pin 10 (SCLK/I01_2) to be an output:  

 

 

 

 

 

◦ Example processors 

 LPC13XX 

 

 MSP430 

 

 ATtiny 
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LPC_GPIO01->DIR |= (1 << 2); 

P1DIR |= (1 << 2); 

DDRB |= (1 << 2); 



 Turning on the LED 
◦ Set I01_2 to HIGH:  

 

 

 

 

 

◦ Example processors 

 LPC13XX 

 

 MSP430 

 

 ATtiny 
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LPC_GPIO01->DATA |= (1 << 2); 

P1OUT |= BIT2; 

PORTB |= 0x4; 



 Turning off the LED 
◦ Set I01_2 to LOW:  

 

 

 

 

 

◦ Example processors 

 LPC13XX 

 

 MSP430 

 

 ATtiny 
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LPC_GPIO01->DATA &= ~(1 << 2); 

P1OUT &= ~(BIT2); 

PORTB &= ~0x4; 



 Including a switch for digital input 
◦ Set pin 9 to be an input and pin 11 to be an output:  

 

 

 

 

 

 

◦ Setup procedure 

 Include the input pin in the header file 

 Set the pin as an input if necessary 

 Configure pin to be pull-up (5 V when open) if necessary. 

 

◦ Behavior 

 The switch will connect pin 9 to ground when closed 
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 Higher level software architecture 
◦ Includes a button subsystem 

◦ A façade simplifies the button 

subsystem interface 

◦ Button reuses: 

 I/O pin handler 

 I/O mapping header file 

◦ Implementation 
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Main 

LED 

I/O pin 
handler 

I/O 
mapping 

Processor 
header 

V1 V2 

Button 

main: 

initialize LED 

initialize button 

loop: 

if button pressed, turn LED off 

else toggle LED 

do nothing for a period of time 

repeat 

Can you see why interrupts are useful? 



 Button as interrupt signal 
Configuring the button pin as an interrupt 

 
◦ Pin interrupt setting is separate from input setting 

 
◦ Adds three functions to the I/O software interface 

 IOConfigureInterrupt(port, pin, trigger type, trigger state) 

 IOInterruptEnable(port, pin) 

 IOInterruptDisable(port, pin) 

 
◦ Configuration might also be per-bank or per pin 

 I/O pins with individual interrupt allow for modular and uncoupled 
software design 

 
◦ Interrupts will be treated in a later module. For now, they 

introduce the challenge of dealing with bouncing digital input 
signals 
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 Bouncing digital inputs 
 

◦ Causes 

 Mechanical 

 Electrical 

 

◦ Consequence 

 Defective falling and rising 

edges 

 

◦ Input devices (e.g. switches) 

may have datasheets 

describing bouncing 

characteristics 
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 Debouncing digital inputs 
 

◦ Manages defective signal edges 

◦ Makes use of multiple readings (data samples) 

◦ After several consistent samples, notify the system about 
input state change 

◦ Example pseudo-code 
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main loop: 

  if time to read button, 

    read button 

    if button is released 

      set button set to false 

      set delay period 

    if time to toggle the LED 

      toggle LED 

    repeat 

read button: 

  if raw data equals debounced value 

    reset the counter 

  else 

    decrement the counter 

    if counter is zero, 

      set button value to raw data 

      set changed to true 

      reset the counter 



 Analog inputs 
◦ Voltages 

 Minimum 0 V 

 Maximum Vmax 

 

◦ Digital encoding 

 a/Vmax = d/M 

 a: analog value 

 Vmax: maximum input voltage 

 d: digital encoding 

 M: steps in digital scale 

 M = 2n-1 

 n: number of bits in digital encoding 

 Resolution: largest voltage change 

required to shift one bit 
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Embedded Systems Design: A Unified Hardware/Software 

Introduction, (c) 2000 Vahid/Givargis  
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 Analog Inputs 
◦ Ideal Transfer Curve of a 4-bit ADC 

From the Communications 

Museum of Macao 



 Analog to digital conversion 
◦ Example 
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Embedded Systems Design: A Unified Hardware/Software 

Introduction, (c) 2000 Vahid/Givargis  



 Handling Uncertainty 
◦ Alternating LED activation 

 Dependency injection 

◦ Clocks and timers 

 

 Scheduling 
◦ Communication between tasks 

◦ State machines 

◦ Interrupts 

◦ Watchdog 

 

 Communication with peripherals 

 Managing resource scarcity 

 Reducing power consumption (from the s/w side) 
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 Circuit on the bread board in Fritzing 



 Schematic in Fritzing 
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 Printed circuit board manufacturing from Fritzing 
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 Pseudo-code 
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variables declaration 

pin setup 

main: 

for i<98 

  take sensor voltage value 

  convert to °F and °C 

  wait for a small time 

calculate mean temperatures 

setRGB LED 

if averageF < 64 

  blink red and board LEDs 

elseif averageF > 70 

  blink yellow and board LEDs 

else 

  blink board LED 

setRGB: 

variables declaration 

trapMF value for RED 

trapMF value for GREEN 

trapMF value for BLUE 

set PWM for RED GREEN and BLUE 

trapMF: 

variable declaration 

output=constraint(map(arguments1)) 

  -constraint(map(arguments2)) 


