

HumAnS

Tutorial on Embedded Systems - Module III: Writing Your Own C Code

Greg Drayer VIP Program

Human-Automation Systems Lab School of Electrical and Computer Engineering

Outline

This module presents the following content:

- Getting started materials and software
- Setting up VNC access
- Writing your C code
- Compiling your C code
- Installing the PCIe driver
- Running your C application
- Uninstalling the PCIe driver
- Safe shutdown
- Summary

Objectives

By the end of this module, you will:

- have written your own C code for an application that enables interaction between buttons and LED's making use of
 - the Cyclone FPGA
 - the Atom processor
 - PCIe high-speed communication
- have analyzed the behavior resulting from your code and identified the main functions

Getting Started

- List of materials and software:
 - Laptop or desktop running Windows (XP at least)
 - DE2i-150 development board
 - Power adapter and cord
 - Ethernet cable

Setting up VNC Access

Connect the ethernet cable between your laptop and the board

- Power up the board
 - Your laptop ethernet network should display "Limited or no connectivity"

Setting up VNC Access

- Connect using UltraVNC
 - Start the UltraVNC on your laptop
 - Set the target VNC server to 169.254.0.2
 - Click on the "Connect" button
 - A window should open showing the Yocto desktop environment

UltraVNC Viewer - Win32 1.1.9.0	
WNC Server: 169.254.0.2]
Quick Options • AUTO • ULTRA • LAN • MEDIUM • MODEM • MODEM	Connect Cancel
 SLOW (< 19kKbit/s) - 8 Colors MANUAL (Use options button) View Only Auto Scaling Confirm Exit 	Options
Use DSMPlugin No Plugin detected Proxy/Repeater	Config
1. 1280 × 1024 @ 0,0 - 32-bit - 60 Hz	
Save connection settings as default Delete saved settings	

ا **Georgia** ا **Tech**

Writing your C Code

Writing your C Code

- Go to /home/root/Projects/
 - Type the following on the command line of the Terminal window
 - cd /home/root/Projects/
- Create a new folder called "VIPmodule3"
 - Type the following on the command line
 - mkdir VIPmodule3
- Create a new file called "app.c"
 - Type the following
 - leafpad app.c
- Write the code provided in a piece of paper
 - Make sure to save periodically with Ctrl-S
 - When finished, quit the Leafpad editor with Ctrl-Q
 - From the code written, what behaviors do you expect?

Compiling your C Code

- Place the PCIe libraries in your project's directory
 - Bring the following files from the previous module's folder
 - PCIE.h
 - PCIE.o
 - teraisc_pcie_qsys.so
 - TERASIC_PCIE.h
 - You can do this from the terminal or with the file manager
- Compile your C Code
 - Type the following commands in the terminal
 - gcc -g -Wall -c app.c -o app.o
 - gcc -g -Wall app.o PCIE.o -o app -ldl

Installing the PCle Driver

- Go to /home/root/BoardSetup/linux/PCIe_DriverInstall
 - Type one of these two options
 - cd /home/root/BoardSetup/linux/PCIe_DriverInstall
 - cd /home/root/Downloads/BoardSetup/linux/PCIe_DriverInstall

Load the PCIe driver

- Type
 - sh ./load_terasic_qsys_pcie_driver.sh
 - The message "Matching Device Found" should appear
 - If it does not appear, proceed to safely reboot the board
- Verify the driver is loaded
 - Type
 - lsmod
 - You should see a list of the kernel modules loaded, including the "terasic_qsys_pcie" driver

Running your C Application

Georgia ি Tech

- Go back to the application folder
 - Type
 - cd /home/root/Projects/VIPmodule3
- Execute the application compiled
 - Type
 - ./app
- Describe the behavior of the application and the DE2i-150 board
 - Does it comply with your expectations from looking at the code earlier?
- Exit the application
 - Select the option 99 from the menu

Uninstalling the PCIe Driver

- Unload the terasic_qsys_pcie driver
 - Type
 - rmmod terasic_qsys_pcie
- Verify that the driver has been unloaded
 - Type
 - lsmod
 - You should not see the terasic_qsys_pcie driver on the list

Safe Shutdown

- 1) Type exit on the Terminal window
- 2) Close the UltraVNC window
- 3) Press and hold the power button until the board shuts down completely
- Store the parts in the bags and boxes for the next class

Summary

- In this session you have:
 - accessed the Yocto desktop environment on the board from your laptop as a VNC client
 - written, compiled and run a custom C program on the DE2i-150 Development Board
 - loaded a PCIe driver for high-speed communication between the Intel Atom processor and the Altera Cyclone IV FPGA
 - interacted with the inputs (buttons) and outputs (LED's) of the board from the Yocto environment through a pre-loaded FPGA bitstream