
(Module 3) 

Vertically Integrated Projects (VIP) Program 



 Runtime complexity 
◦ Dependency injection 

 

 Clocks and timers 
◦ Parts of a timer 

◦ Time calculations 

 

 Activity flow 
◦ Scheduling 

◦ State machines 

◦ Interrupts 

 

2 



 Alternating LED activation 

 

 

 

 
 

◦ Makes use of RAM and saves processor cycles 

 

3 

VCC 

I01_0/MOSI 

RESET 

I01_1/MISO 

I02_0/ADCO 

GND 

ADC3/I02_3 

I01_3 

SCLK/I01_2 

ADC2/I02_2 

AREF 

ADC1/I02_1 

12 

11 

10 

9 

8 

7 

1 

2 

3 

4 

5 

6 

main loop: 

  if time to read button, 

    read button 

    if button changed and no longer pressed 

      set button changed to false 

      change which LED 

  if time to toggle the LED, 

    toggle LED 

  repeat 



 Dependency injection 

 
◦ Introduces flexibility beyond the use of state variables 

 

◦ Makes use of abstraction to manage dynamic changes 

 

◦ Previously, function extraction 

 LED I/O pin was hidden within the code 

 Created a hierarchy of functions with dependence on lower level only 

 

◦ Now, with dependency injection 

 Remove dependence of LED code on I/O pin 

 Passes an I/O handler as a parameter of LED initialization code 

 The I/O handler performs the changes to the LED to toglgle 

 LED will only call the I/O handler 

4 



5 

SN74HC595 

Shift Register (8-bit) 



 The clock 
◦ Related to the cycle frequency of the processor 

◦ May also be related to a peripheral 

 

 What is a timer? 
◦ A counter accumulating clock ticks 

 

 Examples of maximum frequencies for processors 
◦ NXP LPC1313 (Cortex-M3), 32-bits, 72 MHz 

◦ Texas Instrument MSP430 G2201, 16 bits, 16 MHz 

◦ Atmel ATtiny45, 8 bits, 4 MHz 

6 



 Timer pre-scaling and matching 
◦ With a factor of 2, the pre-scale clock runs at half frequency 

◦ Count register is set to True at 3 pre-scaled cycles 

◦ Upon matching, the counter may continue or reset 

7 



 Registers that define timers 
 

1) Timer counter 

 Contains the number of ticks since 
last reset 

 

2) Compare register 

 When timer equals this register, an 
action is taken 

 

3) Action register 

 Interrupt 

 Stop or continue 

 Reset the counter 

 Set an output 

4) Clock configure register 

 Tells subsystems what clock 

to use 

 

5) Pre-scale register 

 Sets the pre-scale factor 

 

6) Control register 

 Starts and resets the timer 

 

7) Interrupt registers 

 Enable 

 Clear 

 Check status 

8 



 Time calculations 

 

 For a ATtiny45, 8-bits, 10-bit prescale reg, at 4 MHz 
◦ If compareReg = 255 

 timerFrequency = 19.98 Hz; Error = 0.1% 

 

 

 

◦ Another approach 

 

 

 prescaler can be 1000 

 compareReg can be 200 

9 

timerFrequency = clockIn /(prescaler * compareReg) 

prescaler = clockIn /(timerFrequency * compareReg) 

          = 4 MHz / (20 Hz * 255) 

          = 784.31 

prescaler * compareReg = clockIn / timerFrequency 

                       = 4 MHz   / 20 Hz 

                       = 200,000 



 For a ATtiny45 processor (continued) 
 

◦ Thorough timer solution 

 

1) Minimum Prescaler 

 

 

 

2) Maximum Prescaler 

 

10 

minPrescaler = clockIn / (goalFreq * maxCompare) 

             = 4 MHz   / (20 MHz   * 255) 

             = 922.72 

maxPrescaler = clockIn / (goalFreq * 1) 

             = 4 Mhz   / (20 Hz)         --> 1023! 



 For a ATtiny45 processor (continued) 
 

◦ Thorough timer solution 

 

3) For each pre-scale value between 923 and 1023 

 Find a value for compareReg 

 

 

 Find the resulting timerFrequency 

 

 Find the error 

 

 

4) Find prescale and compareReg 

 With least error! 

11 

compareReg = clockIn / (goalFreq * prescale) 

compareReg = round(compareReg) 

timerFrequency = clockIn / (compareReg * prescale) 

error% = 100 * abs (goalFreq - timerFrequency) / goalFreq 



 Scheduling 
 

◦ In contrast to computers, embedded systems don’t necessarily use 
an operating system 

 

◦ Scheduling is more often set by the developer 

 

◦ Concepts to keep in mind 

 Task: is something the processor does 

 Thread: is a task plus some overhead (perhaps memory) 

 Process: a complete unit of execution with memory space 

 Mutual exclusion (Mutex): given a shared resource, only one task 
modifies it at a time 

 Atomic: referred to as an action that can not be interrupted by any 
subsystem 

 Race condition: is the uncertainty of having two modules of code setting 
a state at the same time 

12 



 Communication between tasks 
◦ Race condition illustration 

13 

Main 

Interrupt 

Button 

Write true 

Main 

Interrupt 

Button Read 

Write false 

Main 

Interrupt 

Button 

Write true 

Main 

Interrupt 

Button 

Write false 

Write true 

User presses 
button 

User presses 
button again 

Chance or 
conflict on write 



 Communication between tasks 
◦ Solution to an eventual race condition 

14 

Main 

Interrupt 

Button 

Write true 

Main 

Interrupt 

Button Read 

Write false 

Main 

Interrupt 

Button 

Write true 

Main 

Interrupt 

Button Read 

Write false 

Main 

Interrupt 

Button 

Main 
disables 
interrupt 

Main 
enables 
interrupt 

User presses 
button again 

User presses 
button 



 State machines 
 

◦ Software pattern commonly used in embedded systems 

 

◦ Intention: “to allow an object to alter its behavior when its 

internal state changes. The object will appear to change 

its class” 

 

 

15 

LED 

State 
Machine 

Commands: 
Stop, Go 

Stop 

Go 

Stop 

Stop 

Timeout 

Go 

Go 



 State machines 
◦ Types 

 

 State-centric: seen as a big if-else statement, e.g. red, green 
 With hidden transitions: hides the “next step” in a function 

 

 Event-centric: based on transitions, e.g. go, stop 
 

 State pattern: object-oriented approach 
 Each state is an object 

 Methods in objects handle events, e.g. EventGo, EventStop 

 Higher level object (context) handles the states and calls the 
transitions 

 

 Table-driven: makes use of a table to define states and transitions 
 Easier way to document the software pattern 

 May make use of CSV and spreadsheets to handle large state 
machines 

16 



 State machines: state-centric 

17 

while (1) { 

  look for event 

  switch(state){ 

  case(green light): 

    if(event is stop command) 

      turn off green light 

      turn on yellow light 

      set state to yellow light 

      start timer 

    break; 

  case(yellow light): 

    if(event is timeout) 

      turn off yellow light 

      turn on red light 

      set state to red light 

    break; 

   

  case(red light): 

    if(event is go command) 

      turn off red light 

      turn on green light 

      set state to green light 

    break; 

  default(unhandled state) 

    error! 

  } 

} 

case(state): 

  if event valid for this state 

    handle event 

    prepare for new state 

    set new state 

Generic form 



 State machines: state-centric with hidden transitions 

18 

case(state): 

  make sure about current state 

  if event is valid at state 

    call next state function 

Generic form 

case(greenlight): 

  turn on green (in any case) 

  if(event is stop) 

    turn off green light 

    call next state function 

  break; 

next state function: 

  switch(state){ 

  case(green light): 

    set state to yellow light 

    break; 

  case(yellow light): 

    set state to red light 

    break; 

  case(red light): 

    set state to green light 

    break; 



 State machines: event-centric 

19 

case(event): 

  if state transition for event 

    go to new state 

Generic form 

switch(event) 

case(stop): 

  if(state is green light) 

    turn off green light 

    go to next state 

  break; 



 State machines: state pattern 

20 

class Context{ 

  class State Red, Yellow, Green; 

  class State Current; 

constructor: 

  Current = Red; 

  Current.Enter() 

deconstructor: 

  Current.Exit(); 

Go: 

  if (Current.Go() state change) 

    NexState(); 

Stop: 

  if(Current.Stop() state change) 

    NextState(); 

HouseKeeping 

  if(Current.Housekeeping() state 

change 

    NextState(); 

NextState: 

  Current.Exit(); 

  if (Current is Red) 

    Current = Green; 

  if (Current is Yellow) 

    Current = Red; 

  if (Current is Green) 

    Current = Yellow; 

  Current.Enter(); 

} 



 State machines: table-driven 

21 

struct sStateTableEntry{ 

  tLight light;     // all states have associated lights 

  tState goEvent;   // state to enter when go event occurs 

  tState stopEvent; // when stop event occurs 

  tState timeoutEvent; //when timeout occurs 

STATES Light Go Stop Time-out 

RED red GREEN RED RED 

YELLOW yellow RED YELLOW RED 

GREEN green GREEN YELLOW GREEN 



 State machines: table-driven 

22 

struct sStateTableEntry{ 

  tLight light;     // all states have associated lights 

  tState goEvent;   // state to enter when go event occurs 

  tState stopEvent; // when stop event occurs 

  tState timeoutEvent; //when timeout occurs 

STATES Light Go Stop Time-out 

RED red GREEN RED RED 

YELLOW yellow RED YELLOW RED 

GREEN green GREEN YELLOW GREEN 



 State machines: table-driven 
◦ Event handler 

 

 

 

 

 

 

◦ The table 

23 

void HandleEventGo(struc sStateTableEntry *currentState){ 

  //turn off the light(unless we will turn it back on) 

  if(currentState->light != currentState->go.light){ 

    LightOff(currentState->light); 

  } 

  currentState = currentState->go; 

  LightOn(currentState->light); 

  StaterTimer(); 

} 

typedef enum {kRedState=0, kYellowState=1, kGreenState=2} tState; 

struct sStateTableEntry stateTable[]={ 

  {kRedLight,    kGreenState,  kRedState,    kRedState}, // Red 

  {kYellowLight, kYellowState, kYellowState, kRedState}, //Yellow 

  {kGreenLight,  kGreenState,  kYellowState, kGreenState},//Green 

} 



 Interrupts 
 

◦ Assist in implementing the logic of state machines 
 

◦ Need to be fast! 
 Sometimes directly making use of Assembly Language 

 
◦ Bugs are difficult to find 

 i.e. as they intervene in the flow of code, changes in the execution are 
hard to track 

 
◦ Events of an interrupt 

1) An interrupt request (IRQ) takes place 
 from a peripheral, in the code, by a fault 

2) The processor saves its context or state 

3) The processor finds the associated callback function within the 
interrupt vector table (IVT) 

4) Execution of the interrupt service routine (ISR) 

5) Restore the context 

24 



1) The IRQ (interrupt request) 
 

◦ An interrupt may have been previously configured or may 

be included in default settings 

 

◦ Configuration 

 Disable the interrupt 

 

 Configure it to cause an IRQ 

 

 

 Enable the interrupt 

 

25 

NVIC->ICER[0] = (1 << 4); // disable timer 3 interrupt 

LPC_TIM3->MCR |= 0x01;    //set the interrupt to occur 

LPC_TIM3->MCR &= ~(0x02); // expired timer should not reset 

LPC_TIM3->MCR |= 0x04;    // expired timer should stop sequence 

NVIC->ISER[0] = (1 << 4)  // enable timer 3 interrupt 



2) Saving the context 
 

◦ After the IRQ, the processor saves its state in RAM 

 

◦ Processor state includes 

1. Program counter (current instruction) 

2. Subset of processor registers (cached local RAM) 

 

◦ Implies the presence of a latency 

 Keep a small latency! 

 Minimize the size of the context to be saved 

 Compilers sometimes force smaller latencies by limiting: 

1. the number of variables 

2. the number of nested functions 

26 



3) Finding the ISR in the IVT 
 

◦ The IVT is a list of pointers 

 Usually start-up code is available with the compiler 

 

◦ A linker script sets the IVT address in memory 

 Included in the start-up code, i.e. no additional coding is 

needed 

 

 

27 

 

 

 

 

 

 

Elecia White, Making Embedded Systems, O’Reilly, 2011. 



4) Execution of the ISR: Guidelines 
 

◦ Keep ISR short to manage latency 

 

◦ Avoid using nonreentrant functions (e.g. printf) 

 May cause corruption of variables 

 

◦ Deactivate other interrupts to avoid priority inversion 
 Macros __disable_irq() and __enable_irq() provided by 

vendor 

 

5) Restore the context 
 

◦ Some make use of the instruction rti to let know the 
processor the need to restore the state previous to the 
interrupt 

 28 



 A small city has decided their intersection is too 

busy for a stop sign, and they’ve decided to 

upgrade to a light. They’ve asked you to write the 

code for the light. 

 

There are four lights, each with a red, yellow and 

green bulb. There are also four car sensors that 

can tell when a vehicle is stopped at the light. 

Where do you start? Tell me about your design, 

and then write some pseudo-code. 

29 



 Peripherals 
◦ External memory 

◦ Buttons and key matrices 

◦ Sensors 

◦ Actuators 

◦ Displays 

 

 Protocols 
◦ Serial 

 RS-232 and TTL 

 SPI 

 I2C 

 1-wire 

 USB 

◦ Parallel 

◦ Ethernet and WiFi 

 Integration of 

peripherals 

 

 Managing resource 

scarcity 

 

 Reducing power 

consumption (from the 

s/w side) 

 

30 


