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Abstract—Efficiently measuring environmental phenomena
(e.g., elevation, chemical composition, and mineral density) is
a task typically reserved for the geoscience community. Recent
robotic systems with the potential for addressing the task of
sampling currently exist, yet their navigation strategies (and
subsequently sampling strategies) are seldom a function of the
spatial change in the measured phenomena of interest. Solutions
are especially void for intelligent systems to which resource
constraints are applied (i.e., battery power and experimentation
time) while complete coverage of an area is expected. In this
paper, we discuss the implementation of a custom navigation
strategy based on immediately-sensed data that, when combined
with spatial interpolation techniques, yields a re-creation of the
surveyed space with root mean squared error that meets accepted
mapping standards. Our methodology employs an adaptive cov-
erage algorithm which succeeds in lowering the RMS error when
compared to other navigation techniques. Our results are validated
in simulation by considering: 1) randomly-generated terrains and
2) realistic digital elevation map (DEM) data transposed from
publically available terrain contour maps.

Index Terms—Earth observing system (EOS), area under test
(AUT), robotic survey system (RSS).

I. INTRODUCTION

Providing more accurate information about the features of

the Earth’s surfaces including physical phenomena like el-

evation and mineral density is a prime application for robotic

surveying. Furthermore, future federal mandates may require

that Earth observing systems integrate data from more than just

the remote sensing and static on-ground monitoring technology

that are currently employed. Excerpts from a recent 2010

investigation by committees of the National Research Council

of the National Academies report there is a strong need for a

national geodetic infrastructure [1]. With that, comes a need to

identify which technologies will further the acquisition of more

accurate geodetic information. More specifically, the National

Academies study investigates “geodetic observing systems” in

the larger context of a geodetic infrastructure and includes sea

level change monitoring, precision agriculture, civil surveying,

earth quake monitoring, forest structural mapping and biomass

estimation as areas of application [1]. Each of these areas

requires the capabilities that advancements in mobile robotics

offers. Our focus is in the navigation algorithms implemented to

successfully acquire relevant geodetic information in the form

of terrain elevation.

One current limitation that exists in measuring phenomena

at different points of interest on the Earth is spatial resolution.

While satellites, combined with high-performance sensing, can

provide a global assessment of the change taking place at

the surface of this planet (and others), scientists still require

in situ validation of these measurements. Researchers in the

various geospatial communities often project the need for this

added perspective [2–4] while those in the robotics community

have proposed solutions with varying degrees of success [5, 6].

Based on these advancements in robotics, a theory for how

to systematically acquire this high-resolution information is

best addressed through the task of sampling. In this paper,

we introduce considerations salient to the development of such

a sampling system and algorithms that best enable an area’s

successful spatial characterization.

II. LITERATURE REVIEW

It is the concept of sampling, specifically, around which

we frame our robotic surveyor design. By combining knowl-

edge from the sampling community with the progress made

in robotic surveying, we are better prepared to outline the

requirements for our system.

A. Sampling

Sampling is a necessity in many fields, including the geo-

physical sciences, due to the breadth of coverage required to

estimate a particular phenomenon over a large area and the

limited resources to achieve that coverage. From elevation to

chemical concentrations in soil to mineral content or hazardous

material levels in aquatic environments, there is no shortage of

applications where sampling is not preferred over the costly

alternative of exhaustive coverage. Inherent to this challenge of

robotic surveying (and surveying in general) is the sampling

problem. We refer to work by Ayeni and Wang et al. for

a relevant discussion on the topic of sufficient sampling and

appropriate schemes or patterns to apply across a space [7, 8].

Also relevant in their work is the topic of heterogeneous sample

spaces. Wang connects the terms “non-stationary” and “spatial

heterogeneity” to ground the discussion in the geosciences (see

[8], p. 524, 527), providing the scope of the terrain types we

consider in this paper. Ayeni emphasizes the importance of

appropriately applying the right sample scheme to the right

type of spatially distributed data.



B. Robotics

Example applications of robotics and sampling tend to

fall under the category of “environmental monitoring”, where

there is a common interest in estimating either statically or

dynamically changing phenomena in both time and space. Work

by [9, 10] discuss a coordinated effort between robotic agents

to characterize the phenomena of an unknown environment

using strategies common to the sampling community (i.e.,
raster scanning, simple random sampling, and stratefied random

sampling). Low et al. do not consider alternative types of search

spaces beyond those characterized by discrete concentrations

[9] while Rahimi et al. do not discuss validation techniques to

confirm their sampling methodology [10].

To the authors’ knowledge, the earliest work pioneering

the use of robotics to perform surveying tasks is by [11].

In the literature, a reigning theme is the value of several

coverage patterns, quantified by a quality of performance (QoP)

metric. Unfortunately, this metric is not designed to provide

any measurement information about the sample space, only

a relative measure of distance traveled by the agent. Another

aspect of our approach, not considered by Tunstel et al., is using

interpolation methods to estimate data where samples could not

be collected during a survey. This is important when evaluating

both the resources required to sample an area as well as how

those resources are allocated to achieve maximum coverage.

III. APPROACH

Our aim is to achieve complete coverage by way of sufficient

sampling using effective navigation strategies. Regardless of

the genre, current solutions from the robotics community are

often left unpursued in hardware and practical implementation

[12, 13]. Since efficient navigation to different sampling sites

is a key objective of our work, the concept of coverage must

be addressed.

A. Data Coverage

Traditionally, the success of a navigation application is mea-

sured by the total sequential (or Euclidean) distance traveled

by an autonomous agent while executing a specific task. Some

of the authors in the aforementioned work (see Section II-B)

approach their various metrics with this in mind. As a sampling

tool for scientists, the spatial importance of each sample col-

lected can not be taken for granted, especially for data that is

heterogeneous in its spatial distribution, i.e., the types of infor-

mation of greatest interest for our work (see Section II-A). The

spatial heterogeneity characteristic of a sample space declares

that the mean of the data collected is location dependent [8].

The traditional statistics (e.g., N th-order mean and variance)

that a scientist infers from this information, therefore, will rely

heavily on an evenly distributed sample set. We provide a

spatially-relevant alternative for assessing coverage.

Instead of defining coverage as a function of the total

distance traversed by an agent from one sample location to

another, we define a science-centric type of coverage that is

defined relative to the cumulative sum of distances from all

possible sample locations to a reference location within the

Fig. 1: Difference in percent coverage definition: Traditional

(left), Non-Traditional (right).

area under test (AUT). Defining distance relative to a specific

point emphasizes our goal of achieving distributed coverage

through navigation and sampling (see Figure 1). This change

in coverage definition improves upon the QoP metric, discussed

in [11], as it places a theoretical upper bound on the number

of possible samples reached by any adaptive navigation pattern

considered and appends meaning to each sample acquired. As

expressed in Equation 1, percent coverage is defined as a ratio

of TM , the sum of relative distances between actual samples,

(xm, ym), and a reference location, (Xref , Yref ), to TS , the

sum of relative distances between all possible samples, (xs, ys),
and that same reference, (Xref , Yref ).

%Coverage =
TM
TS

=

∑M

m=1 ‖(xm, ym)− (Xref , Yref )‖
∑S

s=1 ‖(xs, ys)− (Xref , Yref )‖
(1)

B. Navigation Methods

Given the expectations for our RSS (applicable environments

and definitions of quality of coverage), we must consider spe-

cific approaches to navigating the AUT such that one approach’s

metrics yield acceptable performance over a comparable list

of others. In the robotics community, exploration and coverage

algorithms can be used to project success in obtaining complete

coverage of an AUT in which a set of sampling points are

carefully chosen based on design-specific conditions. Some of

these algorithms perform well with respect to their sensor-

specific solutions, yet de-emphasize the importance of strategic

sensor placement within the environment, often relying on

vision or close-range lidar to project best next-waypoints to

follow [13]. Other approaches to coverage consider the goal of

sensor placement, yet require some quantifiable data a priori

that help guide the exploration process (and subsequently, the

navigation) [10, 14]. Yet, the importance of local navigation

based on immediately sensed information is favored in environ-

mental monitoring applications because of the unique sampling

operations that can only be performed at discrete locations, e.g.,
temperature, humidity, and pressure. We therefore focus on a

navigation strategy to accomplish sufficient quality coverage,

while still obtaining locally-relevant detail in our measurements

and requiring no prior information about the interior of the

investigated area. This strategy is manifested as a specific nav-

igation pattern that also allows for modifications (or adaptation)
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to its basic structure.

Demonstrated in theory, it was revealed, from work by

Tunstel, that the pattern yielding the highest QoP was the par-

allel transect [11]. This lawnmower-like pattern is our baseline

algorithm (Algorithm 1) that we improve upon. An example

trajectory is shown in Figure 2a.

Algorithm 1 Lawnmower-traditional navigation scheme.

Require: Static navigation policy, f(q) (q =
All northing positions across a swath)

Require: Border dimensions, dimx , dimy; AUT, T
(PSL) = T/Resources {Define vector of starting loca-

tions for each swath according to resources available}
for k ≤ length(PSL) do

XTotal(PSL(k), all) = T (PSL(k), all) {Navigate

across T , collecting all samples at designated Y-position,

PSL(k)}
end for{Store total set of samples}

5: return XTotal

The specific influence of our adapted methods came out of

a hydrographic simulation survey system [15]. Bourgeois et al.

simulate survey times for a Northeast coastal survey, adapting

their own lawnmower-like navigation to the information gained

from the quality and coverage of the coastal floor during each

swath [15]. This, in effect, yields a set of parallel, non-linear

swaths. Although the actual measurements, themselves, are not

the cause of changes in the shape of these swaths, this furthered

our understanding of how the lawnmower pattern could be

adapted and inspired our modifications. Ideally, we want to

preserve the benefit of collecting information iteratively, i.e.,
continuing to execute parallel swaths across the area, but by

altering the local trajectory of an agent’s path across the terrain,

we hope to do so more intelligently. Taking inspiration from

the hydrographic surveying work [15], we found that we could

mimic either a group of linear swaths with varying separation

or a series of non-linear piecewise continuous trajectories (i.e.,
Adaptive Parallel or Piecewise Continuous, respectively). In

each case, how the characteristics of these patterns changed

would be defined based on the information collected online by

our agent.

1) Adaptive Parallel: Each successive swath executed ac-

cording to the original Adaptive Parallel pattern is a function

of the quality of bathymetry return information collected during

the previous swath (see Section III-B). Since our system does

not presume this type of scanning capability of our AUT, we

needed to leverage our previously collected information in such

a way that it could be translated into an estimate for how far

along the northing direction the next parallel swath ought to be

executed. We resolved that this estimate should be calculated

based on the average change in slope information collected

across all previous swaths. For the purpose of informing each

successive swath, in Algorithm 2, the function f(q) is defined

based on the slope information collected by the previous swath.

Algorithm 2 Adaptive Parallel navigation scheme.

Require: Function for estimating successive swath width, f(q)
Require: Border dimensions, dimx , dimy; AUT, T

n = fsw {Define the starting position along the Y-axis of

the terrain based on initial slope information, sw}
while n ≤ dimy do

n = n+ f(q)
XTotal

(n,all) = T(n,all) {Navigate across T , collecting all

samples at designated Y-position, n}
5: end while

return XTotal

To visualize the RSS’ navigation within the AUT, Figure 2b

shows an example trajectory of linear swaths unevenly spaced

and asymmetrically distributed across the terrain.

2) Piecewise Continuous: We wanted to investigate if, by

collecting the local information within the neighborhood of

each swath of a symmetrically placed lawnmower pattern, a

better estimate of the entire AUT would result. The next step,

therefore, was to determine in what way that local information

could be used to influence the navigation. Previous empirical

tests we conducted showed that one feature common to nav-

igation patterns yielding RMS error values lower than those

sampled according to the lawnmower pattern was the presence

of smaller sets of continuous paths scattered throughout the

terrain. This is most likely the case because of the variety

in sample placement in contrast to the stark linearity and

uniformity of the lawnmower pattern. It was determined that the

best way to generate these types of paths in situ was to consider

steepest ascent/descent rules of navigation, allowing the RSS to

navigate according to these control laws while operating within

certain planimetric boundaries and under specific conditions.

This approach to navigation produces the desired combination

of terrain-specific detail and resource control lacking in other

previously discussed work. The psuedo-code in Algorithm 3

details this process more formally.

Algorithm 3 Piecewise Continuous navigation scheme.

Require: Choice of navigation policy, g(q) (q =
Steepest Ascent || Steepest Descent)

Require: Border dimensions, dimx , dimy; AUT, T
(PSL, bw) = T/Resources {Define vector of starting

locations for each swath according to resources available}
{Define bandwidth (i.e., swath width) of allowable search

range according to resources available for the AUT}
for k ≤ length(PSL) do

YRange = [PSL
k ± bw]

Xs = Xs + Apply g(q) at T
PSL

k

(x,y) for (1 ≤ x ≤

dimx, y = YRange)
{Apply primary navigation policy to terrain along a

single swath and store recorded samples}
5: end for

XTotal = Xs {Store total set of samples}
return XTotal
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By the end of navigating according to the Piecewise Con-

tinuous method, the RSS has collected a series of sample

sets that are both representative of local change and achieved

within the confines of allowable resources (see Figure 2c). This

method is the most promising as it provides a simple data-

driven navigation strategy. Furthermore, the segmented sets

of samples produced by the Piecewise Continuous algorithm

are spatially relevant to the heterogeneous data types under

investigation. Made possible with this navigation strategy, the

decision function, g(q), allows the accumulation of multiple,

highly correlated data sets to be attained. This is advantageous

during post-analysis when different interpolation options are

considered.

3) Lawnmower Random: We added one more sampling

methodology to test the feasibility of previous approaches in

randomness considered by both the sampling and robotics

communities [7, 10]. The concept of random sampling for

our application is implemented in much the same way as the

Piecewise Continuous approach except the agent’s heading (ψ)

towards its next sample along a swath is defined as a uniformly

random function, rather than g(q). This method provides an

even sampling distribution and would appear to be an ideal

navigation strategy. The one caveat to this approach is that

the RSS must actually navigate to these randomly selected

waypoints and therefore will likely incur a hefty penalty in total

Euclidean distance traveled. Although this measure of distance

is not our RSS’ primary reference metric, as was discussed at

length in Section III-A, it will be seen later that, when compared

to the other navigation methods, it is not reasonable to consider

its use from a resources point of view.

C. RMS error

Our principle performance metric is root mean squared

(RMS) error, θ̂. This is expressed in Equation 2, where Z0

is our truth data while Ẑ0 is the estimated data generated as

a result of the samples collected according to our navigation

policy.

RMS error = θ̂ =

√

E[(Z0 − Ẑ0)2] (2)

Quantifying error in this way is a convenience, as it provides

a single error estimate, which is relative to each location

in the sample space, while also representative of the entire

AUT. This succinct value allows us to test a larger number

of DEMs and make sound observations about the effectiveness

of our navigation algorithms on heterogeneous elevation data,

irrespective of its local features.

IV. RESULTS & DISCUSSION

To effectively assess the performance of these navigation

algorithms, it was important that a suitable range of sample

DEMs were tested so that no one method outperformed the

others due to a common feature (e.g., periodicity of hills

throughout the terrain). To accommodate this need for unique

terrains, a DEM generator was created that produces terrain

maps based on computer graphics techniques [16]. An example

terrain is found in Figure 3.

Fig. 3: Example terrain with heterogeneous elevation data.

Per each algorithm outlined in Section III-B, a set of

reference swaths were defined within the sample space of each

generated terrain. Each navigation method used these reference

locations as both a starting point and northing boundary while

navigating from east to west across the AUT. The origi-

nal Lawnmower pattern was tested as our baseline sampling

method. All of the methods are designated in the results as

follows: traditional Lawnmower (LM), Adaptive Parallel (AP),

Piecewise Continuous (PW-Cont), Lawnmower Random (LM-

Rand).

When we compile the RMS error data over 50 different

randomly-generated terrains, we find that the PW-Cont nav-

igation strategy is most dominant over the range of zero to

eight percent coverage per our definition in Section III-A (see

Figures 4 and 5). Also dominant is the decrease in variation of

the RMS error over all 50 terrains tested.

Fig. 4: RMS error comparing traditional Lawnmower, Adap-

tive Parallel, Piecewise Continuous, and Lawnmower-Random.

Average RMS error (left), Range of Error (right).

Additionally, as seen in Figure 4, the overall range of error of

PW-Cont shows a significant improvement (decrease) over the

LM pattern, especially at two, four, and six percent coverage.

At first glance, it appears as though the LM-Rand strategy

is the preferred method, yet, when the trend data from the

Euclidean distance plot of Figure 5 is considered, we find that

the LM-Rand scheme (as well as AP) yield a much greater total

Euclidean distance than PW-Cont as the number of samples

increases and therefore cannot realistically be considered when

attempting to minimize resource usage.
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(a) Traditional Lawnmower navigation example. (b) Adaptive Parallel navigation example (c) Piecewise Continuous navigation example.

Fig. 2: Patterns of navigation strategies (Traditional Lawnmower, Piecewise Continuous, and Adaptive Parallel) as applied to

simulated DEM data.

Fig. 5: Trend of Euclidean distance versus the number of

samples.

The AP approach was insufficient for three reasons: 1)

It assumes the slope information perpendicular to the path

of navigation (i.e., the roll angle) across the AUT will be

uniform. This is not the case since our terrain is heterogeneous

and can vary in any number of directions. 2) Even if the

terrain satisfied the aforementioned characteristics, our function

defining successive swath widths would have to be bounded

to a pre-defined limit so that no information, such as a hill

or valley, would be missed between swaths. After multiple

trials, it was discovered that varying this pre-defined width

only led to sampling of the AUT that demonstrated subtle

improvements over that of the LM pattern. 3) There is no

built-in regulation of resources, i.e., the navigation would only

terminate if the calculated start position of a successive swath

exceeded the dimension of the AUT. A solution is needed that

allows the user to specify limits on how far or for how long

an agent may navigate during sample collection. With this in

mind, we needed to consider more dynamic paths that exhibited

successive irregular trajectories but with quantifiable control

over available resources.

Aside from data presented in the context of our definition of

percent coverage, a broader perspective reveals the importance

of sample placement. Figure 6 confirms a trend similar to that

of Figure 4 where PW-Cont is the most practical navigation

option over others considered with the exception of LM-Rand,

understanding that the cost for executing LM-Rand, in terms

of Euclidean distance, is far beyond realistic consideration.

Fig. 6: RMS error versus total # of samples.

As a final analysis, we tested these same algorithms on a

DEM generated from a contour map outlining a real terrain. As

expected, the PW-Cont method is consistent in outperforming

the LM pattern with a lower RMS error as coverage increases

while maintaining a conservative increasing trend in total

Euclidean distance traveled throughout the AUT (see Figures 7

and 8).

Fig. 7: RMS error comparing traditional Lawnmower, Adaptive

Parallel, Piecewise Continuous, and Lawnmower-Random.
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Fig. 8: Trend of Euclidean distance versus # of samples.

Since the performance of the PW-Cont method on real data

begins to converge with that of LM method at coverages greater

than three percent, we would like to see improvement (i.e.,
lower absolute RMS error) at coverages less than three percent

based on the definition provided in Equation 1, as well in order

to establish a dominant lower range of successful coverages.

We are encouraged by the results presented in Figures 4

- 8, particularly in how, by sacrificing a slight increase in

total distance for the sake of local exploration, a lower RMS

error for coverages less than 10 percent is achieved. When

considering mapping standards like that of the American So-

ciety of Photogrammetry and Remote Sensing (ASPRS), the

performance of the PW-Cont navigation using simulated data

at coverages greater than four percent satisfies requirements for

the generation of Class 1 maps [17].

One proposed explanation for the smaller disparity between

PW-Cont and LM patterns when tested on the real terrain DEM

is the simplicity of the terrain itself. While the data of Figures 4

and 5 was a statistical average performance of 50 terrains, the

results of Figures 7 and 8 were based on only one terrain,

which is, at best, depicted as a sloping hill. By comparison,

the database of terrains tested in simulation consist of much

greater spatial complexity.

V. CONCLUSIONS AND FUTURE WORK

The work presented here offers concrete insight into how

an Earth science team can approach collecting necessary and

sufficient in situ data for environmental monitoring applications

using mobile robotic technology. While spatially static parallel

transect trajectories provide the least cost in terms of point-

to-point distance traveled, better estimates of areas between

transects can be gained. This is accomplished by considering

the sacrifice of minimal additional resources for the purpose of

local exploration, centered around these purely linear swaths

and driven by the measurements. Two points highlight the value

of this work: 1) a scientist can approach an unchartered area

with a robust robotic platform for sampling purposes confident

that less than 25 percent coverage will be necessary to achieve a

useful approximation of the terrain and 2) this can be achieved

by considering non-traditional approaches. Future work in-

cludes considering how to navigate within additional types of

phenomena not easily characterized as undulating terrain, but

instead as more complex ecological elements requiring high-

precision measurements. We will also supplement the results

presented here with field trials comparing the execution of these

algorithms in future work.
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