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Time-Log 
o What did you do this week? 

▪ Continued reading up on the non-rigid point registration method, 
which presented many knowledge gaps mainly to do with the kernel-
based function smoothing including Fourier Transform, and the 
variational functional solution to the transformation problem 

▪ I got pycpd working with both the testing and the target dataset we are 
to use for the research. This included adding utility functions to read 
in Splicer data and editing an example to work with real data.  

▪ Reviewed past lectures and assigned myself to the AV role for the 
seminars program, and reached out to Victor who did this role in 
semesters’ past.  

o What are you going to do next week 
▪ Perform PCA process on the point set data.  
▪ Use these PCA’s on getting a replacement kernel to use that’s not the 

Gaussian example used in the original algorithm.  
o Blockers, things you want to flag, problems, etc. 

▪ There’s still a few remaining knowledge gaps to do with the non-rigid 
application for the point drift, but I think I have enough background 
knowledge to get started on  

 

Abstracts: 

A new point matching algorithm for non-rigid registration 
https://www.cise.ufl.edu/~anand/pdf/rangarajan_cviu_si_final.pdf 

https://www.cise.ufl.edu/~anand/pdf/rangarajan_cviu_si_final.pdf


Abstract: Feature-based methods for non-rigid registration frequently encounter the 
correspondence problem. Regardless of whether points, lines, curves or surface 
parameterizations are used, feature-based non-rigid matching requires us to automatically 
solve for correspondences between two sets of features. In addition, there could be many 
features in either set that have no counterparts in the other. This outlier rejection problem 
further complicates an already difficult correspondence problem. We formulate feature-
based non-rigid registration as a non-rigid point matching problem. After a careful review of 
the problem and an in-depth examination of two types of methods previously designed for 
rigid robust point matching (RPM), we propose a new general framework for non-rigid point 
matching. We consider it a general framework because it does not depend on any 
particular form of spatial mapping. We have also developed an algorithm—the TPS-RPM 
algorithm—with the thin-plate spline (TPS) as the parameterization of the non-rigid spatial 
mapping and the softassign for the correspondence. The performance of the TPS-RPM 
algorithm is demonstrated and validated in a series of carefully designed synthetic 
experiments. In each of these experiments, an empirical comparison with the popular 
iterated closest point (ICP) algorithm is also provided. Finally, we apply the algorithm to the 
problem of non-rigid registration of cortical anatomical structures which is required in 
brain mapping. While these results are somewhat preliminary, they clearly demonstrate 
the applicability of our approach to real world tasks involving feature-based non-rigid 
registration. 

Summary: This paper presents a novel algorithm, TPS-RPM, for non-rigid point matching, a 
crucial problem in computer vision and medical image analysis. The algorithm addresses 
the challenges of automatically finding correspondences between points in two sets, 
handling outliers (points without matches), and determining the non-rigid 
transformation mapping one set onto the other. The authors achieve this by combining 
a thin-plate spline (TPS) for modeling non-rigid deformations with a softassign 
approach for probabilistic correspondence matching within a deterministic annealing 
framework. The effectiveness of TPS-RPM is demonstrated through synthetic experiments, 
comparing its performance favorably to the Iterated Closest Point (ICP) algorithm, and 
showcased in a preliminary application to brain mapping. 

What did you do and prove it 
This week I continued to read the literature, especially some more background on the math 
behind how non rigid point registration is done. I had enough background knowledge on the 
project filled in to get started on testing the code and verifying what’s going on in the paper 
and cross-checking what’s happening in the codebase. I got it working with the included 



data, and then moved onto making it adaptable to the dataset we received, which worked 
even with thousands of datapoints, as opposed to the included example’s hundreds.  

  

 

 
The image is comparing the slicer model and the python cpd algorithm output in the 
Python code. 

Link to Two Recent commits:  

Utility function + small point representation: https://github.com/Nikitos1865/pycpd-
Porto/commit/c8bbea1c59bfdc53e07ca0be3934be3bba0f6025 

https://github.com/Nikitos1865/pycpd-Porto/commit/c8bbea1c59bfdc53e07ca0be3934be3bba0f6025
https://github.com/Nikitos1865/pycpd-Porto/commit/c8bbea1c59bfdc53e07ca0be3934be3bba0f6025


Example with mouse skull data: https://github.com/Nikitos1865/pycpd-
Porto/commit/daf124ee042daf3ee53a49165e68bf205e5d9586 

 

  

https://github.com/Nikitos1865/pycpd-Porto/commit/daf124ee042daf3ee53a49165e68bf205e5d9586
https://github.com/Nikitos1865/pycpd-Porto/commit/daf124ee042daf3ee53a49165e68bf205e5d9586

