
HAAG Weekly Report (Simplified) – Omar Moursy – 3D
Modeling

Time-Log
What did you do this week?

• Updated website homepage for 3D Modeling project
https://sites.gatech.edu/3dmodeling/

• Uploaded the Weekly reports and meeting recordings for Week 4.
• Had a progress update meeting with Nikita and Steve.
• Read through resources shared by Dr. Porto such as PyCPD paper, GitHub

repository, article explaining coherent point drift and downloaded the mouse model
datasets.

• Cloned Nikita’s fork of the PyCPD repository.
• Tested the point cloud registration on the source file semilandmarks.json and target

file B6AF1_J.ply_align.json based on instructions provided by Nikita.
• Downloaded 3D Slicer to explore the dataset we will be working with further

What are you going to do next week

• Add the Researchers section of the 3D Modeling website and upload any missing
documents

• Test the PyCPD code on more of the mouse model dataset.
• Import the mouse models dataset into 3D slicer to visualize the registration

problem
• Approach the problem of breaking down the Statistical Shape Model provided by Dr.

Porto into Python code that explains 95% of the variation
• Meeting with Dr. Porto on Tuesday to discuss progress and next steps

Blockers, things you want to flag, problems, etc.

• None for this week

https://sites.gatech.edu/3dmodeling/

Abstracts:

PyCPD:	Pure	NumPy	Implementation	of	the	Coherent	Point	Drift	
Algorithm	
https://joss.theoj.org/papers/10.21105/joss.04681

Background	

Point	cloud	registration	is	a	common	problem	in	many	areas	of	computer	science,	particularly	computer	
vision.	Point	clouds	come	from	many	types	of	data	such	as	LIDAR	commonly	used	for	self-driving	vehicles,	
and	other	sorts	of	3D	scanners	(e.g.,	structured	light)	are	commonly	used	to	map	the	surface	of	physical	
objects.	Point	clouds	are	also	used	to	represent	the	surface	of	an	anatomical	structure	extracted	from	a	
medical	image.	Point	cloud	registration	finds	a	transformation	from	one	point	cloud	to	another.	Point	cloud	
registration	has	use	cases	in	many	fields	from	self-driving	vehicles	to	medical	imaging	and	virtual	reality.	
Typically,	point	cloud	registration	is	classified	into	rigid	(only	rotations	or	translations),	affine	(rigid	+	
shearing	and	scaling)	and	non-rigid	also	called	deformable	registration	(non-linear	deformation).	

Point	cloud	registration	typically	requires	2	point	clouds.	The	first	point	cloud	is	the	“fixed”	or	“target”	point	
cloud	and	the	second	is	the	“moving”	or	“source”	point	cloud.	We	try	to	find	the	transformation	that	will	best	
align	the	moving	(or	source)	point	cloud	with	the	fixed	point	cloud.	One	of	the	most	well	known	rigid	point	
cloud	registration	algorithms	is	the	Iterative	Closest	Point	(ICP)	algorithm	(Besl	&	McKay,	1992;	Chen	&	
Medioni,	1992).	ICP	is	an	

iterative	algorithm	where	the	following	steps	are	iterated:	

(1)	for	every	point	on	the	moving	point	cloud	find	the	closest	point	on	the	fixed	point	cloud	(2)	use	a	least	
squares	approach	to	find	the	optimal	transformation	matrix	(rotation,	trans-	

lation,	scaling,	shear)	to	align	the	point	correspondences	found	in	(1)	(3)	apply	the	transformation	from	(2)	to	
the	moving	point	cloud	

These	steps	are	repeated	until	the	root	mean	squared	point-to-point	distances	from	(1)	converge.	

The	coherent	point	drift	(CPD)	algorithm	was	created	by	Myronenko	and	Song	(Myronenko	&	Song,	2010)	to	
overcome	many	of	the	limitations	of	ICP	and	other	previous	registration	methods	(Besl	&	McKay,	1992;	Chen	
&	Medioni,	1992;	Fitzgibbon,	2003;	Rusinkiewicz	&	Levoy,	2001).	Namely,	these	other	methods	did	not	
necessarily	generalize	to	dimensions	greater	than	3	and	they	were	prone	to	errors	such	as	noise,	outliers,	or	
missing	points.	The	CPD	algorithm	is	a	probabilistic	multidimensional	algorithm	that	is	robust	and	works	for	
both	rigid	and	non-rigid	registration.	In	CPD	the	moving	point	cloud	is	modelled	as	a	Gaussian	Mixture	Model	
(GMM)	and	the	fixed	point	cloud	is	treated	as	observations	from	the	GMM.	The	optimal	transformation	
parameters	maximize	the	Maximum	Likelihood	/	Maximum	A	Posteriori	(MAP)	estimation	that	the	observed	
point	cloud	is	drawn	from	the	GMM.	A	key	point	of	the	CPD	algorithm	is	that	it	forces	the	points	to	move	
coherently	by	preserving	topological	structure.	The	CPD	algorithm	is	also	an	iterative	algorithm	that	iterates	
between	an	expectation	(E)	step	and	a	maximization	(M)	step	until	convergence	is	achieved.	The	E-step	
estimates	the	posterior	probability	distributions	of	the	GMM	centroids	(moving	points)	given	the	data	(fixed	
points)	then	the	M-step	updates	the	transformation	to	maximize	the	posterior	probability	that	the	data	
belong	to	the	GMM	distributions.	The	E-	and	M-steps	are	iterated	until	convergence.	

https://joss.theoj.org/papers/10.21105/joss.04681

What did you do and prove it
Updated website homepage for 3D Modeling project. I also uploaded the missing weekly
reports and meeting recordings.

We had a team meeting to discuss the progress and setup a better plan to ensure no one is
falling behind. The recording is also on the website.

Read through resources shared by Dr. Porto such as PyCPD paper, GitHub repository,
article explaining coherent point drift and downloaded the mouse model datasets.

Cloned GitHub repo and tested example using the source file semilandmarks.json and
target file B6AF1_J.ply_align.json based on instructions provided by Nikita.

Downloaded 3D Slicer to import the mouse model dataset and explore them further.

Links to the paper, GitHub repo and article:

https://joss.theoj.org/papers/10.21105/joss.04681

https://siavashk.github.io/2017/05/14/coherent-point-drift/

https://github.com/Nikitos1865/pycpd-Porto/tree/master

https://sites.gatech.edu/3dmodeling
https://sites.gatech.edu/3dmodeling/weekly-reports/
https://sites.gatech.edu/3dmodeling/weekly-reports/
https://sites.gatech.edu/3dmodeling/project-updates-spring-2025/
https://joss.theoj.org/papers/10.21105/joss.04681
https://siavashk.github.io/2017/05/14/coherent-point-drift/
https://github.com/Nikitos1865/pycpd-Porto/tree/master

