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Abstract
Advances with trapped ultracold atoms intensified interest in simulating complex physical
phenomena, including quantummagnetism and transitions from itinerant to non-itinerant behavior.
Herewe show formation of antiferromagnetic ground states of few ultracold fermionic atoms in single
and doublewell (DW) traps, throughmicroscopicHamiltonian exact diagonalization for twoDW
arrangements: (i) two linearly oriented one-dimensional, 1D, wells, and (ii) two coupled parallel wells,
forming a trap of two-dimensional, 2D, nature. The spectra and spin-resolved conditional
probabilities reveal for both cases, under strong repulsion, atomic spatial localization at extempor-
aneously created sites, forming quantummolecularmagnetic structures with non-itinerant character.
Thesefindings usher future theoretical and experimental explorations into the highly correlated
behavior of ultracold strongly repelling fermionic atoms in higher dimensions, beyond the
fermionization physics that is strictly applicable only in the 1D case. The results for four atoms arewell
describedwithfiniteHeisenberg spin-chain and clustermodels. The numerical simulations of three
fermionic atoms in symmetricDWs reveal the emergent appearance of coupled resonating 2D
Heisenberg clusters, whose emulation requires the use of a t–J-likemodel, akin to that used in
investigations of highTc superconductivity. The highly entangled states discovered in themicroscopic
andmodel calculations of controllably detuned, asymmetric, DWs suggest three-cold-atomDW
quantumcomputing qubits.

1. Introduction

The unparalleled experimental advances and control achieved in thefield of ultracold atoms have rekindled an
intense interest in emulatingmagnetic behavior using ultracold atoms in optical traps [1, 2]. Quantum
magnetism and spintronics in both extended [3–7] andfinite-size [8–12] systems have a long history. Recently
antiferromagnetism (AFM)without the assistance of an external periodic ordering potential has been
demonstrated experimentally forN=3 andN=4 ultracold 6Li atoms confined in a single-well (SW) one-
dimensional optical trap [13].Moreover, progress aiming at bottom-up approaches to fermionicmany-body
systems, addressing entanglement, quantum information, and quantummagnetism in particular, is predicated
on experimental developments of which the recently created double-well (DW) ultracold atom traps [14–16] are
thefirst steps.

To date the theoretical studies ofmagnetismof a few ultracold atoms havemainly addressed [17–22] strictly
one-dimensional systems trappedwithin a SW (see, however, [19, 20] forDWconfigurations), where the
fermionization theory [23–25] (applicable to 1D systems in the limit of infinite strength of the contact
interaction) can assist in inventing analytic forms for the correlatedmany-bodywave functions. However, the
recently demonstrated ability to create needle-shaped doublewell (DW) traps [15], and the anticipated near-
future further development of small arrays of such needle-like quasi-1D traps in a parallel arrangement (PA, see
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schematics infigure 1), whose corresponding physics incorporates certain two-dimensional (2D) aspects [26],
enjoin the development of additional conceptual and computational theoreticalmethodologies.

We remark that the physics of ultracold atoms in 1D and 3D single traps has been investigated also away
from the fermionization point using a Lippman–Schwinger equation approach, see [27–29], respectively.
Similarly, states of ultracold fermions in a single strictly 1D trap, away from the fermionization limit, using an
exact diagonalization of themany-bodyHamiltonian have been reported [30].

In this paper, using large-scale configuration-interaction (CI) calculations asmeans for exact
diagonalization of themicroscopicHamiltonian, we report that forN=4 (even number) strongly interacting
ultracold fermions in aDW trapwith parallel arrangement (DWPA [26]; seefigures 1(II), (III)) themany-body
problem can be reduced to that of a 2D rectangular AFMHeisenberg ring. The associatedmapping between the
many-bodywave function and the spin eigenfunctions [31] forN=3 andN=4 electrons confined in single
and double semiconductor quantumdots has been predicted in previous studies [11, 12] to occur through the
formation of quantummolecular structures in the regime of strong long-range Coulombic repulsion. Such
molecular structures are usually referred to asWignermolecules (WMs) [32]. ForN=3 (odd number)
ultracold fermions, few-body quantummagnetism requires introduction of amore complex t–J-type [5, 6]
model; here the t–Jmodel consists of two coupled and resonating triangular 2DHeisenberg clusters. In all cases,
wefindAFMordered ground states.

We remark that the emergence of a resonance associatedwith the symmetrization of themany-bodywave
function in two-center/three-electron bonded systems is well known [33–35] in theoretical chemistry and in
particular in the valence-bond treatment of the three-electron bondwhich controls the formation ofmolecules

Figure 1.Energy versus−1/g spectra, SPDs (green surfaces), and spin-resolvedCPDs (red surfaces) ofN=4 strongly repelling 6Li
atoms in a double-well confinementwith a parallel arrangement of the two 1D traps, as a function of the interwell separation d and/or
interwell barrierVb. Schematic (I) shows a SW in the y-direction, and (II) displays a symmetric DWPA,where interwell tunneling in
the x-direction occurs along the entire y-range of the trap, conferring 2D aspects to the trap. Insert (III) shows the sites in the 2D
Heisenberg-ring spinmodel. (a)–(c) d=0 (single well). (d) d=2.5 μmandVb=6.08 kHz (lower barrier). (e)–(i) d=2.5 μmand
Vb=11.14 kHz (high barrier). In all cases, the confinement frequencies of the 1D traps are w = 6.6 kHzx and w = 1 kHzy . The
SPDs andCPDs in (b), (c) and (f), (g) correspond to the S=0, Sz = 0CI ground states (gs, brown curves in the associated spectra (a)
and (e)) at the point (marked by a star) w- = - -( )g l1 0.1 2 y y0

1. The SPD andCPD in (h), (i) correspond to the S=0, Sz=0CI
excited state (orange curve in the associated spectrum (e)). g here is the 1D contact-interaction strength along the y direction [26]. All
three CPDs display the distributions of the two down spinswhen thefixed spin-up fermion (see the black arrow) is placed at

= -(r 0, 0.80 μm) in (c), r0=(−1.3 μm, 1μm) in (g), and m= -(r 1.28 m0 , 0.94μm) in (i). w= [ ( )]( ) ( )l My x y x0
1 2 is the

harmonic-oscillator length; = ´ -M 9.99 10 27 kg is themass of 6 Li. The zero of energy in the spectra corresponds to the ground-
state total energy of the corresponding non-interacting system, that is, to w w w+ =  4 2 17.20y x y in (a), 13.45 w y in (d), and
14.91 w y in (e).
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like +He2 , NO, and
-F2 . The concept of the three-electon resonant bond and its significancewere introduced in

1931 in a seminal paper by Linus Pauling [36, 37].
The emergence of the simple, as well as the resonatingHeisenberg clusters, is a consequence of the spatial

localization of the strongly interacting, highly correlated fermionic atoms and the formation [26] of quantum
1Dand 2Dmolecule-like structures, referred to as ultracoldWignermolecules (UCWMs). The name ofWigner
is used here in the context of ultracold atoms in order to emphasize the universal aspects that are present in the
few-fermionmolecular structures irrespective of the nature of the repelling two-body interaction, i.e., contact
versus long-range Coulomb. In this way the concept ofUCWMextends and incorporates [38] the
fermionization physics [23–25] beyond the restricted 1D case.

We note that due to the quantum character [32] of theWMs, the spatial localization of fermions is not
necessarily pointlike as in the classical electronicWigner crystal [39–41]. However, depending on the strength of
theCoulomb repulsion compared to the quantal kinetic energy, the regime of high-degree localization can be
reached also inWMs formed by electrons confined in quantumdots [32, 42, 43]. In contrast, fermions
interacting via a a repulsive contact interaction cannot attain a similar degree of strong spatial localization; as a
result, theUCWMs retain their full quantal character even in the limit of infinite repulsion.

The resonant coupling ofmagnetic configurations through the tunneling of electrons between occupied and
empty sites has long been studied. Twowell-known relevantfields are: (i) the socalled direct exchange
mechanism [3, 4] (related to ferromagnetism in themixed-valencymanganites of perovskite structure), and (ii)
the t–Jmodel [5, 44]whichmodifies (away from the halffilling) the antiferromagneticHeisenbergHamiltonian
associatedwith theMott insulator at half-filling. The t–Jmodel has attractedmuch attention, because it has been
proposed for explaining the high-Tc superconductivity arising in the case of underdoped insulators [44]. Due to
the antiferromagnetic aspect, our resonatingmodelHamiltonian forN=3 fermions (see section 4.2 below)
represents afinite variant of the t–Jmodel. The emergence of the t–Jmodel in this work suggests future
investigations of fundamental aspects associatedwith the physics of high-Tc superconductivity via studies
utilizing the ability to prepare andmeasure trapped ultracold fermionic atom systemswith precise control over
the number of atoms and the strength of interatomic interactions.

Figure 2. Spectra, densities and spin-resolved CPDs ofN= 4 strongly repelling 6Li atoms in linear double-well confinements. Results
are shown for two values ofVb; see schematics (I) and (II)withVb larger in (II). In theDWLI system, atomicmotions in thewells and
the interwell 1D tunneling occur along the x-axis. Insert (III) shows the sites in the 1DHeisenberg-chain spinmodel. (a) d=2.5 μm
and =V 2.3 kHzb (lower barrier). (b)–(d) d=2.5 μmand =V 8.5 kHzb (high barrier). In all cases, the confinement frequencies of
the 1D traps are w = 1 kHzx and w = 100 kHzy . The SPD andCPD in (c), (d) correspond to the S=0, Sz=0CI ground state
(brown curve in the associated spectrum (b)) at the point (marked by a star) w- = - -( )g l1 0.1 2 ;x x0

1 g here is the 1D contact-
interaction strength along the x direction [26]. TheCPD in (d)displays the distribution of the two down spins when thefixed spin-up
fermion (see the black arrow) is placed at m= (r 0.8 m, 00 ). The zero of energy in the spectra corresponds to the ground-state total
energy of the corresponding non-interacting system, that is, to 202.86 w x in (a) and 203.52 w x in (b). The difference in the non-
interacting energies between (a) and (b) is due to the different interwell barrier. For twowells at infinite separation, the total energy for
4 non-interacting fermions is equal to w w w+ =  2 2 202x y x .
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Wecomplement our investigations by further highlighting the differences arising from the different
geometries of the traps in both the parallel and linear (LI) arrangement; in analogy to theDWPAdesignation
defined above, aDW trapwith linear arrangement of the twoneedle-like wells will be denoted asDWLI; see
schematics infigures 2(I), (II). Our theoretical predictions can be directly confirmed using the recently
developed experimental techniques.We stress again that the regime ofUCWMformation and of the associated
simple-Heisenberg-chain and t–J resonating-spin-chainsmagnetism appears for strong interparticle
interactions and contrasts sharply with the regime of itinerantmagnetism [45, 46], which appears for weaker
interactions. Themicroscopic treatment of itinerantmagnetism (weaker interactions) can be handledwithin
mean-field approaches (e.g. Hartree–Fock), whereas the regime of spin chains and clusters (strong repulsion)
considered here entails conservation of the total spin and requiresmore sophisticated approaches like the full CI.

Finally, we note that the related three-electron system in semiconductor double quantumdots has recently
attractedmajor attention in conjunctionwith the fabrication and implementation of pulse-gated fast hybrid
qubits for solid-state-based quantum computing [47, 48]. These advances and the fascinating physics ofDW-
trapped three ultracold fermionic atoms thatwe uncover, and in particular the high degree of entanglement
predicted by us for strong interatomic repulsion (see sections 3–5) and the very slow decoherence in such traps,
suggest future exploration of this system as a robust ulracold 3-atomDWqubit.

Before leaving the Introduction, wewish to clarify that the term antiferromagnetic is used by us to
characterize finite systems having a ground state with theminimumpossible value of the total spin, i.e., S=1/2
forN=3 fermions and S=0 forN=4 fermions.

The plan of the paper is as follows:
A statement of themany-bodyHamiltonian, including a description of theDWemployed by us, is given in

section 2.
In section 3, we describe investigations concerning four ultracold 6Li atoms inDW trapswith both parallel

and linear arrangement of the individual needle-like wells. A comparisonwith the case of four fermions in a
quasi-1D SW is also included in order to appreciate the rich additionalmagnetic behaviors associatedwith a
DW. Section 3 is divided into two subsections, with section 3.1 describing results of purelymicroscopic CI
calculations, and section 3.2 establishing themapping onto theHeisenberg 4-fermion phenomenological
Hamiltonian.

Section 4 presents our studies concerning the case of three ultracold 6Li atoms inDWPA andDWLI traps, as
well as the comparisonwith the corresponding case of a SW. Section 4.1 describes CI results for both the
symmetric and tilted cases; for the tilted case, this section establishes themapping onto a 3-fermionHeisenberg
model. Going beyond theHeisenbergmodel, section 4.2 introduces the t–Jmodel and establishes, in analogy
with theCI results, its validity for describing the case of symmetricDWs. Section 5 describes the entanglement
properties of the CImany-bodywave functions.

The appendices provide detailed information concerning themathematical formalism associatedwith the
spin eigenfunctions and thefiniteHeisenberg and t–Jmodels. In particular:

Appendix A provides a brief description of the branching diagram that describes themultiplicities (number
of degenerate spin states) of a given total spin S. This appendix also presents in the Ising basis the general
formulas that describe a spin eigenfunction (i)with S=0 and Sz=0 for four fermions and (ii)with S=1/2
and =S 1 2z for three fermions. These general formulas incorporate in a compact formboth the orthogonal
basis of spin functions that spans the spin space for a given S, as well as any linear superposition of them. In
addition, appendix A describes the process ofmapping themany-bodyCIwave functions onto these spin
eigenfunctions.

Appendix B discusses themathematics of theHeisenbergmodel for 4 localized fermions in a ring-like
rectangular configuration (DWPA case), while appendix Cdiscusses the corresponding case for an open chain
arrangement (DWLI case).

AppendixD discusses themathematics of theHeisenbergmodel for 3 localized fermions in a triangular
(DWPA case) and linear (DWLI case) configuration, both associatedwith tiltedwells.

Finally, appendix E discusses themathematics of themore general t–Jmodel for 3 localized fermions in the
case of a double trapwith symmetric wells.

2.Many-bodyHamiltonian

ADWLI trap can be treated as a strictly 1Dproblem along a single direction. TheDWPA trapwhich consists of
two parallel needle-like wells, however, cannot be treated solely along one direction (e.g., the x-direction).
Instead it requires consideration of the y coordinate aswell. To treat both cases in a unifiedway, we consider a
many-bodyHamiltonian forN fermions of the form

4
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where -r ri j denotes the relative vector distance between the i and j fermions (e.g., 6Li atoms). This
Hamiltonian is the sumof a single-particle partH(i), which guarantees the needle-like shape of the individual
wells, and the two-particle contact interaction.

The external confining potential (inH(i)) thatmodels aDW is based on a two-center-oscillator (TCO)
model [12, 26] exhibiting a variable smooth neck along the x-direction. Along the x direction, this TCOmodel
allows for an independent variation of both the separation d and of the barrier heightVb between the twowells;
see figure 3. Along the y-direction, the confinement consists of that of a single harmonic oscillator. The values of
the frequencies w x1 (left well), w x2 (right well) and w y that confine the twowells along the x and y directions,
respectively, are also allowed to vary independently; here we choose w w w= =  x x x1 2 . The needle-like shape
of each individual trap is enforced by assuming that w w x y (DWLI case) or w w x y (DWPA case). The
TCO further allows consideration of a tiltΔ between the left and right wells. Figure 3 illustrates the TCO
confining potentials in the x direction used in figure 4 below for the study ofN=3 fermions in tilted and
symmetric DWs.

Aswementioned in the Introduction, we use theCImethod for determining the solutions of themany-body
problem specified by theHamiltonian (1). TheCImethod expresses the fermionicmany-bodywave function as
a supperposition of Slater determinants, and it is well known in quantum chemistry and in few-body physics of
electrons; for a basic description of theCImethod, see [49]. Thus a detailed description of theCImethodwill not
be repeated here (see additional details in [26]). Specific adaptations by us of thismethod to a few electrons in 2D
semiconductor quantumdots and rotating bosons in the lowest Landau level have been reported in [12, 32, 50],
respectively. An earlier application by us of thismethod to the case ofN=2 trapped ultracold fermionswas
reported in [26]. The reader canfind an expanded description of theCImethod in the literaturementioned
above.

Convergence in theCI calculations is reached through the use of a basis of up toK= 80 TCO single-particle
states as needed.Note that the TCO single-particle states automatically adjust to the separation d as it varies from
the limit of the unified atom d=0 to that of the two fully separated traps (for sufficiently large d).We verified
that for w w = 100y x (strictly 1D single trap), our CI calculations agreewith the results of table 2 of [30].

Thematrix elements ofMB between theCI determinants are calculated using the Slater rules. An important
ingredient in this respect are the two-bodymatrix elements of the contact interaction

Figure 3.TCO trapping potentials in the x direction illustrating the smooth neck. (top)Tilted double well. (bottom) Symmetric
double well. The parameters correspond to the cases for three 6Li atoms in figures 4(f), (j) below. w = 6.6 kHzx , =V 24.30 kHzb ,
d=2.5 μm. wD = 2.5 y ( w = 1y kHz) in (top) andD = 0 in (bottom).V0 denotes the intersection of the left parabola (dashed
line, without a smooth neck)with the vertical axis at x= 0.When D ¹ 0, the dashed curve is not continuous at x=0; this is corrected
with the consideration of the smooth neck.
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in the basis (of dimensionK) formed out of the single-particle (space) eigenstatesj ( )ri of the TCOHamiltonian.
Because the individual wells remain needle-like in all of our calculations here, the s-wave scattering between

two ultracold fermions takes place primarily along a single dimension, either the y-dimension or the
x-dimension. As a result, the parameter gxy in front of the d -( )r ri j function in equation (1) does not reflect the
physical process of two-dimensional s-scattering. Rather it is an auxiliary theoretical parameter that allows us to
treat theDWPA andDWLI traps on an equal footing. In particular, the actual 1D interparticle interaction
strengths, g, are related to gxy as follows

Figure 4.Energy versus- g1 spectra, SPDs (green surfaces), and spin-resolved CPDs ofN=3 strongly repelling 6Li atoms in a
double-well confinementwith a parallel arrangement (DWPA) of the two 1D traps at a given interwell separation d=2.5 μm, as a
function of the interwell barrierVb and the tilt,Δ, between the twowells. The blue (red) surfaces describe the spin-up (spin-down)
probability when a spin-down (spin-up) fermion is assumed to be at thefixed point. (a)–(e)D = 0 (see schematic in (II)) and

=V 11.14 kHzb (lower barrier). (f)–(i)D = 0 (see schematic in (II)) and =V 24.30 kHzb (high barrier). (j)–(m) wD = 0.5 y (see
schematic in (IV)) and =V 24.30 kHzb . (n)–(q) wD = 2.5 y (see schematic in (VI)) and =V 24.30 kHzb . (VII) gives schematically
the spin function for the ground state with S=1/2. In all cases, the confinement frequencies of the 1D traps are w = 6.6 kHzx and
w = 1 kHzy . The SPDs andCPDs in (b)–(d), (g), (h), (k), (l), (o), (p) correspond to the S=1/2, =S 1 2z CI ground state (brown
curve in the associated spectra (a), (f), (j), (n)) at the point (marked by a star) w- = - -( )g l1 0.1 2 ;y y0

1 g here is the 1D contact-
interaction strength along the y direction [26]. The fixed point (see black arrows) in the SR-CPDs is placed at m= +(r 1.3 m0 ,−1.1
μm) in (c), (h), m= -(r 1.3 m0 ,−1.1μm) in (d), (g), (l), and m= -(r 1.3 m0 ,0) in (p). (VIII) shows schematically the degeneracies
(lifting of degeneracies) in the two uncoupled (coupled)Heisenberg rings (t–Jmodel) corresponding to the spectra in (a), (f). (e), (i),
(m), (q)The vonNeumann entanglement entropies, calculated from the single-particle densitymatrix [11, 26]. Note the increased or
constant entanglement with increasing repulsion, and the larger values for the symmetric DWcongurations (e), (i) compared to the
nonsymmetric (tilted) ones (m), (q). The zero of energy in the spectra corresponds to the ground-state total energy of the
corresponding non-interacting system, that is, to 11.14 w y in (a), 12.62 w y in (f), 13.11 w y in (j), and 13.62 w y in (n). The presence
of the interwell barrier in (n) accounts for the difference from the single-well value of w w w+ =( )  5 3 2 12.40y x y .
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where u is a dummy variable andW is the lowest-in-energy single-particle state in the ( )y x direction for the LI
(PA) trap configurations, respectively.

Note that the 1D strength g relates to the 3D s-scattering length a3D via the relation [51],

m
=

-^ ^
( )

g
a

l a l

2 1

1 1.4603
, 4

2
3D

2
3D

precisely as is done in the experimental studies of [15]; m = M 2 is the relativemass and l̂ is the harmonic
oscillator strength in the direction perpendicular to the needle.

For theCI calculations in this paper, we assume that the total-spin projection Sz=0 for 4 fermions or
=S 1 2z for 3 fermions. This suffices to provide the full energy spectrum, as long as themany-body

Hamiltonian does not depend on Sz. Naturally, themany-bodywave functions characterized by a given total
spin S are different for the different projections >S 0z . For lack of space, wewill not consider heremany-body
wave functionswith ¹S 0z for four fermions orwith ¹S 1 2z for three fermions. For an earlier study of such
wave functions in the case of four electrons in a double quantumdot, see [12].

3. Four fermionic ultracold atoms in aDWtrap

3.1. Four fermionic ultracold atoms: CI results
We treat here three different types of traps: a SWquasi-1D trap (see figure 1(I)), a DWPA trap (PA,figure 1(II)),
and aDWLI trap (linear arrangement, figure 2(I)).We start with the four-atomDWsystems, followed by a
comparisonwith the SW trap (end of sections 3.1 and 3.2), which is used as a reference point to allow for a deeper
appreciation of the richness ofmagnetic behaviors introduced by theDWgeometries.

Figures 1 and 2 illustrate the evolution of the spectra of =N 4 6 Li atoms for theDWPA andDWLI cases,
respectively, as a function of the separateness of (or alternatively the strength of tunneling between) the two 1D

Figure 5. Spectra, density, spin-resolved CPDs and entanglement entropies ofN= 3 strongly repelling 6Li atoms in linear double-well
confinements. (a)Energy versus- g1 spectra, SPDs (green surfaces), (b) SPD (green surface), and (c), (d) spin-resolved CPDs (blue
surfaces) ofN=3 strongly repelling 6Li atoms in a symmetric D =( )0 double-well confinementwith a linear arrangement of the two
1D traps with an interwell barrierVb=6.08 kHz and d=2.5 μm (see schematic (I)). The fermionic atoms are restricted to the lowest
energy level in the y-direction andmovewithin eachwell in the x-direction ( w w ) y x , with 1D tunneling between thewells
occuring along the x-axis of theDWLI trap. (e)Corresponding spectrum for a very high barrier =V 11.14 kHzb at d=2.5 μm (see
schematic (II)), which displays a characteristic 2-4 degeneracy pattern. In all instances w = 1 kHzx and w = 100 kHzy . The SPD in
(b) andCPDs in (c), (d) correspond to the S=1/2, =S 1 2z CI ground state (brown curve in the associated spectrum (a)) at the
point (marked by a star) w- = - -( )g l1 0.1 2 ;x x0

1 ghere is the 1D contact-interaction strength along the x direction [26]. The
CPD in (c), (d) display the distribution of the two up spinswhen thefixed spin-down fermion (see the black arrow) is placed at
r0=(−1.3 μm, 0) and m= +(r 1.3 m0 , 0), respectively. The different-color balls in (I) and (II) indicate the two resonating linear
UCWMs. The zero of energy in the spectra corresponds to the ground-state total energy of the corresponding non-interacting system,
that is, to 152.51 w x in (a) and 152.73 w x in (b).
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wells (resulting fromboth the effect of separation in distance, d, and the height of the interwell barrierVb). The
limiting case of the SW (‘united atom’) quasi-1D trap (at d= 0) is displayed in figure 1(a). The opposite limit of
strongly separatedwells is displayed infigures 1(e) and 2(b), respectively. All spectra are shown in the range

w- -( )( ) ( )  l g1 2 1 0y x y x0 , which covers the regime of strong interparticle contact repulsion. A salient
common feature of allfive energy spectra in figures 1 and 2 is the emergence of a separate band formed by six
low-energy states as the interaction strength approaches infinity (i.e., as-  -g1 0); all six states become
degenerate at- =g1 0. Qualitative differences between these spectra amount only in the extent of the
spreading out of the six curves; themost spread out case (with six clearly distinct lines) arises for the SW
(figure 1(a)), whereas the strongly separated cases display a characteristic 1-2-3 degeneracy in thewhole range
- - g1 1 0 (figures 1(e) and 2(b)). The tendency towards the regrouping of the energy curves according to
the 1-2-3 degeneracy pattern is also visible in the intermediate cases (figures 1(d) and 2(a)).

In all instances, i.e., for both theDWPA andDWLI cases, as well as the SWcase, there are two states with total
spin S=0, three states with S=1, and one statewith S=2. These total-spinmultiplicities, denoted here by

=( ) N S4, , arise from the group-symmetry properties of the spin eigenfunctions [12, 31] ofN=4 fermions
with spin 1 2; for themultiplicities ( ) N S, of total-spin degeneracies for anyN fermions, see the branching
diagram [31] in appendix A. (The theory of spin-1/2 eigenfunctions is well known in quantum chemistry (see
[31]) and has been used [12] previously in thefield of quantumdots, ant it will not be repeated here.However,
for a brief outline and a description of the general spin eigenfunctions forN=3 andN=4, see appendix A.
Importantly, in the cases studied in this paper (that is, forN= 4 (figures 1 and 2), and forN= 3 in a SWand in
theDWPA trap (figure 4), as well as in aDWLI trap (figure 5)) the AFM lowest spin-state is the ground state and
the energy level spacings decrease with increasing interatomic repulsion.

The similar behavior of the sixfold-multiplet bands irrespective of the different geometries of theDW traps,
i.e., DWPA versusDWLI, indicates an underlying physical process independent of dimensionality (2D versus
1D). This underlying physics involves spatial localization of the 6Li atoms at extemporaneously created sites
within eachwell and the ensuing formation of quantumUCWMs, as can be seen by an inspection of
corresponding single-particle densities (SPDs, green surfaces infigures 1 and 2) and spin-resolved conditional
probability distributions (SR-CPDs, angle-resolved pair correlations, red surfaces in figures 1 and 2).

The SPD is the expectation value of the one-body operator

år d= áF - F ñ
=

( ) ∣ ( )∣ ( )r r r , 5N
i

N

i N
CI

1

CI

where F ñ∣ N
CI denotes themany-body (multi-determinantal)CIwave function.

Wenote that the SPD is the sumof the spin-up and spin-down SPDs, defined as

år d d= áF - F ñs ss
=

( ) ∣ ( ) ∣ ( )r r r , 6N
i

N

i N
CI

1

CI
i

whereσ and si denote up or down spins.
In all cases the SPDs display four humps corresponding to the four localized fermions at the self-generated

localization sites. The detailed arrangement of these sites varies in order to accomodate the geometry of the traps.
For theDWPA case (figure 1(f))with two fermions in the left well and the other two in the right well (nL=2,
nR=2), a 2D rectangle is formed. For theDWLI (2, 2) case (figure 2(c)), including the limiting case of the SW
(figure 1(b)), the four sites fall onto a straight line. Note the opening in themiddle of theDWLI density
(figure 2(c)), in contrast to the case of the SW infigure 1(b).

Although several distinct spin structures can correspond to the same SPDof aUCWM, the spin
eigenfunction associatedwith a specificCIwave function can be determinedwith the help of themany-body SR-
CPDs, ss 0

, which yield theCPDoffinding another fermionwith up (or down) spinσ at a position r, given that a
specific fermionwith up (or down) spin s0 isfixed at r0. In detail, the spin-resolved two-point anisotropic
correlation function is defined as

åd d d d= áF - - F ñss ss s s
¹

( ) ∣ ( ) ( ) ∣ ( )P r r r r r r, . 7N
i j

i j N0
CI

0
CI

i j0 0

Using a normalization constant

òs s = ss( ) ( ) ( ) Pr r r r, , , d , 80 0 00

we further define a related SR-CPD as

s s=ss ss( ) ( ) ( ) ( ) Pr r r r r, , , , . 90 0 0 00 0

In particular, by calculating the ratios of the volumes under theCPDhumps and equating them to the
corresponding ratios of the squares of the angle-dependent coefficients of the general expressions for the spin
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eigenfunctions, one can determine the numerical values of the coefficients thatmap the spin eigenfunction to a
specific SR-CPD (for details, see appendix A and [12]). As an example, the spin eigenfunction associatedwith the
4-fermion S=0, Sz=0CI ground state at w- = - -( )g l1 0.1 2 y y0

1 in the case of well-separatedDWPA
parallel wells (see star infigure 1(e); for the corresponding SR-CPD, see figure 1(g)) is given by (q p= - 3 in
equation (A.2))

aabb abab baba bbaa= - + + -( ) ( )( ) 2, 1000
1

where theαʼs (βʼs) denote up (down) spin-1/2 fermions situated at the self-generated sites (themaxima of the
humps in the SPDs orCPDs); themethodology and detailed calculations used in determining the angle θ in the
general spin eigenfunction in equation (A.2) are described in appendix A.

The equal in absolute value =∣ ∣ 1 2i , = ¼i 1, , 4 coefficients in front of the four primitives in
equation (10) agreewith the probability of 0.5 (i.e., = ´ 0.5 2 2) for the so-called ‘antiferromagnetic’
component (aabb and bbaa) found in [19] (see figure 1(d) therein) for the case of a two-parabolaDWLIDW
in the high-barrier regime. They also agree with the probability for the ‘mixed’ component (abab and baba)
reported in the same paper.We note that in our treatment, we can vary the height of the barrier independently
from the separation of thewells, unlike the case in [19]. The use of the terms ‘antiferromagnetic’, ‘mixed’, and
‘ferromagnetic’ to characterize the spin primitives of the Ising basis is borrowed here and in a paragraph below
from [19] in order to facilitate the comparisons. This use is not repeated anywhere else in the paper; instead, as
aforementioned, we employ the term ‘antiferromagnetic’ to describe finite systems that have ground states with
the lowest possible total spin.

Themapping to the spin eigenfunction in equation (10) reflects the fact that at the high-barrier (or large-
separation) regime the 4-fermion problem can be viewed as that of two pairs of strongly interacting fermions
within eachwell, each pair interactingweaklywith the other one through the high barrier. In this case, as
discussed below, the energetics of the 4-fermion system can be understood simply by adding the singlet and
triplet energy levels of the left and right fermionic pairs.However, the CIwave functions exhibit strong
entanglement between the left- and right-well fermionic pairs in addition to the entanglement between the two
fermionswithin eachwell. This across-the-barrier entanglement is not weakening as a result of a higher barrier,
and it ismanifested in themapping of theCI ground-state wave function onto the spin eigenfunction in
equation (10).

Furthermore, the discussion above applies also to the excited states. For example, the SPD and SR-CPDof
thefirst excited state with S=0, Sz=0 in theDWPA trap offigure 1 (having an energy w=  2 y in
figure 1(e)) is displayed infigures 1(h) and (i), repectively. For this case, following an analysis as described above
(and in appendix A), we find an angle q p= 6, which is associatedwith a spin function of the form

aabb abab abba a b= + - + «( ) ( )( )
1

2 3

1

2 3

1

3
. 1100

2

Wenote that the spin eigenfunctions in equations (10) and (11) are orthogonal.
The two coefficients = = ( )  1 2 31 2 in front of thefirst two primitives in equation (11) agree with the

probability of 0.166 (i.e., = ´ 0.166 2 1
2) found in [19] for the ‘antiferromagnetic’ (aabb and bbaa), as well

as for the ‘mixed’ (abab and baba)primitives in the case of a two-parabolaDWLIDWat the high-barrier
regime. The third coefficient = - 1 33 for the ‘ferromagnetic’ primitive in equation (11) yields a probability
of 0.666 ( = ´ 0.666 2 3

2), again in agreement with [19].
The spin eigenfunction associatedwith the 4-fermion S=0, Sz=0CI ground state at

w- = - -( )g l1 0.1 2 x x0
1 in the case of well-separatedwells in theDWLI linear configuration (see star in

figure 2(b); for the corresponding SR-CPD, see figure 2(d)) is given by the same spin eigenfunction as in
equation (10). This is due to the fact that the left and right pairs of fermions are isolated from each other in their
respective wells.

Returning to the case of four fermions in a single quasi-1D trap (figures 1(a)–(c)), the spin eigenfunction
associatedwith the S=0, Sz=0CI ground state at w- = - -( )g l1 0.1 2 y y0

1 (see star infigure 1(a); for the
corresponding SR-CPD, see figure 1(c)) is found to have a different form from those in equations (10) and (11).
Specifically, the analysis of the SR-CPDdescribed in detail in appendix A yields an angle q p= - 5.12 in
equation (A.2), which is associatedwith the following spin eigenfunction

aabb abab abba a b= + + + «( ) ( )( ) C C C , 1200
3

1 2 3

whereC1=0.332 411, = -C 0.575 0172 , andC3=0.242 606.
In the next section, we utilize the trends uncovered by theCI solutions for the spectra andwave functions of

themany-bodyHamiltonian, in order to develop aHeisenberg-model phenomenology. This development aims
at providing tools for analyzing quantummagnetism in double (andmulti-well) ultracold-atom traps.
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3.2. Four fermionic ultracold atoms: theHeisenbergmodel
Wehave verified that the CI energy spectra presented infigures 1 and 2, as well as the SR-CPD-derived spin
eigenfunctions (see, e.g., the functions in equations (10)–(12)) are related to those of a 4-siteHeisenberg
HamiltonianH , with the four fermions being located at the humps of the SPDs and SR-CPDs, namely to (see,
e.g., equations (B.1) and (B.2))

/å å= -
á ñ á ñ

· ( ) J JS S 4, 13H
ij

ij i j
ij

ij

where the symbol á ñij denotes that the summation is restricted to the nearest-neighbor sites. The second term is a
scalar, leading simply to an overall energy shift; for a detailed description ofH , see appendices B andC. The
DWPA case is associatedwith a rectangular 2DHeisenberg ring (see schematic (III) infigure 1), while theDWLI
and SWcases represent open linear spin chains (see schematic (III) in figure 2). Due to the x and y reflection
symmetries,H has only two different exchange constants. In particular, in general, for the rectangular
Heisenberg ring in theDWPA case, the interwell exchange constants = = ¹J J r 012 34 and the intrawell ones

= = ¹J J s 023 14 . For the open 1D linear configuration of theDWLI and SW traps, = ¹J r 012 , =J 034 , and
= = ¹J J s 023 14 . The energy eigenvalues i and eigenvectors i ofH (equation (13)) are given in appendix B

andC. They can reproduce all the trends in the energy spectra of the sixfold energy band, as well as the total-spin
multiplicities =( ) N S4, and spin eigenfunctions calculated via theCImethod. In particular, in the limit of
well-separatedwells (i.e., for r= 0), one gets = = =   02 4 6 , = = -  s1 3 , and = - s25 , which coincides
with the aforementioned 1-2-3 spin-group-theoretical degeneracy pattern and relative gaps within the sixfold
lowest-energyCI band.Note further that theHeisenbergmodeling reproduces the two different SR-CPD-
derived spin eigenfunctions in equations (10) and (11), associatedwith the fully separated-wells (r= 0, for both
theDWPAandDWLI cases); compare with the eigenvectors in equations (B.22) and (C.12).

It is notable that both theCI spectra (see figures 1(e) and 2(b)) and theHeisenberg energies for fully separated
wells exhibit two energy gaps, one twice as large as the other (e.g.,-s and- s2 in theHeisenbergmodel). This
behavior can be understood from the spectrumof two unrelated SWs each containing a pair of two strongly
interacting fermions. Indeed, the two lowest levels of two interacting fermions consist of a singlet state with
energyEs and a triplet state with energyEt. The low-energy spectrumof theDWhas then three levels, = E2 t1 ,

= + E Et s2 , and = E2 s3 , corresponding towhether both fermion pairs are in a triplet state, one pair is in a
triplet with the other in a singlet state, or both pairs are in a singlet state; this results in the two energy gaps
D = - E Et s12 andD = - = D( ) E E2 2t s13 12.

The topology of the spin chain infigure 1(III) (DWPA) is indeed a closed ring, whereas the one in
figure 2(III) (DWLI) is that of an open ring. The correspondingHeisenbergHamiltonians are given in
equations (B.4) and (C.1), respectively; note that they have differentmatrix elements. The similarities between
these two cases arise from the fact that the spin eigenfunctions ontowhich theCIwavefunctionsmap (aswe
show in both theDWPA andDWLI cases) have the same group structure, differing only in the coefficients of
their components (see, e.g., equation (A.2) in appendix A); themultiplicity of the four fermions spin
eigenfunctions ontowhich theCI spectrummaps (in both theDWPA andDWLI cases) is six (for all
arrangements of 4 fermions, see appendix A andfigure A1).

For the SWcase, all six CI energies have distinct values; see the spectrum infigure 1(a). By using the open-
Heisenberg-chain eigenvalues i, = ¼i 1, , 6 in equations (C.2)–(C.7) andfitting the ratios - -( ) ( )   i j4 4

to theCI spectrum, we can determine the parameter f=r/s that describes the SW. For example, using the fully
polarized, = =E 0fp 4 , the ground-state, = Egs 5, and the 1st-excited, = E1st 3, energies, we obtain the ratio

-

-
=

+ + +

+ - + +( )
( )

E E

E E

f f

f f f

1 1

2 4 2
, 14

1st fp

gs fp

2

which is independent of s and allows for the determination of f. Fitting to theCI spectrum,we get ~f 1.35. This
value agrees with that resulting from the nearest-neighbor exchange constants of harmonically trapped particles
listed in table I of [18]. Another study [20] gave a value of»1.4 for this ratio.

With the value of =r s 1.35, the open linearHeisenberg chain yields = - s1 (S= 1), = - s0.334 9852

(S= 1), = - s2.015 013 (S= 1), = 04 (S= 2), = - s2.558 535 (S= 0), and = - s0.791476 (S= 0), i.e.,
six distinct values, in agreementwith theCI spectrum infigure 1(a). The corresponding angle in equation (A.2)
is q p= - 4.58. This value is slightly different from the value of p- 5.12 (corresponding to an »r s 1.62)
that was determined above in section 3.1 from an analysis of theCICPD infigure 1(a). This slight discrepancy is
due to the elimination of the space degrees of freedomwhen considering themapping of theCIwave function
onto the spin eigenfunctions. Naturally, the spin eigenfunctions have constant coefficients in front of the Ising-
expansion primitives and by themselves are unable to reflect the influence of the extent of space distribution of
the localized fermions. Indeed the localization of the four fermions is sharper in aDWwith a high barrier
compared to that in a SW; compare the SPD’s infigures 1(b) (4 fermions inside the samewell) and 1(f)
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(2 fermions in eachwell). TheCI SPDs and SR-CPDs incorporate in their definition the space degrees of freedom
and they account for the actual extent of partial or full particle localization (which varies with g). A detailed
investigation of thismatter is beyond the scope of this paper, but it will be examined in a future publication [52].

4. Three fermionic ultracold atoms in aDWtrap

4.1. Three fermionic ultracold atoms: CI results and theHeisenbergmodel for tiltedDWs
CI results forN=3 ultracold 6Li atoms in aDWPA trap are displayed infigure 4 for both symmetric (zero tilt,
D = 0, see schematic infigure 4(II) and spectra infigures 4(a) and (f)) and asymmetric wells with amoderate tilt

wD = 0.5 y (see figures 4(IV) and (j)) and a strong tilt wD = 2.5 y (seefigures 4(VI) and (n)).
The cases of asymmetricwells are amenable to straightforward interpretations based onpureHeisenberg

models. Themoderate tilt (figure 4(IV), wD = )0.5 y generates a ground statewith a (2,1)distributionof the
atoms (two in the leftwell andone in the right, tilted upward, one), which are localized in the shapeof a isosceles
triangularUCWM (see the SPD infigure 4(k)). The correspondingCI energy spectrum (figure 4(j)) exhibits a
three-fold lowest-energy bandwith a characteristic 1-2degeneracy pattern, converging to the sameenergy for
- g1 0. The total-spinmultiplicities in this band are = = =( ) N S3, 1 2 2 and = = =( ) N S3, 3 2 1,
in agreementwith the branching diagram for three fermions (see appendixA). ThisCI energy spectrumand the
correponding SR-CPDs (see, e.g., the SR-CPD infigure 4(l)) are reproducedby a 3-siteHeisenberg-ring
Hamiltonian

= + + - -· ( · · ) ( ) J J J JS S S S S S 4 2, 15H
trg

12 1 2 13 1 3 2 3 12 13

with =J s12 and = =J J r;13 23 for the numbering of the three sites, see the schematics infigure 4(V) and in
appendixD. For r=0 (case of a highbarrierVb), the eigenenergies ofH

trg are = = = =( ) ( ) S S3 2 1 2 01 2

and = = -( ) S s1 23 , reproducing the above-mentioned 1-2CIdegeneracy pattern.TheCI-calulatedCPDs

Figure 6. (a)–(i) Spectra, entanglement, total densities, and spin-resolved CPDs ofN=3 strongly repelling 6Li atoms in a 1D single-
well harmonic confinement (as a limiting case of aDWPA,with interwell distance of d= 2500 nm, for strong tiltD = 2.5 kHz and
strong interwell barrier =V 24.30 kHz;b see schematic in (I)). (a)Energy spectrum and vonNeumann entropy versus- g1 . (b) SPD
(green surface). (c)–(i) Spin-resolvedCPDs. The blue (red) surfaces describe the spin-up (spin-down) probability when a spin-down
(spin-up) fermion is assumed to be at thefixed point (denoted by a black vector). The confinement frequencies of the 1D traps are
w = 6.6 kHzx and w = 1 kHzy . The SPD (b) and SR-CPDs in (b)–(i) correspond to the S=1/2, =S 1 2z CI ground state (brown
curve in the associated spectrum (a)) at the point (marked by a star) w- = - -( )g l1 0.1 2 ;y y0

1 g here is the 1D contact-interaction
strength along the y direction [26]. The fixed point (see black arrows) in the SR-CPDs is placed at r0=(−1.3 μm,1.9μm) in (c),

m= -(r 1.3 m0 ,−1.9μm) in (d), m= -(r 1.3 m0 ,0) in (e), m= -(r 1.3 m0 ,0 ) in (f), m= -(r 1.3 m0 ,−1.1μm) in (g),
m= -(r 1.3 m0 ,0) in (h), and m= -(r 1.3 m0 ,−1.1μm) in (i). The vonNeumann entanglement entropies in (a) are calculated from

the single-particle densitymatrix [11, 26]. This figure complements figure 4 in that it displays examples of all possible SR-CPDs for the
ground state ofN=3 cold fermions in a single 1Dwell. It is straightforward to check that the SR-CPDs agreewith amapping of theCI
ground state onto the spin eigenfunction of the schematic (II). (j)–(l)Ground-state results for =N 3 6Li atoms in a strictly 1D single
trapwith w = 100 kHzx and w = 1 kHzy . (j) SPD (green surface). (k) spin-down density (red surface). (l) spin-up density (blue
surface). The zero of energy in the spectrum corresponds to the ground-state total energy of the corresponding non-interacting
system, that is, to 13.62 w y in (a).
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are also in full agreementwith the eigenvectors of theH
trg Hamiltonian. For example, theCI ground-state

SR-CPD  infigure 4(l) (at thepoint w- = - -( ) )g l1 0.1 2 y y0
1 is found tomaponto the 3-fermion general

spin eigenfunction (see equation (A.3)) for q = 0, i.e., that is to the function

aba baa= -( ) ( )( ) 2 . 161 2,1 2
1

This CI-derived spin function is schematically portrayed infigure 4(V) and agrees with theHeisenberg
eigenvector in equation (D.7).

A larger tilt wD = 2.5 y generates a (3,0)CI ground state, associatedwith a linearUCWM (see the SPD in
figure 4(o)). TheCI energy spectrum (figure 4(n)) and the correponding CPDs (see, e.g.,figure 4(p)) are related
to a 3-site open-linear-chainHeisenbergHamiltonian, obtained from equation (15) by setting = =J s 012 . This
Hamiltonian has three different eigenenergies = =( ) S 3 2 01 , = = -( ) S r1 2 3 22 , and

= = -( ) S r1 2 23 , in agreementwith the threefold CI band. The ground-state CI-derived spin function is
schematically portrayed infigure 4(VII) (θ=π/2 in equation (A.3)) and agrees with theHeisenberg eigenvector
in equation (D.6).

Figure 6 complementsfigure 4 in that it displays examples of all possible SR-CPDs for the ground state of
N=3 cold fermions in a single 1Dwell. It is straightforward to check in detail that the all SR-CPDs agreewith a
mapping of theCI ground state onto the spin eigenfunction of the schematic infigure 6(I), i.e., with the
Heisenberg vector 2 in equation (D.6).We note that, while the spin spatial distribution is analyzed herewith the
use of the SR-CPDs (see equation (7)), it is also reflected in the spatial spin-densities (see equation (6)) shown in
figures 6(k)–(l); the latter agreewith those displayed infigure 6 of [18]. Note that the sumof the up- and down-
spin densities infigures 6(k)–(l) agrees with the total SPD infigure 6(j).

A qualitatively different behavior, bringing extra intricacies and opening igress to novel complex
physical systems, is exhibited by the symmetric DWPA cases (D = 0) forN=3 shown in figure 4. Indeed,
the CI energy spectra in figures 4(a) and (f) show a sixfold lowest-energy band, comprising four S=1/2
states, and two =S 3 2 states, i.e., twice asmany as in the case of tilted wells (figures 4(j) and (n)). In
particular, for the higher barrier (figure 4(f)) a characteristic 2-4 degeneracy appears, which is a doubling of
the 1-2 degeneracy pattern in figure 4(j). This doubling of the number of energies is due to the conservation
of parity, which requires consideration of a second triangle (246), which is themirror of the original (135)
one; see the schematic in figure 4(I) and in figure 7(a). In each of thesemirror reflected configurations, two
atoms localize in one well and one atom localizes in the other well; see the two sets of different colored
spheres in figure 4(I). The formation of these triangular atomic configurations is reflected in the SR-CPDs
shown on figures 4(c), (d) for the lower-barrier symmetric DW case and figures 4(g), (h) for the higher-
barrier case. Onemay view this situation as having six available sites altogether (three in each well), with the
3 fermionic atoms localizing in either of the aforementioned triangular configurations, (135) and (246) (see
figure 7(a)), with 2 atoms in one well and 1 atom in the other; in each case wemay term the unoccupied
(empty) sites as ‘holes’. Thismapping leads to the picture of a 3-atomUCWM that resonates between the
two interlocking triangles.

Figure 7. Schematics of the six-site numbering conventions in the t–JHamiltonian used for 3 fermions in a symmetric double well
(zero tilt). (a)DWPAarrangement and the associated two-interlocking-triangles geometry. (b)DWLI arrangement.
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Wemention that the resonating behavior and the symmetrization of themany-bodywave function in two-
center/three-electron bonded systems is well known [33–35] in theoretical chemistry and in particular in the
valence-bond treatment of the three-electron bondwhich controls the formation ofmolecules likeHe+2 and -F2 .
Furthermorewemention that the symmetry properties of the strictly 1D few-fermion problemwith contact
interactions have been also investigated in [53, 54].

4.2. Three fermionic ultracold atoms: the t–Jmodel for symmetricDWs
Tomodel the exact-diagonalization results shown above, onemust go beyond the aforementioned simple
HeisenbergHamiltonianmodel (see equation (15) and appendixD). Indeed, we find that a generalization of
the so called t–Jmodel allows us to capture all the salient characteristics uncovered by the CI calculations. The
t–Jmodel [5, 44]modifies (away from the half filling) the antiferromagnetic HeisenbergHamiltonian
associatedwith theMott insulator at half-filling (one electron per crystal site); it has attractedmuch attention,
because it has been proposed for explaining the high-Tc superconductivity arising in the case of underdoped
insulators (away from the half filling when holes are present). A finite t–J-typeHamiltonianmay be expressed
as

= + +( )({ }) ( )({ }) ({ }) ( )   J J t135 246 , 17tJ H H c
trg trg

whereHc is the coupling between the two simpleHeisenberg rings definedover the sites (135) and (246); see the
two3×3 blocks on thediagonal (upper left and lower right) in equation (18).Hc, represented by the twooff-
diagonal blocks in equation (18), is defined by thematrix a a b a a b a a b a b a= =( ∣ ∣ ) ( ∣ ∣ ) t 0 0 0 0 0 0 0 0 0 0 0 0c c ,
and a a b b a a= ( ∣ ∣ )t 0 0 0 0 0 0c2 , where the ‘0’ indicates an empty site; e.g., a a b0 0 0 corresponds to a statewhere
sites 1, 3, and 5 are occupied and 2, 4, and6 are empty (for site designation seefigures 4(I) and 7).

TheHamiltoniantJ is equivalent to a six by sixmatrix

=
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where the upper indexΔ denotes explicitly the dependence on the tilt.When D∣ ∣ ∣ ∣t and D∣ ∣ ∣ ∣t2 , one
recovers the isolated-triangleHamiltonian,H

trg , in equation (15). Belowwewill focus on the case of symmetric
DWs, i.e., wewill setD = 0, = =J J r15 24 , and = =J J s13 46 .

For r=0 and = =t t 02 (case of the very high interwell barrier, =V 24.30 kHzb , infigure 4(f)), D=tJ
0

reproduces (́ 2) the characteristic CI 1-2 degeneracy pattern found earlier using the simple 3-siteHeisenberg
model (comparefigures 4(f) and (j)); see the six eigenvalues i, = ¼i 1, , 6 in equations (E.2)–(E.7)).

For lower values of the interwell barrier ( =V 11.14 kHzb ,figure 4(a)), the 2-4 [(1-2)× 2] doubling
degeneracy is lifted, with two lowest S=1/2 curves and four higher in energy (and parallel) curves (twowith
S=1/2 and twowith =S 3 2) forming distinct subbands; then one distinguishes all 6 lines as separate lines
(see the spectrum in figure 4(a) and also infigure 5(a)). It is remarkable that the nontrivial spectrum in figure 4(a)
can be reproduced by setting ~ - > -t t4 10 1 22 , with <t 0 and > ∣ ∣s t . Then one has for the energy gap
between the two lowest states,D = - =   t14 5;12 1 2 these energies are centered around-s. The remaining
energies group together forming a fourfold band, centered around zero. The energy gap between the two outer
(both =S 3 2)members of the fourfold band isD = - =   t16 556 5 6 , i.e., similar to theD12 gap, in
agreement againwith the pattern infigure 4(a). Furthermore, the gap between the two higher energies in the
fourfold band, as well as that between the two lower energies of this band, isD = D = - =    t 535 46 4 6 ,
which ismuch smaller than thewidth,D56, of the same band, again in agreement with the pattern in
figure 4(a). Note that for = -t t 22 ,D = D =  035 46 and a degeneracy pattern 1-1-2-2 develops in
disagreement with theCI spectrum. Also, when =t 02 , thewidthD =( ) t456 of the fourfold band is twice as
large as the energy gap,D =( ) t212 , between the two lowest states, again in disageement with theCI spectrum in
figure 4(a).
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Similar trends pertaining to the doubling of the spectrum (from three to six states) in conjunctionwith the
emergence of two resonatingUCWMs apply also in the case ofN=3 ultracold fermions in a symmetric
(D = 0)DWLI (linear arrangement) trap, as is illustrated infigure 5. These results can be interpreted again
through the use of a corresponding t–Jmodel with a similar parametrization.

5.Quantifying entanglement using aCI-based vonNeumann entropy

The entanglement entropy SvN for three
6Li atoms in aDWPA trap in the configurations, whose spectra are

shown infigures 4(a), (f), (j), (n), are displayed infigures 4(e), (i), (m), (q), respectively.
For theCImany-bodywave functions, we adopt as ameasure of entanglement the vonNeumann entropy

[11, 26],

r r= - +( ) ( )S CTr log , 19vN 2

where ρ is the SPDmatrix and = -C Nlog2 , yielding =S 0vN for an uncorrelated single-determinant state.
The SPDmatrix ρ is given by

å
r =

áF F ñ

áF F ñnm
m n

m
m m

∣ ∣
∣ ∣

( )
†

†

a a

a a
, 20

N N

N N

CI CI

CI CI

and it is normalized to unity, i.e., r =Tr 1. TheGreek indicesμ (or ν) count the spin orbitals (of dimension K2 )

c j a=( ) ( ) ( ) x y x y j K, , , if 1 , 21j j

and

c j b= +-( ) ( ) ( ) x y x y K j K, , , if 1 2 , 22j j K

where a b( ) denote up (down) spins.
Since the allowedmaximumvalue for SvN in ourCI calculations is - =( ) ( )Klog 2 log 3 5.702 2 (weuse a

typical basis ofK= 78 single-particle space orbitals), it is notable that the calculated values infigure 4 remain
smaller than∼1, and in particular in the regime of strong correlations, i.e., for-  -g1 0. This reflects
formation of aWM.Additionally, we find increased or constant entanglement with increasing repulsion, and
larger values for the symmetric DWconfigurations (figures 4(e), (i)) compared to the nonsymmetric (tilted) ones
(figures 4(m), (q)). For SvN entropies for three

6Li atoms in aDWLI trap, see figure 6(a).

6. Summary and outlook

In this paper, we have presented timely advances in the growing field of few-body ultracold atomswith the aim
of enhancing understanding of experimental endeavors and lodging newdirections of research in this area.We
progressed in twomain courses: (i) uncovering universal non-itinerant and fermionization-like aspects of the
physics of ultracold few fermions trapped inDWconfinements, with various 1D and 2D trapping geometries, as
a conduit for emulating quantummagnetism and related phenomena beyond the strictly 1D SWcase, and (ii)
making headways in the development and implementation of benchmark numerical simulations (exact
diagonalization of the fullmicroscopicHamiltonianwithCI, techniques) as tools formodeling theoretical and
experimental results with effective spin-Hamiltonians (Heisenberg and t–Jmodels). Our calculations forN=3
andN=4 ultracold fermionic 6Li atoms in SWandDWtrapswith linear (DWLI) or parallel (DWPA)
geometries, reveal formation of antiferromagnetic ordering for the lowest-energy bands over the entire range of
interparticle contact repulsion studied here.

ForN=4 ultracold atoms in a symmetric DWPA trapwith very strong interatomic repulsion, we find (via
miscroscopic, CI, calculations) formation of a two-dimensional UCWMof non-itinerant character. For the
symmetric parallel DW trap the formation of the 2DUCWMleads tomapping of the interacting 4-atom trapped
systemonto a 2D rectangularHeisenberg ring cluster, whereas for a symmetricDWLI trap (as well as for a SW
trap)we find a four-atom linear (1D)UCWMin juxtapositionwithmapping onto a linearHeisenberg spin-
chain. Thesemappings enable employment of the correspondingHeisenbergmodelHamiltonian, whose
solutions reproducewell the results of themicroscopic, numerically exact, calculations.

ForN=3 ultracold atoms inDWLI orDWPA trapswith afinite tilt (detuning) between the twowells, the
numerically calculated (CI) spectrum for strong interatomic repulsion is describedwell with the use of the
aforementionedHeisenbergHamiltonian. As noted already in the Introduction, the highmeasure of
entanglement predicted for the set of lowest energy states of the three strongly repelling fermionic atoms,
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togetherwith the controllable tilt between the twowells,motivate consideration of this DWsystem as a cold-
atomquantum computing qubit.

In contrast to the asymmetricDWcase, description of theN=3 ultracold-atomCI spectra for symmetric
(vanishing tilt)DWLI orDWPA traps, thatmanifest doubling of the number of states in the lowest band, aswell
asmodeling the corresponding SR-CPDs, are not attainable with the simpleHeisenbergmodel, requiring
instead themore intricate t–J-typemodel [5, 6, 44], consisting of two coupled resonating triangular 2DUCWM
Heisenberg clusters. The emergence of the t–Jmodel for the description of quantummagnetism (in particular
AFMordering) in a trapped few-body ultracold atom system, strongly suggests its future role as a useful
laboratory for exploration of the elementary building blocks of high-Tc superconducting behavior [44, 55, 56].
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AppendixA. Spin eigenfunctions for 4 and 3 fermions. ComparisonwithCICPDs

Weoutline in this appendix several properties of themany-body spin eigenfunctions which are useful for
analyzing the trends and behavior of the spinmultiplicities exhibited by theCIwave functions forN=4 and
N=3 ultracold fermions. The spinmultiplicities of theCIwave functions lead naturally to analogies withfinite
Heisenberg clusters [8, 10] and to t–J-typemodels.

A basic property of spin eigenfunctions is that they exhibit degeneracies for >N 2, i.e., theremay bemore

than one linearly independent (and orthogonal) spin functions that are simultaneous eigenstates of both Ŝ
2
and

Sz. These degeneracies are usually visualized bymeans of the branching diagram [31] displayed infigure A1 . The
axes in this plot describe the numberN of fermions (horizontal axis) and the quantumnumber S of the total spin
(vertical axis). At each point (N, S), a circle is drawn containing the number ( ) N S, which gives the degeneracy
of spin states. It is found [31] that

= - - - -( ) ( ) ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠N S

N
N S

N
N S

,
2 2 1

. A.1

Specifically forN=4 particles, there is one spin eigenfunctionwith S=2, threewith S=1, and twowith
S=0. In general the spin part of the CIwave functions involves a linear superposition over all the degenerate
spin eigenfunctions for a given S.

For a small number of particles, one canfind compact expressions that encompass all possible
superpositions. For example, forN=4 and S=0, Sz=0 one has [12, 57]:

Figure A1.The total-spin branching diagram illustrating themultiplicities ( ) N S, of the spin egenfunctions ofN spin-1/2 fermions.
S is the total spin.
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where the parameter θ satisfies p q p-  2 2 and is chosen such that q = 0 corresponds to the spin
functionwith intermediate two-fermion spin =S 012 and three-fermion spin =S 1 2;123 whereas q p=  2
corresponds to the onewith intermediate spins =S 112 and =S 1 2123 .

ForN=3 and S=1/2, =S 1 2z one has [57]:

q aab

q q aba

q q baa

=
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- + ( )
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sin . A.3

1 2,1 2

For the general expressions for the remaining spin combinations, S and Sz, forN=4 andN=3 fermions, see
[12, 57, 58].

For each SPD corresponding to a givenCI state of the system, one can plot four different spin-resolved
CPDs, i.e.,  ,  ,  , and  . This can potentially lead to a very large number of time consuming
computations and an excessive number of plots. For studying the spin structure of the = =S S0, 0z states for
N=4 fermions and the = =S S1 2, 1 2z states forN=3, however, we found that knowledge of a single
CPD, is sufficient in the regime ofWMformation. Indeed, the specific angle θ specifying the spin function00

(equation (A.2)) forN=4 or the spin function1 2,1 2 (equation (A.3)) forN=3 fermions can be determined
through a procedure exemplified in the following through two examples forN=4 fermions:

Example 1; case of theCPD infigure 1(g).The same labeling that numbers the sites determines also the left-to-
right ordering of the localized electrons in each of the six primitive spin functions aabb , abab , etc, that span
the eigenfunction00 in equation (A.2). Namely, the fermion localized at the humpNo. 1 corresponds to the far
left position in the primitive, the fermion localized at the humpNo. 2 corresponds to the second from the left
position in the primitive, the fermion localized at the humpNo. 3 corresponds to the third from the left position
in the primitive, and the fermion localized at the humpNo. 4 corresponds to the far right position in the
primitive. The numbering of the humps does not necessarily follow the cardinal ordering 1, 2, 3, 4, as will
become evident below from the second example concerning a linearHeisenberg chain. An inspection of
equation (A.2) shows that only thefirst three primitive spin functions in00 can be associatedwith

º( ) r r, site No. 10 (compare theCPD infigure 1(g)), namely aabb , abab , and abba; these are the only
primitives in equation (A.2)with a down spin in the site labeled as 1 (see diagram infigure 1(III)). From these
three primitives, only thefirst and the second contribute to the partial conditional probability P( )4, 1 of
finding another fermionwith spin-down in siteNo. 4, while the first fermion isfixed at siteNo. 1. Taking the
squares of the coefficients of aabb and abab in equation (A.2),one gets

q
q qP µ + -( ) ( )

⎛
⎝⎜

⎞
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Similarly, one finds
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and

q
q qP µ + +( ) ( )
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⎠⎟3, 1
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3
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2
cos

1

12
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The quantities P( )i, 1 , =i 2, 3, 4, as defined above correspond to the volumesVol ( )i , =i 2, 3, 4 under
the humps labeledNo. 2, No. 3, andNo. 4 of theCICPD infigure 1(g). Integrating numerically under the humps
of theCICPD infigure 1(g), we specify the ratio =x Vol(4)/[Vol(2)+Vol(3)], which yields the condition

P
P + P

=

 

( )
( ) ( )

( )x
4, 1

2, 1 3, 1
, A.7

For the case offigure 1(g), wefind x=1. For x=1, condition (A.7) can be satisfied for an angle q p= - 3
(compare with the spin eigenfunction in equation (10)).

Example 2; case of theCPD infigure 1(c).As a second example, we choose the case of a SW. Illustrative
calculations for the spectrum, densities, andCPDs for this case are displayed infigures 1(a)–(c). Note the labeling
of the four sites in space, which is ‘4123’ and not ‘1234’. This results fromour taking =J 034 , when opening the
four-site ring, and it is consistent with our treatment of the four-site linearHeisenberg chain in appendix C
below.

Noting that humpNo. 4 infigure 1(c) is againwell isolated from the rest, and focussing on the numbering of
the remaining humps of this SR-CPD, it is apparent that we need to use the same set of the quantities P( )i, 1 ,
=i 2, 3, 4 as was the case with the previous example. Integrating under the humps of theCICPD infigure 1(c),

wefind the numerical values for the volumesVol ( )i , =i 2, 3, 4. In particular, we determine that x=0.789.
With this value of the ratio x, condition (A.7) yields an angle of q p= - 5.12.

Example 3; case of theCPD infigure 1(i).As a third example, we choose an excited state (the onewith S= 0 and
Sz=0) in theDW. Illustrative calculations for the spectrum, densities, andCPDs for this case are displayed in
figures 1(e), (h), (i). Note again the labeling of the four sites in space.Noting that humpNo. 4 infigure 1(i) is
againwell isolated from the rest, and focussing on the numbering of the remaining humps of this SR-CPD, it is
apparent thatwe need to use the same set of the quantities P( )i, 1 , =i 2, 3, 4 aswas the case with the previous
examples. Integrating under the humps of theCICPD infigure 1(i), wefind the numerical values for the volumes
Vol ( )i , =i 2, 3, 4. In particular, we determine that x=0.20 in this case.With this value of the ratio x,
condition (A.7) yields an angle of q p= 6.

For further detailed applications of this procedure, see [12, 57].

Appendix B.Heisenbergmodel for 4 localized fermions in aDWPA configuration

The single particle densities andCPDs infigures 1 and 2 show that the associatedWigner-molecule CIwave
functions can bemapped onto the spin functions for four fermions. These spin functions are solutions of a 4-site
HeisenbergHamiltonianH

RP,gen with the four fermions being located at the vertices of a rectangular
parallelogram (RP) in the case of theDWPA. Assuming for the sake of generality that all nearest-neighbor
exchange couplings Jij are different, one has

Figure B1. Schematics indicating the four-site numbering convention in theHeisenbergHamiltonian. (a)The case of formation of a
rectangular parallelogram (ring topology). TheHeisenberg exchange parameters = =J J s14 23 and = =J J r12 34 . (b)The linear
arrangement of the four sites which results from (a) by opening the ring through setting =J 034 , =J r12 , = =J J s14 23 .
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= + + + - + + +· · · · ( ) ( ) J J J J J J J JS S S S S S S S 4, B.1H
RP,gen

12 1 2 23 2 3 34 3 4 14 1 4 12 23 34 14

where the indices k in Sk denote the locations of the four sites, which are associatedwith the four humps in the s.
p. density of figure 1 (in a clockwise direction); see also schematic infigure B1 (a).

For the case of all four fermions being trapped in a SW, one has an open linear 4-siteHeisenberg chain,
which is obtained from equation (B.1) by setting =J 034 , i.e.

= + + - + +· · · ( ) ( ) J J J J J JS S S S S S 4, B.2H
4LI,gen

12 1 2 23 2 3 14 1 4 12 23 14

Toproceed, it is sufficient to use the six-dimensional Ising subspace for zero total-spin projection (Sz=0),
which is spanned by the following set of basis states: aabbñ ∣1 , ababñ ∣2 , abbañ ∣3 ,

baabñ ∣4 , babañ ∣5 , and bbaañ ∣6 ; the ordering from left to right coincides with the cardinal
ordering ¼1, , 4 of the sites infigures B1(a) and (b).

Using the raising and lowering operators = ++S S Sii i
x

i
y, = --S S Sii i

x
i
y, and the identity

= + +· S S S S S SS Si j i
x

j
x

i
y

j
y

i
z

j
z , theHeisenbergHamiltonian given by equation (B.1) can bewritten as

= + + +
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H
z z z z z z z zRP,gen

12 1 2 14 1 4 23 2 3 34 3 4

12
1 2

14
1 4

23
2 3

34
3 4

12
1 2

14
1 4

23
2 3

34
3 4

12 23 34 14

With the relations a a=S 2i
z , b b= -S 2i

z , a =+S 0i , b a=+Si , a b=-Si , b =-S 0i , one canwrite

H
RP,gen inmatrix form, as follows

=

- -
- - - -

- -
- -

- - - -
- -
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⎛

⎝
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.

B.4

H
RP,gen

14 23 23 14

23 12 14 23 34 34 12 14

34 12 34 12

12 12 34 34

14 12 34 12 14 23 34 23

14 23 14 23

Due to the reflection symmetry in x and y,H
RP,gen has only two different exchange constants = =J J s14 23

and = =J J r12 34 . (r here decreases rapidly with the distance, or the interwell barrier height.)As a result, the
matrix formofH

RP,gen simplifies to the following

aabb
abab
abba
baab
baba
bbaa

=

-
- -

-
-

- -
-

( )

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

s s s

s r s r r s

r r r

r r r

s r r r s s

s s s

2 0 0 2 0

2 2 2 0 2

0 2 0 2 0

0 2 0 2 0

2 0 2 2 2

0 2 0 0 2

. B.5H
RP

The general eigenvalues i and corresponding eigenvectors i of thematrix (B.5) are calculated easily using
MATHEMATICA [59]. The eigenvalues are:

= - - = ( ) s r S, 1, B.61

= - = ( ) r S, 1, B.72

= - = ( ) s S, 1, B.83

= = ( ) S0, 2, B.94

= - - - =( ) ( ) s r s r S, , 0, B.105

= - - + =( ) ( ) s r s r S, , 0, B.116

where

= - +( ) ( ) a b a ab b, . B.122 2

The corresponding (unnormalized) eigenvectors and their total spins are given by:

= - ={ } ( ) S0, 1, 0, 0, 1, 0 , 1, B.13T
1
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= - ={ } ( ) S0, 0, 1, 1, 0, 0 , 1, B.14T
2

= - ={ } ( ) S1, 0, 0, 0, 0, 1 , 1, B.15T
3

= ={ } ( ) S1, 1, 1, 1, 1, 1 , 2, B.16T
4

= - - + - + - ={ } ( )     S1, , 1 , 1 , , 1 , 0, B.17T
5

= - - + - + - ={ } ( )     S1, , 1 , 1 , , 1 , 0, B.18T
6

where

= + ( ) ( ) f f1, , B.19

= - ( ) ( ) f f1, , B.20

and f=r/s.
To understand how theHeisenbergHamiltonian in equation (B.5) captures the behavior seen in theCI

spectra offigure 1 (DWPA case), we start with the limiting case r 0, which is applicable (see below) to the
larger interwell barrier =V 11.14 kHzb . In this limit, one can neglect r comparedwith s, which results in a
characteristic 1-2-3 degeneracy patternwithin the band; namely one has = = =   02 4 6 , = = -  s1 3 ,
and = - s25 .

Furthermore, the fact that all six curves in theCI lowest-energy band cross at the same point =g1 0
suggests that ~ -( )s F g1 and ~ -( )r F g1 with ( = -x g1 )

=( ) ( ) ( )F x xtanh . B.21

Of interest is the fact that the ability of theHeisenbergHamiltonian in equation (B.5) to reproduce theCI
trends is not restricted solely to energy spectra, but extends to theCIwave functions aswell. Indeedwhen r 0,
the last two eigenvectors of theHeisenbergmatrix (having S= 0) become

 - -{ } ( ) 1, 1, 0, 0, 1, 1 , B.22T
5

and

 - -{ } ( ) 1, 1, 2, 2, 1, 1 . B.23T
6

Whenmultiplied by the normalization factor, thewave functions represented by the eigenvectors in
equation (B.22) coincides (within an overall 1 sign)with the ground-state CI spin function ( ) 00

1 in
equation (10).

TheCI spectra and spin functions for the smaller barrierVb=6.08 kHz can be analyzedwithin the
framework of the 4-siteHeisenbergHamiltonian (B.5)when small (comparedwith =J s14 ), but nonnegligible,
values of the second exchange integral =J r12 are considered. In this case, the partial three-fold and two-fold
degeneracies are lifted. Indeed infigure 1(d) (Vb=6.08 kHz), the CI lowest-energy band consists of six distinct
levels.

AppendixC.Heisenbergmodel for 4 localized fermions in aDWLI configuration

In the case of a SWand of a double-well in a linear arrangement, theHeisenbergHamiltonianH
4LI,gen in

equation (B.2) is of relevance. In the Ising basis, and using = =J J s14 23 , =J r12 , and =J 034 in equation (B.4),
thisHamiltonian reduces toH

4LI, i.e.

aabb
abab
abba
baab
baba
bbaa

=

-
- +

-
-

- +
-

( )

( )

( )

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

s s s

s r s r s

r r

r r

s r r s s

s s s

2 0 0 2 0

2 2 0 2 0 2

0 0 2 0 2 0

0 2 0 2 0 0

2 0 2 0 2 2

0 2 0 0 2

. C.1H
4LI

The general eigenvalues of thematrix (C.1) are:

= - = ( ) s S, 1, C.21

= - - + + =( ) ( ) r s r s S2, 1, C.32
2 2

= - - - + =( ) ( ) r s r s S2, 1, C.43
2 2

= = ( ) S0, 2, C.54

= - - - =( ) ( ) r s s r S2 2 , 2, 0, C.65

= - - + =( ) ( ) r s s r S2 2 , 2, 0. C.76
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The corresponding (unnormalized) eigenvectors and their total spins are given by:

= - ={ } ( ) S1, 0, 0, 0, 0, 1 , 1, C.8T
1

= - - - + - + ={ ( ) ( ) } ( ) r s s r r s s r S0, 1, , , 1, 0 , 1, C.9T
2

2 2 2 2

= - - + + + + ={ ( ) ( ) } ( ) r s s r r s s r S0, 1, , , 1, 0 , 1, C.10T
3

2 2 2 2

= ={ } ( ) S1, 1, 1, 1, 1, 1 , 2, C.11T
4

= - - + - + - ={ } ( )     S1, , 1 , 1 , , 1 , 0, C.12T
5

= - - + - + - ={ } ( )     S1, , 1 , 1 , , 1 , 0, C.13T
6

where

= + ( ) ( ) f f2 1, 2 , C.14

= - ( ) ( ) f f2 1, 2 , C.15

and f=r/s as previously defined.
In the limit of r 0 (high interwell barrierVb), the energies in equations (C.2)–(C.7) reproduce the

characteristic 1-2-3 degeneracy pattern, which appears also in the case of the rectangular arrangement of the four
sites; namely one has = = =   02 4 6 , = = -  s1 3 , and = - s25 . Furthermore, for r 0, the
corresponding (unnormalized) eigenvectors and their total spins are given by:

= - ={ } ( ) S1, 0, 0, 0, 0, 1 , 1, C.16T
1

= - ={ } ( ) S0, 0, 1, 1, 0, 0 , 1, C.17T
2

= - ={ } ( ) S0, 1, 0, 0, 1, 0 , 1, C.18T
3

= ={ } ( ) S1, 1, 1, 1, 1, 1 , 2, C.19T
4

= - - ={ } ( ) S1, 1, 0, 0, 1, 1 , 0, C.20T
5

= - - ={ } ( ) S1, 1, 2, 2, 1, 1 , 0. C.21T
6

Note that the open-chain eigenvectors (C.8)–(C.13) coincide with those (see equations (B.13)–(B.18)) of the
closed-chain rectangular configurationwhen r 0.

From afitting of the open-chainHeisenberg eigenvalues to theCI spectrum (see section 3.2 above), we found
that the case of 4 fermions in a single quasi-1Dharmonic trap is describedwell when =r s1.35 . Indeed, in this
case, all the eigenvalues are different. Specifically, with the value of =r s 1.35, the open linearHeisenberg chain
yields = - s1 (S= 1), = - s0.334 9852 (S= 1), = - s2.015 013 (S= 1), = 04 (S= 2), = - s2.558 535

(S= 0), and = - s0.791 476 (S= 0),
The corresponding (normalized)Heisenberg eigenvectors are given by:

= - ={ } ( ) S1 2 , 0, 0, 0, 0, 1 2 , 1, C.22T
1

= - - ={ } ( ) S0, 0.318 109, 0.631 512, 0.631 512, 0.318 109, 0 , 1, C.23T
2

= - - ={ } ( ) S0, 0.631 512, 0.318 109, 0.318 109, 0.631 512, 0 , 1, C.24T
3

= ={ } ( ) S1 6 , 1 6 , 1 6 , 1 6 , 1 6 , 1 6 , 2, C.25T
4

= - - ={ } ( ) S0.365 589, 0.569 781, 0.204 192, 0.204 192, 0.569 781, 0.365 589 , 0, C.26T
5

FigureC1. Schematics of the three-site numbering conventions in theHeisenbergHamiltonian. (a)The case of formation of an
isosceles triangle and (b) a linear arrangement of the sites. s and r denoteHeisenberg exchange parameters.
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= - - ={ } ( ) S0.446 854, 0.093 1823, 0.540 036, 0.540 036, 0.093 1823, 0.446 854 , 0. C.27T
6

AppendixD.Heisenbergmodel for 3 localized fermions in tiltedwells

In the case ofN=3 strongly interacting fermions in a single 1Dwell or a tilted double-well with a PAof the two
1Dwells, the simpleHeisenbergmodel is applicable. For a ( )2, 1 fermion configuration, the three sites form an
isosceles triangle (seefigures 4 andC1 ), and the associatedHeisenberg-ringHamiltonianH

trg is given by
equation (15). To proceed, we use the three-dimensional IsingHilbert subspace for total-spin projection

=S 1 2z , which is spanned by the following set of basis states: aab>∣1 , aba>∣2 , and baa>∣3 . In this
subspace, the completeHeisenbergHamiltonian in equation (15) can bewritten inmatrix form as ( =J s12 ,

= =J J r13 23 )

aab
aba
baa

=
-

- -
- -

( )

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

r r r

r s r s

r s s r

2 2

2 2 2 2

2 2 2 2

. D.1H
trg

The general eigenvalues of thematrix (D.1) are:

= = ( ) S0, 3 2, D.21

= - = ( ) r S3 2, 1 2, D.32

= - - = ( ) s r S2, 1 2. D.43

The corresponding (unnormalized) eigenvectors and their total spins are given by:

= ={ } ( ) S1, 1, 1 , 3 2, D.5T
1

= - ={ } ( ) S2, 1, 1 , 1 2, D.6T
2

= - ={ } ( ) S0, 1, 1 , 1 2, D.7T
3

Note that the eigenvectors are independent of s and r, howeverwhich one is the ground state depends on
these exchange constants through the expressions for the eigenvalues i given in equations (D.2)–(D.4). In
particular, when the interwell barrier is high ( r 0) (see figure 4(j)) a characteristic 1-2 degeneracy develops
with = =  01 2 and = - s3 .When >s 0, the ground-state vector is given by 3 in equation (D.7).

The case of 3 fermions in a SW (forming a linearWM, see figure 4(VI)) is described by thematrix
Hamiltonian (D.1)when s=0 (openHeisenberg chain). Then all three eigenvalues are different with = 01 ,

= - r3 22 , and = - r 23 (see figure 4(n)). Thus, with >r 0, the ground-state vector for the (3, 0) fermion
arrangement is given by 2 in equation (D.6) and is different from that of the (2, 1) fermion arrangement,
although the total spin remains the same, i.e., S=1/2 (compare SR-CPDs infigures 4(p), (l)).

Appendix E. The t–Jmodel for 3 localized fermions in a symmetricDW

The (2,1) case of three strongly interacting fermions in a tiltedDW (withD = 0.5 kHz, see figure 4(k)) is
associatedwith a single triangularWignermolecule. However, amore complexWMconfiguration emerges
whenD = 0, i.e., for a symmetric DW.A remarkablemanifestation of this complexity is the doubling (from
three to six) of the curves comprising the lowest energy band (contrast figures 4(j) and (a), (f)). This doubling of
the energy curves indicates the presence of two resonating underlying configurations. Indeed, in order to satisfy
parity conservation, the single (135) triangle (see diagram infigure 7)needs to be supplementedwith itsmirror
configuration (246). This points to amodel with 6 crystal sites, where 3 of them are occupiedwhile the remaining
3 are empty. This results in twoHeisenberg clusters that are coupled via the tunneling (coherent hopping, with
matrix elements denoted as tj) of the fermions between the two triangular configurations (135) and (246). Since
each of the six sites can assume three values, spin-up (α), spin-down (β), and empty (0), one needs to use a
generalization of the IsingHilbert space spanned by the basis: a a b>∣1 0 0 0, a b a>∣2 0 0 0, b a a>∣3 0 0 0,

b a a>∣4 0 0 0 , a a b>∣5 0 0 0 , and a b a>∣6 0 0 0 .
We have found that theCI results infigures 4(a) and (f) can be reproduced by using two hopping parameters

only, i.e., by setting = =t t t ;1 3 for the definition of tjʼs, see themain text. In this case, the relevant generalization
of theHeisenbergHamiltonianmatrix in equation (D.1) is given by
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a a b
a b a
b a a
b a a
a a b
a b a

=

-
- -

- -
-

- -
- -

D= ( )

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

r r r t t t

r s r s t t t

r s s r t t t

t t t r r r

t t t r s r s

t t t r s s r

2 2

2 2 2 2

2 2 2 2

2 2

2 2 2 2

2 2 2 2

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

. E.1tJ
0

2

2

2

2

2

2

The t–JHamiltonianmatrix in equation (E.1) exhibits a very rich behavior. In the following, wewill limit our
analysis to the case with r=0, i.e., for large interwell barrierVbwhich is also the case of both spectra in
figures 4(a) and (f). In this limit, the eigenvalues and eigenvectors (unnormalized) of theHamiltonianmatrix
(E.1) are:

= - + - = ( ) s t t S, 1 2, E.21 2

= - - + = ( ) s t t S, 1 2, E.32 2

= - = ( ) t t S, 1 2, E.43 2

= - + = ( ) t t S, 1 2, E.54 2

= + = ( ) t t S2 , 3 2, E.65 2

= - - = ( ) t t S2 , 3 2, E.76 2

and

= - - ={ } ( ) S0, 1, 1, 0, 1, 1 , 1 2, E.8T
1

= - - ={ } ( ) S0, 1, 1, 0, 1, 1 , 1 2, E.9T
2

= - - - ={ } ( ) S2, 1, 1, 2, 1, 1 , 1 2, E.10T
3

= - - ={ } ( ) S2, 1, 1, 2, 1, 1 , 1 2, E.11T
4

= ={ } ( ) S1, 1, 1, 1, 1, 1 , 3 2, E.12T
5

= - - - ={ } ( ) S1, 1, 1, 1, 1, 1 , 3 2. E.13T
6
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