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“The area of condensed-matter physics that covers the transition regime
between macroscopic objects and the microscopic, atomic world.”
TU Delft course
Finite-size condensed-matter nanosystems
(small systems and transition to the bulk)

Nuclear analogies (nonrelativistic electrons/ Schrddinger equation).
(3D) metal clusters, metal grains,fullerenes;

(2D) quantum billiards, quantum dots; quantum islands;

(1D) quantum-point contacts, nanowires, guantum rings, interferometers

Particle-physics analogies (relativistic electrons/ Dirac equation):
Graphene-based nanosystems:

(2D) graphene quantum dots;

(1D) uniform and segmented graphene nanoribbons (junctions),
graphene polygonal rings




Some examples (among many, e.g., random matrix theory)
of nuclear analogies

(from personal experience)

In this talk: Emphasis on broader qualitative aspects
and not on mathematical theoretical formulation

Collaborators: Uzi Landman, Igor Romanovsky,
Yuesong Li, Ying LI, Leslie Baksmaty, R.N. Barnett



Three (among others) major nuclear aspects:

(via Strutinsky/ Shell correction approach) in metal clusters

[see, e.qg., Yannouleas, Landman, Barnett, in “Metal Clusters”,
edited by W. Ekardt, John-Wiley, 1999]
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(via matrix RPA/LDA) in metal clusters , o,
[see, e.qg., Yannouleas, Broglia, Brack, Bortignon, '
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PRL 63, 255 (1989)] - Mzg.ﬁ T

In 2D semiconductor quantum dots and
ultracold bosonic traps via
symmetry breaking/symmetry restoration

In conjunction with exact diagonalization (full CI)
[see, e.g., Yannouleas, Landman,
Rep. Prog. Phys. 70, 2067 (2007)]




O In metal clusters
O iIn metal clusters

The physics of free nonrelativistic electrons confined in a central
potential, like atomic nuclei
(conservation of symmetries/ independent particle model/ delocalized electrons)
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In 2D semiconductor quantum dots

No central potential/ electron localization (relative to each other) due to
strong Coulomb repulsion/ mean-filed with broken symmetries
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FIG. . SEM image of the g ceometry forming the quantum
dot. This geometry enables a precisely known number of electrons
(N=0.1.2,....50) to be trapped (Ref. 13) and produces a quasipa-
rabolic confinement potential. Sweeping the plunger-gate voltage

tunes both the shape and the chemical potential of the quantum dot.
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CONTROL PARAMETERS FOR SYMMETRY BREAKING

IN SINGLE QD'S: WIGNER CRYSTALLIZATION

e Essential Parameter at B=0: (parabolic confinement)
2 3
R, = (/&) huw ~ 1/(hw)

e AN

1/2 i
* Spatial Extent
(h/m """’g) } of 1s s.p. state

1/2

ln =
k : dielectric const. (12.9)

m”: e effective mass (0.067 m,) GaAS

fuw, (5-1meV) => R, (1.48-3.31)

e |[n a magnetic field, essential parameter is B itself

IN QDM'S: DISSOCIATION (Electron puddles, Mott transition)

Essential parameters: Separation (d)
Potential barrier (Vb)
Magnetic field (B)

R

0

= om/(2wh)




Circular external confinement
B =0

In a 2D circular QD.
Electron density (ED) from
Unrestricted Hartree-Fock (UHF).
Symmetry breaking (localized orbitals).
Concentric polygonal rings Concentric rings: (1,6,12)

Exact electron
densities
are circular!

No symmeiries
are broken!
(N, small, large?)

Concentric rings: (0,6) left, (1,5) right

Restoration of symmetry = Quantum crystal



Rotating Frame Magnetic Field




Three electron anisotropic QD —

| e Anisotropic
Method: Exact Diagonalization (EXD) confinement

Electron
Density
(ED)

(spin resolved)
Conditional
Probabllity
Distribution
(CPD)
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245310 (2007) Entangled three-qubit




WAVE-FUNCTION BASED APPROACHES

A HIERARCHY OF APPROXIMATIONS

(Full Configuration Interaction)

Correlations When possible
(small N):

Non-linear equations Hi 0] h numerical

Bifurcations accuracy
EMERGENT

PHENOMENA

Restoration of linearity
of many-body equatons

. Pair correlation functions,
on of g I.J:H.r'ltl.ll:lz'll ]111{] rll-::r: H” IIJI I-':[ C P D S

Yannouleas and Landman, Rep. Prog. Phys. 70, 2067 (2007)



RESOLUTION OF SYMMETRY DILEMMA:

(Projection)!

* Per-Olov Lowdin
(Chemistry - Spin) |

 R.E. Pelerls and J. Yoccoz
(Nuclear Physics — L, rotations)

Ch. 11 in the book by P. Ring and P. Schuck
Note: Example in 2D

Yannouleas, Landman, Rep. Prog. Phys. 70, 2067 (2007)



PHYSICAL REVIEW LETTERS week ending
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Excitation Spectrum of Two Correlated Electrons in a Lateral Quantum Dot
with Negligible Zeeman Splitting

C. Ella.ml;:rargenl T. Ihn,! C. Yannouleas,” U. Landman,” K. Ensslin.! D. Driscoll,” and A.C. Gossard’
'Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland
2School of Physics, Georgia Instititute of Technology, Atlanta, Georgia 30332-0430, USA

*Materials Department, University of California, Santa Barbara, California 93106, USA
(Received 16 December 2005; published 30 March 2006)

basis of an avoided crossing with the first excited singlet state at finite fields. The measured spectra are in
remarkable agreement with exact-diagonalization calculations. The results prove the significance of
electron correlations and suggest the formation of a state with Wigner-molecular properties at low
magnetic fields.
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Observation and spectroscopy of a two-electron
Wigner molecule in an ultraclean carbon nanotube

S. Pecker'T, F. Kuemmeth?, A. Secchi®*#, M. Rontani?, D. C. Ralph®®, P. L. McEuen®® and S. llani'*

1 Weizmann Institute of Science, Israel 2 Niels Bohr Institute, Denmark
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Some examples of high-energy particle-physics analogies

(graphene based nanosystems)

|. Romanovsky, C. Yannouleas, and U. Landman,
PRB 89, 035432 (2014)
PRB 87, 165431 (2013)



2D Graphene:
honeycomb lattice
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Graphene quantum dots
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Atomically precise bottom-up fabrication of graphene
nanoribbons

Jinming Cai'*, Pascal Ruffieux'* Rached Jaafar', Marco Bieri', Thomas Braun', Stephan Blankenburg’,
Matthias Muoth”, Ari P. Seitsonen™®, Moussa Saleh®, Xinliang Feng’, Klaus Miillen” & Roman Fasel'®




To determine the single-particle spectrum [the energy
levels ¢;(B)] in the tight-binding calculations for the
graphene nanorings, we use the hamiltonian

HTB - — Z E-zijcjcj + h.C.ﬂ (1)

<ij>

with <> indicating summation over the nearest-neighbor
sites 7, 7. The hopping matrix element

ie [T .
tij Xp (E/ ds - A( )) ?

r;

where r; and r; are the poss{ons of the carbon atoms i
and 7, respectively, and A is tIifyector potential associ-
ated with the applied constant madwgtic field B applied
perpendicular to the plane of the nanormg

2.1 eV
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Aharonov-Bohm spectra

Magnetic field B

Hexagonal Armchair
Rings with
semiconducting arms

Single-particle TB spectra

"forbidden" band ;
o o o o = )

Magnetic flux (magnetic field B)



1D Generalized Dirac equation

and : any two of the three 2x2 Pauli matrices
oV

E—V(x)[IV +ihvpa ol Bo(x)W =0
e D AL,
electrostatic potential scalar (Higgs) field / position-dependent mass
(Lorentz vector potential) (Lorentz scalar potential)

Question: Confinement of a relativistic fermion?

Problem with V(x): Klein tunneling

m(X) can confine relativistic particles




1D Generalized Dirac equation

and : any two of the three 2x2 Pauli matrices
oV

E—V(x)[IV +ilhvpa— — Bo(z)V =0

5’ £z

electrostatic potential scalar (Higgs) field / position-dependent mass

E—V +mu 7




Spectra/
Armchair
Rings with
semi-
conducting
arms

Yellow:
Mass > 0
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Jackiw-Rebbi, PRD 13, 3398 (1976)

kink soliton/ | |
fermionic soliton Kink soliton

Topological invariants
(Chern numbers):

negative mass 1 (nontrivial)
positive mass O (trivial)




ab.Jeyod reuonoel) 9/o




0,1

(A BN G E R o0 G RGeS
S essenectonaa

Solitonic
braid band

-
()
-
-
)
(&)

2101 2 3

-3

Alisuap

/

fractional charge



Full circle

1) Instead of usual
, the spectra and wave functions of
qguasi-1D graphene nanostructures are sensitive to the
of the system .

2) The topology is captured by general,
In the relativistic
Dirac equation.

3) The topology generates rich analogies with :
e.g., associated
with the Jackiw-Rebbi model [PRD 13, 3398 (1976)]

4) Semiconducting hexagonal rings behave as 1D topological
iInsulators with states well isolated from the environment (zero-energy
states within the gap with charge accumulation at the corners).



