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Mesoscopics:  

“The area of condensed-matter physics that covers the transition regime 

between macroscopic objects and the microscopic, atomic world.”    
                                                                                                                             TU Delft course 

Finite-size condensed-matter nanosystems  

(small systems and transition to the bulk) 

Nuclear analogies (nonrelativistic electrons/ Schrödinger equation):  
(3D) metal clusters, metal grains,fullerenes;  

(2D) quantum billiards, quantum dots; quantum islands;  

(1D) quantum-point contacts, nanowires, quantum rings, interferometers    

Particle-physics analogies (relativistic electrons/ Dirac equation): 

Graphene-based nanosystems:  

(2D) graphene quantum dots; 

(1D) uniform and segmented  graphene nanoribbons (junctions), 

graphene polygonal rings 



Some examples (among many, e.g., random matrix theory)  

of nuclear analogies 

 

(from personal experience) 

FIRST PART 

In this talk: Emphasis on broader qualitative aspects  

and not on mathematical theoretical formulation 

Collaborators: Uzi Landman, Igor Romanovsky,  

Yuesong Li, Ying Li, Leslie Baksmaty, R.N. Barnett 



Three (among others) major nuclear aspects:  

Strongly correlated states (Quantum crystals/Wigner molecules/dissociation) 

in 2D semiconductor quantum dots and  

ultracold bosonic traps via  

symmetry breaking/symmetry restoration 

in conjunction with exact diagonalization (full CI)  
[see, e.g., Yannouleas, Landman,  

Rep. Prog. Phys. 70, 2067 (2007)] 

Electronic shells/deformation/fission  

(via Strutinsky/ Shell correction approach) in metal clusters 
[see, e.g., Yannouleas, Landman, Barnett, in “Metal Clusters”,  

edited by W. Ekardt, John-Wiley, 1999] 

 Surface plasmons/Giant resonances  

 (via matrix RPA/LDA) in metal clusters  
 [see, e.g., Yannouleas, Broglia, Brack, Bortignon,  

 PRL 63, 255 (1989)]   



 Surface plasmons/Giant resonances in metal clusters  
  

 Electronic shells/ magic numbers/ deformation/ fission in metal clusters  

The physics of free nonrelativistic electrons confined in a central 

 potential, like atomic nuclei  

(conservation of symmetries/ independent particle model/ delocalized electrons) 

Strongly correlated states (Quantum crystals/Wigner molecules/dissociation) 

in 2D semiconductor quantum dots  

No central potential/ electron localization (relative to each other) due to  

strong Coulomb repulsion/ mean-filed with broken symmetries 



Devices 

Vertical QD (Delft) 

Lateral QD (Ottawa) 

Lateral QD Molecule (Delft) Electrostatic confinement 



Control parameters 

Neutral  

bosons 



N=19e 

Wigner molecule in a 2D circular  QD. 

Electron density (ED) from  

Unrestricted Hartree-Fock (UHF). 

Symmetry breaking (localized orbitals). 

Concentric polygonal rings  

Y&L, PRL 82, 5325 (1999) 

Concentric rings: (1,6,12) 

Concentric rings:  (0,6) left,  (1,5) right 

N=6e 

Y&L,  

PRB 68, 035325 (2003)  

Circular external confinement  

Exact electron  

densities  

are circular! 

No symmetries  

are broken! 

(N, small, large?) 

Restoration of symmetry       Quantum crystal 



Rotating Boson Molecules (Circular trap) 
Ground states: Energy, angular momentum and probability densities. 

Rotating Frame Magnetic Field Probability densities 

ED 

ED 

CPD r0 

The hidden crystalline structure in the projected  

function can be revealed through the use of  

conditional probability density (CPD).  

CPD 
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Anisotropic 

confinement 

Three electron anisotropic QD 

Method: Exact Diagonalization (EXD) 

EXD wf  ~ |        > - |        > 
Entangled three-qubit  W-states  

Electron 

Density  

(ED) 

(spin resolved)  

Conditional 

Probability 

Distribution 

(CPD) 

CPD 

CPD CPD CPD 

ED ED 

Yuesong Li, Y&L, 

Phys. Rev. B  76,  

245310 (2007)  



EXACT  

DIAGONALIZATION 
(Full Configuration Interaction) 

TWO-STEP METHOD 

When possible  

(small N): 

High numerical  

accuracy 

Physics less 

transparent 

compared to 

“THE TWO-STEP” 

Yannouleas and Landman, Rep. Prog. Phys. 70, 2067 (2007) 

Pair correlation functions, 

CPDs 

WAVE-FUNCTION BASED APPROACHES 



• Per-Olov Lowdin  

    (Chemistry - Spin) 

• R.E. Peierls and J. Yoccoz  

    (Nuclear Physics – L, rotations) 

   

RESOLUTION OF SYMMETRY DILEMMA: 

RESTORATION OF BROKEN SYMMETRY 

BEYOND MEAN FIELD (Projection)! 

.. 

Ch. 11 in the book by P. Ring and P. Schuck 

Note: Example in 2D 

 Yannouleas, Landman, Rep. Prog. Phys. 70, 2067 (2007) 
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Some examples of high-energy particle-physics analogies 

 

(graphene based nanosystems) 

SECOND PART 

I. Romanovsky, C. Yannouleas, and U. Landman, 

PRB 89, 035432 (2014)  

PRB 87, 165431 (2013)  



2D Graphene: 

honeycomb lattice 

Massless Dirac-Weyl fermion 

Graphene 

Nanosystems 

 

Armchair or 

Zigzag edge 

terminations 

Graphene quantum dots Graphene nanorings 

Graphene nanoribbons 

Open a gap D? 

  M v_F^2 = D 

c              v_F 



N=3m (Class I) 

Semiconductor 

N=3m+1 (Class II) 

Semiconductor 
N=3m+2 (Class III) 

Metallic 

Uniform Armchair Nanoribbons 

k  /3a x 

x N TB 
(tight binding) 

D, M D, M 

Massive Dirac 





Tight-Binding (TB) 

2.7 eV 



Tight-Binding (TB) Two atoms  

in a  

unit cell/ 

Two  

sublattices 

 A  and  B 



Hexagonal Armchair 

Rings with  

semiconducting arms 

 

Single-particle TB spectra 
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Magnetic flux (magnetic field B) 

Magnetic field B 

Aharonov-Bohm spectra 



1D Generalized Dirac equation 

a   and  b:  any two of the three 2x2 Pauli matrices  

scalar (Higgs) field / position-dependent mass m(x) 

                                          (Lorentz scalar potential) 

electrostatic potential 

(Lorentz vector potential) 

Question: Confinement of a relativistic fermion? 

 

Problem with V(x):  Klein tunneling 

 

m(x) can confine relativistic particles 



Dirac-Kronig-Penney Superlattice 

1D Generalized Dirac equation 

a   and  b:  any two of the three 2x2 Pauli matrices  

scalar (Higgs) field / position-dependent mass m(x) electrostatic potential 

a single side/ 3 regions  

1 2 3 

       m1 

    m2 

  m3 

x 

Transfer matrix method 



Spectra/  

Armchair 

Rings with  

semi- 

conducting 

arms 
N

=
1

5
 (

C
la

s
s

 I
) 

N
=

1
6

 (
C

la
s

s
 I

I)
 

Magnetic flux (magnetic field B) 

Yellow:   

Mass > 0 

Red: 

Mass < 0 



kink soliton 

zero-energy fermionic soliton (Dirac eq.) 

kink soliton/ zero-energy  

fermionic soliton 

D1 

D2 

Jackiw-Rebbi, PRD 13, 3398 (1976) 

1 

0 

1D topological insulator 

Topological invariants  

(Chern numbers): 

negative mass 1 (nontrivial) 

positive  mass 0  (trivial) 



Densities for a state in the forbidden band 
e
/6

  
fr

a
c
ti
o
n
a
l 
c
h
a
rg

e
 



Mixed  

Metallic-semiconductor 

N=17 (Class III) /  

N=15 (Class I)  

e/2 

fractional charge 



Conclusions 

1) Instead  of  usual quantum-size confinement  effects (case of clusters/ 

      analogies with nuclear physics) , the spectra  and wave functions of  

      quasi-1D graphene nanostructures are sensitive to the topology of  the  

      lattice configuration  (edges, shape, corners)  of  the system .   

2) The topology is captured by general, position-dependent  scalar fields  

       (variable masses, including alternating +/- masses)  in the relativistic  

       Dirac equation. 

3)   The topology generates rich analogies with 1D quantum-field  theories,        

       e.g.,  localized fermionic solitons with fractional charges  associated  

       with the Jackiw-Rebbi model  [PRD  13, 3398 (1976)] 

4) Semiconducting hexagonal rings behave as  1D topological  

       insulators with states well isolated from the environment (zero-energy  

       states within the gap with charge accumulation at the corners). 

Full circle 


