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1. Two-center-oscillator confining potential.  Following the recent experimental advances
1-3

, 

and in particular those in ref. 2, we investigate here the quantum mechanical properties of two 

interacting fermionic ultracold atoms confined in a double well (DW). We consider two DW 

configurations: (1) a so-called “linear arrangement” (LA) where two quasi one-dimensional (1D) 

wells (see below Eq. S1), connected by a barrier between them, are located on the same axis (x), 

and (2) a so-called “ parallel arrangement” (PA) where the quasi 1D wells are oriented along two 

parallel lines in the y direction being separated by a barrier in the x-direction; tunneling between 

the wells occurs in the x-direction through the long sides of the wells (namely the sides that are 

along the y- axis). Case (1), the LA configuration, is described in detail in the main text of the 

article, and case (2), the PA configuration, is discussed (see caption to Fig. S1 below) and 

compared (along with the LA configuration) with the experimental results
2
, see Fig. S2 below. 

To model the  two interacting fermionic ultracold atoms confined in a double well we use 

a 2D many-body problem (as described below). In the LA configuration  we enforce the 1D 

character by requiring that the trap confinement in the  -direction is much stronger than that in 

the  -direction (i.e. ωy / ωx  >> 1), with the result that only the zero-point motion in the  -direction 

is included in the calculations, whereas in the PA configuration we choose ωy / ωx  < 1  (see the 

caption of Fig. S1 below).  

In the 2D two-center-oscillator (TCO), the single-particle levels associated with the 

confining potential are determined by the single-particle hamiltonian
4,5 

  

 



2 

 

   
  

  
 

 

 
   

    
 

 
    

   
                (S1) 

   

where   
       with     for     (left well) and     for     (right well), and the 

  ’s control the relative well-depth, with the tilt being        .   denotes the coordinate 

perpendicular to the inter-dot axis ( ). The most general shapes described by   are two 

semiellipses connected by a smooth neck [        ];      and      are the centers of these 

semiellipses,         is the interdot distance, and   is the atom mass.  

For the smooth neck between the two wells, we use          
 

 
    

      
   

    
              , where        for     and        for    . The four constants    

and    can be expressed via two parameters, as follows:          
      and       

   
     

 , where the barrier-control parameters   
              are related to the actual 

height of the bare interdot barrier (  ) between the two wells, and         
   

    (for 

     ,           ).  

The single-particle levels of   are obtained by numerical diagonalization in a (variable-

with-separation) basis consisting of the eigenstates of the auxiliary hamiltonian:  
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The eigenvalue problem associated with the auxiliary hamiltonian (Eq. S2) is separable in   and 

 , i.e., the wave functions are written as  

                     (S3) 

with        ,          . The       are the eigenfunctions of a 1D oscillator, and the 

        or         can be expressed through the parabolic cylinder functions 

             , where      
 √        ,                   , and    

               denotes the  -eigenvalues. The matching conditions at     for the left 

and right domains yield the  -eigenvalues and the eigenfunctions      . The   indices are 

integer. The number of   indices is finite; however, they are in general real numbers. 

  

2.  The configuration-interaction method. As aforementioned, we use the method of 

configuration Interaction for determining the solution of the many-body problem specified by the 
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Hamiltonian (Eq. S1).  

In the CI method, one writes the many-body wave function   
               as a linear 

superposition of Slater determinants                that span the many-body Hilbert space 

and are constructed out of the single-particle spin-orbitals  

                                 (S4) 

and  

                                    (S5) 

where      denote up (down) spins. Namely  
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where    
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and the master index   counts the number of arrangements              under the restriction that 

               . Of course,         counts the excitation spectrum, with     

corresponding to the ground state. In our CI calculations full convergence is reached through the 

use of a basis of up to70 TCO single-particle states; the TCO single-particle states automatically 

adjust to the separation   as it varies from the limit of the unified atom     to that of the 

dissociation of the dimer (for sufficiently large  ).  

The many-body Schrödinger equation      
        

       
    transforms into a matrix 

diagonalizatiom problem, which yields the coefficients   
 
 and the eigenenergies     

  . Because 

the resulting matrix is sparse, we implement its numerical diagonalization employing the well 

known ARPACK solver
6
.  

The matrix elements    
      

   between the basis determinants [see Eq. (S7)] are 

calculated using the Slater rules
7
. Naturally, an important ingredient in this respect are the two-

body matrix elements of the contact interaction,  

     ∫ ∫  
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in the basis formed out of the single-particle spatial orbitals      ,           [Eq. (S7)]. 

In our approach, these matrix elements are determined numerically and stored separately. The 
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corresponding 1D interparticle interaction strengths,  , are extracted from     as follows  

      ∫  
 

  

          (S9) 

where   is a dummy variable and   is the lowest-in-energy single-particle state in the   ( ) 

direction for the LA (PA) configurations, respectively. In the LA configuration,   coincides 

with   , whereas in the PA configuration   is a linear superposition of   ’s due to the effect of 

the smooth neck.  

The Slater determinants   
  [see Eq. (S7)] conserve the third projection   , but not the 

square  ̂  of the total spin. However, because  ̂  commutes with the many-body Hamiltonian, 

the CI solutions are automatically eigenstates of  ̂  with eigenvalues       . After the 

diagonalization, these eigenvalues are determined by applying  ̂  onto     
   and using the 

relation  

  ̂   
  [               ∑   

   

]  
   (S9) 

where the operator     interchanges the spins of fermions   and   provided that their spins are 

different;    and    denote the number of spin-up and spin-down fermions, respectively.  

When       (   ), the   -parity operator associated with reflections about the origin of the 

axes is defined as  

 

 
 ̂      

                   
                  (S10) 

 

 

and has eigenvalues   . With the two-center oscillator Cartesian basis that we use [see Eq. S7)], 

it is easy to calculate the parity eigenvalues for the Slater determinants, Eq. (S7), that span the 

many-body Hilbert space. Because       and       conserve the partial  ̂  and  ̂  parities, 

respectively, one finds:  

 

  ̂    
     ∑   

           
   (S11) 

   

where    and    count the number of single-particle states associated with the bare two-center 

oscillator [see the auxiliary Hamiltonian    in Eq. (S2)] along the   axis and the simple 
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oscillator along the   direction (with the assumption that the lowest states have     and   

 , since they are even states). We note again that the index   in Eq. S3 is not an integer in 

general, while   here is indeed an integer (since it counts the number of single-particle states 

along the   direction).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 

 

3.  Results for the double well parallel arrangement (PA) configuration.

 

Figure S1 
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Figure S1.  The energy spectrum (a) of two fermions and wave-function anatomy (b,c) 

calculated in a double well for the PA configuration. The results are plotted for a 

configuration with a well separation along the x-axis        m          (        

√         = 713 nm) and no tilt (   ), plotted as a function of the inverse interaction 

strength            is expressed in units of √       , where     √         =  1297 nm. 

The confining frequencies in the   and   directions are           kHz and         

kHz. The barrier heights    (produced by the smooth neck) are given by                

     ,  where     is  the bare barrier of the TCO double well;      =  20.4 kHz. The mass 

corresponds to ultracold 
6
Li atoms,              kg. The DW parameters are within the 

range of those used in the experiments
2
.    

(a) Both repulsive (      ) and attractive (      ) interparticle interactions are 

considered. The horizontal curves correspond to Heitler-London (HL)-type states  (one fermion 

in each well) that relate to the maximally spin-entangled two-qubit Bell states. Due to parity 

conservation, the  -dependent, doubly-degenerate first-excited (dark blue and violet) energy 

curves in the repulsive regime correspond to highly space-entangled NOON-type states of the 

form               √ . (b and c)  The many-body wave-function anatomy (single-particle 

densities, SPD  green surfaces, and spin-resolved conditional probability distributions, CPDs, red 

surfaces) is illustrated for two instances, marked by letters A (shown in (b))  and B (shown in 

(c)) on the energy curves (in a). The abscissa value associated with these letters is      

      √            The far-left part of the      axis represents the non-interacting limit. 

Point A (on the s+, positive parity singlet, brown line) is a representative of the above-mentioned 

HL-type state, and point B (on the s+ , positive parity singlet, purple line) is a representative of a 

NOON state.  In the spin-resolved CPDs (red surfaces) the black down arrow represents the 

location of the spin-down fermion (taken at one of the humps in the single-particle density plots 

(green surfaces)), and the red arrow signifies that the red surface corresponds to the up-spin 

probability distribution. In (b) placing the down-spin fermion at the position of the right well 

(black down arrow in the position of the right density hump) shows that the distribution of the 

up-spin fermion (red surface) is found to be located in the other (left) well.  The SPD and CPD 

depicted in (c) are of particular interest, representing a NOON state formed by the superposition 

of two-fermion ultracold Wigner molecules (UCWMs) located in either the right or left wells. 
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The double-humped SPDs indicate that the two fermions (due to the large repulsion) localize and 

avoid each other, forming an UCWM. The displayed CPD in (c) confirms formation of a UCWM 

– indeed, placing the down-spin fermion (black down arrow) at the position of the forward 

density hump in the right well, the distribution of the up-spin fermion (red surface) is found to be 

located away from the black arrow with its maximum coinciding with the backward hump in the 

SPD in the right well. If the fixed (observation) point is chosen to be in the left well, the resulting 

CPD will be a mirror image of the one shown above, namely it will depict a red surface in the 

left well. Note that the formation of NOON states is due to the conservation of parity when the 

detuning tilt (Δ) between the wells vanishes (as is the case here).  

 

4.   Comparison with experiment.  To compare with the experimental results
2
 regarding single 

and double occupancy as a function of the interaction strength,  , we first extract from our 

calculations the relevant Hubbard-model parameters. For the purpose of this comparison we use 

our calculations for the DW systems in the linear arrangement, LA, and parallel arrangement, 

PA.  For the LA case we use the following parameters (see caption to Fig. 1c in the main text):  

The confining frequencies in the   and   directions are         kHz and           

kHz, leading to an effective 1D confinement along the   direction. The barrier height    

(produced by the smooth neck) is                  = 5.407 kHz,  where     is  the bare 

barrier of the TCO double well ,      = 0.297 kHz, where h is the Planck constant.. This factor 

leads to strong anharmonicities in the confining double-trap potential. The interwell separation is 

     m         , representing two rather well-separated wells, with         √        

=        m being the (left or right) harmonic-oscillator length. The mass corresponds to 

ultracold 
6
Li atoms,              kg. For the PA case we use the parameters given in the 

caption to Fig. S1.  These parameters correspond to those  used in the experiment
2
, selected there 

in order to assure applicability of the Hubbard model employed in reference 2, due to the small 

tunneling (hopping parameter  ) between the two wells. .  

The Hubbard-model hopping parameter is obtained from the energy spectrum of the non-

interacting case for the symmetric double well (with    ), i.e., the energy difference, 2J, 

between the singlet ground state and the first-excited triplet state . In this way we extracted  for 

the LA configuration a value of            Hz,  and for the PA configuration J/h = 55.53 Hz, 

which are sufficiently small compared to the axial trap frequency   kHz for the LA  and PA 
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configurations,  corresponding to the weak tunneling regime as in the experiments.  

The Hubbard parameter U (the onsite interparticle interaction strength) as a function of    

(where g is the contact interaction strength in the microscopic hamiltonian given in Eq. 1 of the 

main text) is the energy difference,               ,  for  the singlet ground state in a single  

well;      , is the energy of two non-interacting particle in a single well. If the calculations of 

U were to be done for the symmetric (Δ = 0) case, the results would contain contributions from 

interwell tunneling. To minimize interwell tunneling we performed (for both the LA and PA 

configurations) the above evaluation for U in a strongly tilted DW configuration, so that the low 

energy spectrum is determined solely by the lower lying well. This also incorporates the effect of 

anharmonicity which is inherent to the DW confinement; this effect is particularly important in 

the LA configuration. In these calculations we use a tilt of          kHz for the LA 

configuration and          kHz for the PA configuration, while keeping the other trap 

parameters unchanged.  

Having established the      dependence, we carry out a series of CPD calculations for 

the symmetric double well (with the same   and   ) where the fixed point is placed in the left 

well (   ). The portion of the CPD for     yields the probability of double occupancy. On 

the other hand, the portion of the CPD for     yields the single-occupation probability.  

Our calculations compared to the experimental measurements are displayed in Fig. S2.  

 

 

 

Figure S2 

 

Figure S2.  Probability of double (blue curve) and single (green curve) occupations of the 
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left and right wells for the LA and PA double well configurations. For the ground state 

probabilities (left frame) of both configurations we use the s+ singlet ground state (brown curve 

in Fig. 1c in the main text and in Fig. S1, for the LA and PA, respectively).  For the excited 

NOON state (right frame) we use in the LA configuration the orange s+ singlet of Fig 1c (main 

text), and in the PA configuration we use the purple s+ singlet curve of Fig. S1. For both DW 

arrangements we carried out calculations for two repelling 
6
Li atoms in a symmetric (   ) 

double well, with the parameters of the calculations described for the LA configuration in the 

main text (see captions to Fig. 1) and the start of this subsection, and for the PA configuration the 

parameters are given in the caption of Fig. S1.  Blue squares and green circles represent 

experimental data from Ref. 2. Red circular dots represent our CI simulation results for the LA 

configuration, and red triangles correspond to our calculated results for the PA configuration. 

Note the interchange between the blue and green probability curves (compared to the left panel), 

which is found both in theory and the experiment. Note that the calculated results for both the 

LA and PA configurations of the double well system agree well with the experimentally 

measured data. The limit of the Hubbard model cannot distinguish between the two microscopic 

trap arrangements. 
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