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Bottom-up configuration-interaction emulations of ultracold fermions in entangled optical
plaquettes: Building blocks of unconventional superconductivity
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A microscopic configuration-interaction (CI) methodology is introduced to enable bottom-up Schrodinger-
equation emulation of unconventional superconductivity in ultracold optical traps. We illustrate the method by
exploring the properties of ®Li atoms in a single square plaquette in the hole-pairing regime and by analyzing the
entanglement (symmetry preserving) and disentanglement physics (via symmetry breaking, associated with the
separation of charge and spin density waves) of two coupled plaquettes in the same regime. The single-occupancy
resonating valence bond states contribute only partially to the exact many-body solutions and the CI results map
onto a Hubbard Hamiltonian, but not onto the double-occupancy-excluding ¢-J one. For the double-plaquette
case, effects brought about by breaking the symmetry between two weakly interacting plaquettes, either by
distorting or by tilting and detuning one of the plaquettes with respect to the other, as well as spectral changes
caused by increased coupling between the two plaquettes, are explored.
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I. INTRODUCTION

Rapid experimental advances in the creation of finite
systems of ultracold atoms using few optical traps (bottom-up)
[1-5] or through the use of extended optical lattices (top-down)
[6-9] are promising approaches toward realization of Feyn-
man’s vision of a quantum simulator [10], capable of finding
solutions to systems that are otherwise numerically and/or
analytically intractable. However, apart from a few double-
well investigations [11-13], to date model-independent mi-
croscopic studies of multiwell systems providing theoretical
insights and guidance to experimental efforts are largely
lacking.

Here we introduce a configuration-interaction (CI)
Schrodinger-equation methodology [11,13-16] for exploring
finite plaquette systems assembled from individual optical
traps; for a brief description of the CI method, see Ap-
pendix A. These systems are fundamental stepping stones
toward bottom-up realization of large-scale checkerboard or
square ultracold-atom lattices, which are promising candidates
for emulating the physics underlying d-wave high-T7, super-
conductivity [17-21] in optical lattices [6-9,22-26]. The work
described here, demonstrating the feasibility of such exact
CI calculations for interatomic contact interactions, can be
extended to electronic plaquettes, i.e., to quantum-dot arrays,
governed by long-range Coulomb interactions.

The plan of the paper is as follows. In Sec. II we explore
first the properties of ultracold fermionic atoms (°Li) confined
in a single square plaquette (four sites) in the regime of hole
pairing and subsequently analyze the entanglement physics
of two coupled plaquettes in the hole-pairing regime. In
Sec. III, for the hole-doped coupled plaquettes (eight sites,
six atoms), we analyze the wave-function anatomy of the
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two entangled [11-13] (Schrodinger-cat) almost-degenerate
manifolds, comprising (A) the ground state (GS) and first
excited (1EX) state and (B) the two higher excited states
(2EX and 3EX). The almost-degenerate states have good,
but opposite, parities. When symmetry broken (SB), either
by superposing (£) the degenerate pair in each manifold or
via offsetting the energies (tilting) of the two plaquettes, the
SB states coming from A are characterized by a particle
(charge)-density modulation (wave), i.e., a charge-density
wave (CDW) portraying the hole-paired, (4,2) or (2,4),
components, whereas the SB states originating from B remain
in a (3,3) particle distribution (each of the plaquettes having
an unpaired hole), but exhibit a spin-polarization density
modulation (wave), i.e., a spin-density wave (SDW). For
the double-plaquette case, we further explore effects brought
about by breaking the symmetry between two weakly coupled
plaquettes, either by distorting one of the plaquettes or by
tilting and detuning one of the plaquettes with respect to the
other. Spectral changes caused by increased tunnel coupling
(e.g., by decreased interplaquette distance) between the two
plaquettes are also considered.

Noteworthy is our finding that the GS d-wave resonating
valence bond (RVB) state contributes only partially to the
exact many-body wave function, i.e., double occupancies (also
referred to as doublons) need to be included. Indeed, our
microscopic results map properly onto a Hubbard Hamiltonian
(including extended Hubbard models [27,28] depending upon
the range of the experimental parameters), but not onto
the double-occupancy-excluding ¢-J model [17,18,29]. Our
conclusions agree with recent [7-9] observations of doublons
in two-dimensional (2D) optical lattices.

The rest of the paper comprises a summary (Sec. IV)
and three Appendixes, concerning a brief description of the
CI method (Appendix A), the mathematical definitions of
single-particle densities and two-body and N-body conditional
probability distributions (Appendix B), and the specification
of the correspondence between spin and RVB functions and
CI many-body wave functions (Appendix C).
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FIG. 1. Illustration of the one-dimensional TCO potential with a
smooth neck (solid lines). (a) Case with atilt A > 0. (b) Case without
a tilt. Here, and elsewhere, /iw is the trapping frequency (given in
energy units of kHz) of the bare harmonic oscillator (dashed lines)
for each site.

II. SINGLE PLAQUETTE

The short-range two-body repulsion in the Hamiltonian is
described by a Gaussian function of width o, i.e., by

A
V(I’,',I'j) — Te—(r,-—rj)z/az’ 1)
o-°TT

where X is the strength parameter. Here and throughout the
paper o = ~/21/10 = 0.1833 m, where the oscillator length
lé = li/(Ms jw), Msy; being the °Li mass and /iw = 1 kHz
being the trapping frequency of the plaquette potential wells.
This form of interaction provides a good approximation for
the atom-atom interactions and avoids the peculiarities of the
Dirac § function in two dimensions [30].

The potential surface of the four-site (or eight-site) plaque-
tte is constructed with the help of the two-center, smooth-
neck oscillator Hamiltonian that was previously introduced in
Refs. [11,13,15,31]. The smooth-neck interwell barrier V;, can
be varied independently and is controlled by the parameter
€, = V,/ Vo, where Vj is the intersection height of the two
bare potential parabolas from neighboring sites, i.e., prior to
inserting the smooth-neck potential contribution [11,15,31].
For a graphical illustration of the two-center-oscillator (TCO)

'"The mass of °Li is taken to be 10964.90m,, with m, the free-
electron mass. This gives [y = 1.296 yum for fiw = 1 kHz.
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FIG. 2. Configuration-interaction results for °Li atoms in a four-
site plaquette. (a)—(e) Results for N = 4 atoms and (f) results for
N = 2 atoms in a four-site plaquette. (a) Energy spectrum for V, =
1.34 kHz. (b) Ground-state SPD [red star in (a)]. (c) and (d) The
SRCPD2s for the GS and 2EX. Up black arrows denote the up-spin
at the observation point and red humps the probability for down-spin
atoms. Note the double-occupancy hump at the observation point.
(e) and (f) Ground-state total energies (E, in units of ¢) for the CI,
Hubbard, and ¢-J Hamiltonians; the CI double occupancy (DO) is in
red. The inset above (a) illustrates the four-site external potential.

at/U

double-well potential, including the definitions of V, and Vj,
see Fig. 1. Here and throughout the paper the intersite distance
in asingle plaquetteisd,, = 6 umand ¢;, = 0.5 (yielding V}, =
1.34 kHz), unless noted otherwise. The potential surfaces
of the four-site and eight-site plaquettes is constructed by
combining such TCO potentials along the x and y directions
(see Supplemental Material for details [32]).

The CI single-plaquette low-energy spectrum as a func-
tion of the two-body repulsion strength A is displayed in
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Fig. 2(a), with the single-particle density (SPD) for the GS
(see red star), or for the second excited state (blue star),
being shown in Fig. 2(b); for the definition of the SPD in
the CI approach, see Appendix B. A total-spin projection
S; = 0 has been assumed. The CI wave functions depend on
both the atom (continuous) position r; and the spin o;, i =
1,2, ..., variables. However, for plaquettes with sufficiently
high interwell barriers, the microscopic structure of a CI
state |®) can be mapped onto the usual Hubbard Hilbert
space involving the superposition of many primitive basis
functions ; =|---d---1---}---0---); d here denotes a
doubly occupied site, 1 and | denote the site’s spin occupancy,
and 0 denotes an empty site. The inset in Fig. 2 describes the
four-site external potential. The coefficients c¢; of the primitives
Q; in the expansion of |®) can be extracted from the CI
wave functions with the help of the spin-resolved conditional
probability distributions (SRCPDs) [11,13,33]. Two SRCPDs
are used here: one (SRCPD2), expressed as an expectation
value over the many-body wave function, describes the space
and spin correlation of a particle pair for a given location
and spin of one of them (referred to as an observation point)
and the other is any other particle of the N — 1 remaining
ones (with a specified spin). The other probability distribution
(SRCPDN), given by the modulus square of the many-body
function, expresses the spatial probability of finding the Nth
particle with a specified spin when one fixes the positions
and spins of the other N — 1 particles (for the mathematical
definition of SRCPDs, see Appendix B).

Figures 2(c) and 2(d) display the SRCPD2s of a four-
fermion plaquette for the CI states (GS and 2EX) associated
with the two stars in Fig. 2(a). The GS SRCPD2 in Fig. 2(c)
reveals the presence (89.4%) of a d-wave RVB component and
the 2EX SRCPD2 in Fig. 2(d) reveals the presence (84.2%) of
an s-wave RVB component (see the analysis in Appendix C);
these percentages are derived from the double-occupancy
fraction at the fixed-point site [i.e., the hump volume above
the arrows in Figs. 2(c) and 2(d)].

The above SRCPD2 analysis points to a deficiency of
the 7-J model because it excludes [34] double occupancies.
We further illustrate the limitations of the 7-J model for
the full range of the repulsive interaction by plotting for all
three approaches (CI, Hubbard, and ¢-J) the four-fermion and
two-fermion total energies E for a single plaquette, as well
as the double occupancy, as a function of U/t; see Figs. 2(e)
and 2(f), respectively. Evidently, the CI and Hubbard energies,
apart from a constant shift, are in very good overall agreement,
whereas the 7-J values deviate greatly. The exact CI results
provide a to-date lacking benchmark for assessments of the
validity of the #-J model and its variants [17,18,29,35], as
well as the Hubbard-calculated double occupancies.

The hole-pairing gap may be defined in terms of the energies
of a four-site plaquette as follows [20]:

Ap =2Egs(N =3) — [Egs(N = 4) + Egs(N =2)], (2)

where N is the total number of fermions on the plaquette.
Configuration-interaction-calculated pairing gaps are shown
in Fig. 3 for two interwell distances: d = 6 um [Figs. 3(a)
and 3(b)] and d = 2.5 um [Figs. 3(c) and 3(d)]. Figure 3(a)
displays A, as a function of the repulsion strength A and the
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FIG. 3. The Cl-calculated contour plot for A, [Eq. (2)] for a
single four-well plaquette with variable €,. For (a) and (b) d,, = 6 um
and for (c) and (d) d,, = 2.5 um. Positive values (blue to yellow)
indicate pair binding. The horizontal axis in (a) and (c) is the repulsion
strength A and in (b) and (d) it is the extended Hubbard parameter
ratio U/t; in (a) and (c) A, is in units of Hz and in (b) and (d) A, is
in units of the corresponding hopping parameter ¢ between nearest-
neighbor wells. The parameters used in the calculations for the ground
states of N =4, N =3, and N = 2 fermions are iw = 1 kHz, [, =
1.296 pm, 0 =0.184 um, and S =0, and S, = 0. In (a) and (b)
the barrier height V), varies from 0.67 kHz (¢, = 0.25) to 2.14 kHz
(e, = 0.8), and in (c¢) and (d) V,, varies from 2.32 kHz (¢, = 5) to
6.98 kHz (¢, = 15). In (a) and (b) the insets show cuts for intersite
barrier €, = 0.5 and in (c) and (d) the insets show cuts for €, = 10.
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FIG. 4. Evolution of the extended Hubbard parameters U, V, and
t as a function of the interwell barrier-height ratio €,. The distance
between the wells is d,, = 6 um, which results in V; = 2.68 kHz.
The remaining trap parameters are fiw = 1 kHz, [ = 1.296 um, and
o = 0.184 um (note the logarithmic energy scale).

interwell parameter €, in a single plaquette. The gap maximum
(~0.72 Hz) occurs at (A ~ 0.30[3/iw, €, ~ 0.43).

To compare with the results of the Hubbard model, Fig. 3(b)
displays the same CI results for A,, but with all energies
expressed in units of the intersite tunneling parameter ¢ and
the interaction strength A expressed as the ratio U/¢t, with
U being the Hubbard on-site repulsion extracted from the CI
calculation. The maximum of A, is now 0.045¢, occurring at
U/t =2.6,e, = 0.7).

When ¢, > 0.4 [11,15,31], the maximum value (i.e.,
0.045¢) of A}, and therange 0 < U/t < 4.8, corresponding to
A, > 0 (i.e., hole pairing), agree with those found for a single-
plaquette pure Hubbard model [20,21,36]. The additional
dependence of A, on €, [see Fig. 3(b)] cannot be described
by the standard Hubbard model; it reflects the effect of
Hamiltonian terms that are present in the CI calculation, but
are absent in the standard Hubbard model, pointing to possible
applications of the extended Hubbard Hamiltonian [27,28] in
the optical traps assemblage. Particularly relevant here is the
off-site repulsion V, which effectively reduces [27] the on-site
U. However, V decreases strongly for increasing intersite
barrier heights €, (see Fig. 4), whereas U is highly insensitive.
When V becomes sufficiently small relative to U, the standard
Hubbard single-plaquette results are recovered [see inset in
Fig. 3(b)].

The parameter U in Fig. 4 is the on-site repulsion as
determined from the ground-state energy evolution as a
function of the interaction strength X in a single well and
V is the intersite repulsive interaction, determined through
the matrix element of V(r;,r;) [see Eq. (1)] taken for the
ground-state wave functions, described by Gaussian functions
determined through fitting to the CI SPDs. In addition, ¢ is
the interwell tunneling parameter, as determined through the
energy difference between the two lowest energy states in the
y direction (the tunneling split). Note the insensitivity of U
vs €, compared to the strong variation in V. The tunneling
parameter ¢ exhibits a reduced sensitivity compared to V. The
V term constitutes a perturbation to the pure Hubbard model.
When the V term becomes of the order of magnitude of A,
i.e., 0.05¢, the pairing gap vanishes; this happens for values of
€, < 0.3 for the plaquette considered in this figure.

The role played by the off-site interaction V is further
illustrated in Figs. 3(c) and 3(d), where A, is plotted for
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the case when the intersite distance in the single plaquette
is dy, = 2.5 nm [compared with d,, = 6 nm in Figs. 3(a)
and 3(b)]. Clearly much higher values of the intersite potential
barriers (i.e., €, > 6) are required to reach the A, > 0 region.

III. WEAKLY COUPLED TWO-PLAQUETTE MOLECULE

The pairing-gap behavior estimated from a single four-well
optical plaquette should be reflected in the properties of a
two-plaquette molecule (TPM) when the two plaquettes are
weakly coupled (WC). For the single plaquette [Eq. (2) and
Fig. 3], A, indicates that the GS of the WC TPM is associated
with a (left,right) (4,2) or a (2,4) particle distribution, with the
equal-particle arrangement between the (left,right) plaquettes,
i.e., (3,3), corresponding to an excited state; A, < 0 indicates
reverse energy ordering. The GS and lowest excited-state
wave functions of the WC TPM show complex behavior
corresponding to entangled two mirror-reflected CDW or SDW
symmetry-broken configurations. Experimental probing and
quantitative analysis of such entangled states has recently been
demonstrated [3], based on inducing particle escape from the
optical wells by lowering one side of the trapping potential.

Figure 5 displays CI results for the spectra of N = 6 SLi
atoms in two weakly coupled plaquettes separated by D =
18 pum. The well separation within the identical plaquettes
is d, = 6 um (Fig. 5, inset), so the intraplaquette barriers are
sufficiently high to yield a vanishing off site V (see above). The
corresponding low-energy spectrum is plotted versus —1/A;
the entire spectrum is plotted in Fig. 5(a) and an enlarged view
of the spectrum in the interval —9.5 < 1/A < —7 is displayed
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FIG. 5. Configuration-interaction spectra for a double-plaquette
WC TPM with interplaquette and intraplaquette distances D =
18 um and d,, = 6 um, respectively. The inset above (a) is an
illustration of the external potential for the double plaquette. (a)
Spectrum in the extended interval —10 < —1/A < —1. (b) Enlarged
spectrum in the limited interval —9.5 < —1/A < —7.
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FIG. 6. Configuration-interaction wave functions for a double-plaquette WC TPM with interplaquette and intraplaquette distances D =
18 um and d,, = 6 pm, respectively. (a) Subtracted spectrum vs U/¢. Here § < 0 indicates hole pair binding. (b) The SPD and SPOL for the
two lowest states A1 and A2 at the point marked by the stars in (a). (c) The SRCPDN for the GS A1 in (a). The observation points (black arrows)
form (together with the predicted probability peak (spin-up, red) a (4,2) configuration. (d) and (e) The SPD and SPOL of the symmetry-broken
states in the A manifold exhibiting formation of a CDW. (f) and (g) Same as (d) and (e) for the SB states of the B manifold exhibiting formation
of a SDW. Top middle inset above (d) and top right inset above (f) give pictorial representations of primitive double-plaquette basis functions
corresponding to the (4,2)+(2,4) and (31,3)+(3,31) configurations, respectively.

in Fig. 5(b). We focus on the two (lowest) pairs of degenerate
states denoted by (A1,A2) and (B1, B2) in Fig. 5(b).

The CI method preserves all the quantum numbers, which
are explicitly labeled in Fig. 5, i.e., 1 associated with the
parities P, and P, along the x and y directions and the total
spin value S =0 (for Al, A2, and B2) or S =1 (for Bl).
The pairs A and B constitute the four lowest-in-energy states
in the whole range —10 < —1/A < —1 that we investigated
[Fig. 5(b)]. The crossing at —1/1, = —2.8 is reflected in
the modified spectrum generated by subtracting the energy
E(B1) at each point —1/A; see the pocket in Fig. 6(a), where
the horizontal axis is expressed now in units of U/¢ and the
crossing occurs at U/t = 4.8. For 0 < U/t < 4.8, the A pair
is lower in energy, with the P, =1, P, =1, and § = O state
(denoted by A1) being the ground state; for 4.8 < U/t, the B
pair is lower in energy, with the P, =1, P, =1,and S =1
state (denoted by B1) being the ground state.

To investigate the microscopic structure of the states in the
A and B pairs, we first display the CI SPDs [p(r,1) + po(r, )]
and spin-polarization densities (SPOLs) [p(r,1) — p(r,{)]
for the states A1 and Bl in Fig. 6(b); see definitions in
Appendix B. These CI SPDs and SPOLs are identical for both
states, since both parities P, and Py, as well as the total spin S,
are preserved. In particular, the SPDs exhibit eight humps of
equal height, integrating to a total number of N = 6 particles.

Furthermore, the SPOLs are structureless plane surfaces. The
SPDs and SPOLs for the CI states A2 and B2 exhibit a similar
behavior.

Direct insight into the nature of the GS structure is afforded
by the SRCPDN shown in Fig. 6(c), where the appearance
of a peak in the left plaquette (see red peak), integrating to
very close to unit probability for finding an up-spin particle
there when fixing the positions and spins of the other five
atoms (see black arrows), indicates a dominant (4,2) WC TPM
configuration. Little double occupancy is portrayed by small
red peaks on diagonal sites (left plaquette).

Although the CI-calculated densities appear uniform across
the two plaquettes [see Fig. 6(b)], the microscopic structures
of the A and B states are different: They involve different
superpositions of many primitive basis functions €2;, as
exemplified by the |®) superpositions in the insets in Fig. 6.
These superpositions contain also primitives with doubly
occupied sites (denoted by d earlier, not shown explicitly).
For illustrative purposes, the pictorial representations in these
panels describe visually one of these primitives associated with
the (4,2) (Fig. 6, top middle inset) and the (3,3) (Fig. 6, top
right inset) configurations.

As previously mentioned, detailed information can be
extracted from the CI wave functions with the help of the
SRCPDs [11,13]. However, for N = 6 fermions in M = 8
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sites, calculating the large number of needed CPDs is time
consuming. Nevertheless, key features of the hidden anatomy
of the entangled states in the A and B pairs can be revealed
through the implementation of a forced breaking of their
P, parity symmetry, i.e., by subtracting and adding their
member states and constructing the four auxiliary states
ASP = Al ¥ A2 and B3® = B1 ¥ B2.

The expectation value of P, in the AS® and B3® states
vanishes; this symmetry breaking results in different charac-
teristics of the above two symmetry-broken states. The SPD
for ASB exhibits a (4,2) particle configuration [Fig. 6(d),
left], while the associated SPOL is featureless [Fig. 6(d),
right]. The SPD for AiB corresponds to the mirror-reflected
(2,4) configuration [Fig. 6(e), left], with the associated SPOL
remaining structureless [Fig. 6(e), right]. The two fermions (or
two holes) in the two-particle plaquette are not localized on
specific sites. Indeed, after the symmetry breaking, the wave
functions are still an entangled superposition of many €2;’s,
thus distributing the particles (or holes) with equal probability
over all sites in each plaquette. In a plaquette with two
fermions, the volumes under the four density humps integrate
to N = 2, whereas the volumes under the four density humps

go.zg 24] (a) 24 [3’31fg (b)

R 24 )N w7y

5 e [[3,3]%2

2, 1§A=o.02t:0.29Hz 0! A=0.1t=1.45Hz
0 4 817412

8U/t12 0 4

FIG. 7. (a)—(d) Symmetry breaking by applying a tilt A or (e)—(h)
distorting the internal structure of one of the plaquettes. For the chosen
value of U/t in (a) with A = 0.02¢, no pair binding is observed, as
evident from the SPD in (c). However, for a larger tilt A = 0.1z, the
spectrum in (b) and SPD in (d) indicate GS pair binding, reflecting a
(4,2) configuration. Similarly, (e) changing the intraplaquette energy
barrier in the right plaquette from €, = 0.5 to €;,, = 0.5003 results
in no pair binding [see also SPD in (g)] for the chosen value of
U/t, whereas (f) a slightly larger barrier €,,, = 0.5013 induces pair-
binding as evident from the spectrum in (f) and SPD in (h).

PHYSICAL REVIEW A 95, 043617 (2017)

in a four-fermion plaquette integrate to N = 4. Naturally, the
two broken-symmetry states AS:FB can be characterized as a
CDW, because they exhibit a modulation in the SPDs, but
none in the spin polarizations.

The SPDs and spin polarizations of the B;S;B states are
displayed in Figs. 6(f) and 6(g). In both cases, the SPDs
are symmetric with respect to the left and right plaquettes.
Furthermore, the volumes under the humps in each plaquette
integrate to N = 3, indicating that these states have a (3,3)
configuration. However, the left-right asymmetry (due to the
broken P, symmetry) emerges now as an asymmetry in the
spin polarization. The three fermions (with total spin § = 1/2)
in one plaquette have a spin projection S, = +1/2, while
the remaining three fermions in the other plaquette have
the opposite spin projection S; = F1/2. The B3® broken-
symmetry states exhibit SDW characteristics [see the right
panels in Figs. 6(f) and 6(g)].

In addition to the above analysis, the (4,2) or (2,4)
components of the A states, but not the (31,3]) or (3],31)
components of the B states, can be separated in actual
experiments by lifting the left-right degeneracy with the help
of two processes: (1) tilting one plaquette with respect to
the other [Figs. 7(a)-7(d)] and (2) distorting one of the two
plaquettes [Figs. 7(e)-7(h)]. From the CI spectrum depicted
in Fig. 7(b), the degeneracy of the states in the A pair is
lifted for a tilt A = 0.1¢, with one of the states becoming
the GS at U/t = 6 (see the vertical bar). Moreover, the
corresponding CI SPD plotted in Fig. 7(d) shows that the tilt
induced the symmetry breaking discussed earlier, i.e., a (4.2)

o
o
@

(units of t)

FIG. 8. (a) Configuration-interaction spectrum for a double pla-
quette with interplaquette and intraplaquette distances D = 8 um
and d,, = 6 um, respectively, showing degeneracy splitting between
the GS and 1EX [compare with Fig. 6(b), D = 18 pum]. (b) and
(c) The SRCPDNs corresponding to the GS and 1EX in (a) (see
the respective stars) were evaluated for U/t = 3.5. The SRCPDN
observation points are marked by black arrows with indicated spin
directions. The predicted SRCPDNs are denoted in red.
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configuration; for smaller tilt results, see Figs. 7(a) and 7(c).
Similar symmetry-breaking results, i.e., a spectral energy gap
corresponding to the emergence of a (4,2) CDW configuration,
are found also for distortions of the plaquette landscape [see
Figs. 7(e)-7(h)].

While we focused here on conditions allowing exploration
of pure interplaquette entanglement effects, the sensitivity of
the energy spectrum and entanglement characteristics to the
interplaquette distance (i.e., increasing tunneling between the
plaquettes) is illustrated in Figs. 8(a)—8(c), where the spectrum
for a double plaquette with d,, =6 um and D = 8 um is
displayed. The spectrum in Fig. 8(a) shows the formation of
an energy gap between the two lowest states [compare with
Fig. 6(a)]. The SRCPDN in Fig. 8(b), corresponding to the
GS at U/t = 3.5 (see red star), reflects contributions from
both the (4,2) and (4,2) configurations (see the large red peak
in the left plaquette and a smaller one in the right plaquette,
corresponding to the probabilities of finding spin-up atoms in
these locations). On the other hand, the result [Fig. 8(c)] for
1EX [gray star in Fig. 8(a)] portrays the formation of a pure
(4,2) — (2,4) configuration [compare to the (4,2) + (2,4) GS
of the WC TPM in Fig. 6(c); the small difference between the
+ and — cases is not visible in the plots].

IV. SUMMARY

In this work we have developed and implemented a
configuration-interaction-based computational methodology
for obtaining exact solutions to the microscopic many-body
quantum Hamiltonian describing ultracold fermionic atoms
(here ®Li atoms) moving under the influence of an optically
induced multiwell confining potential surface and with short-
range interatomic repulsive interactions; we remark here that
the same CI methodology can be extended in a straightforward
manner to treat interatomic dipolar interactions or confined
electrons interacting via long-range Coulomb interactions.
A similar type of potential energy surface, made of the
assembly of plaquettes, each comprising four sites (potential
wells) arranged in a square geometry, has been introduced
in early investigations [19,20] of electronic high-temperature
superconductivity in cuprate materials, in the context of
the two-dimensional Hubbard model often mentioned as a
starting point for formulating a theoretical understanding of
unconventional superconductivity [37,38].

The Hubbard model was originally derived for the de-
scription of the behavior of strongly correlated electrons
in solids [39]. However, variants of this model have also
been implemented, for over a decade, targeting investiga-
tions of strongly interacting ultracold atoms (bosonic or
fermionic) in optical lattices, with the interest in such systems
originating from remarkable advances in atom cooling and
optical trapping techniques, which opened heretofore untapped
prospects of preparing, emulating, and measuring the behavior
of strongly interacting quantum many-body systems under
pristine, defect-free, environments. Analysis of such ultracold-
atom emulations of interacting quantum many-body systems
revealed on various occasions [28] that many Hubbard models
that were simulated with ultracold atoms were found not
to have a standard form, meaning that the corresponding
Hamiltonians, required for analysis of these results, frequently
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had to incorporate terms that are not included in the standard
Hubbard model and its customary variants. These extra terms
may include correlated and occupation-dependent tunneling
within the lowest band, as well as correlated tunneling and
occupation of higher bands [28].

The above findings connote that progress in developing
future ultracold-atom emulations of interacting quantum
many-body systems (including quantum magnetism and the
origins of unconventional pairing mechanisms) and theoretical
methods for the analysis of such emulations (including the
development and implementation of effective models such
as extended and nonstandard Hubbard Hamiltonians) require
benchmark exact calculations (such as the ones introduced in
this work), which, owing to their ab initio nature, incorporate
(with no restriction or approximation) all contributions to
the many-body microscopic Hamiltonian. With such com-
putational methodology, one can then proceed to construct,
assess, and improve effective models for a reliable analysis
of the new forthcoming data. Indeed, in this work we focused
on providing benchmark exact quantum-mechanical solutions,
aiding and enabling a bottom-up approach aimed at ultracold
atoms experiments, and their analysis, starting from a single
ultracold-atom plaquette as a building block and progressing
in a systematic manner to double plaquettes (with variable
interplaquette couplings) and larger, more complex, systems.

Our exact Schrodinger-equation ultracold-fermionic-atom-
plaquette simulations demonstrated entangled d- and s-wave
RVB states coexisting with partial double occupancies, uncov-
ered hole-pairing phase diagrams, and explored the robustness
of the energy spectrum and entanglement of a double-plaquette
system (assembled from entangled multipartite plaquettes)
through symmetry breaking via interplaquette tilting and
distortion and as a function of the strength of interplaquette
coupling. These calculations may serve as a foundation for
further exact calculations, the development of approximate
treatments [40-42], and experiments (including the use of site
resolved microscopy enabling direct observation of charge
and spin correlations [7-9]) on systems with hierarchically
increasing complexity [43—45].
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APPENDIX A: CONFIGURATION-INTERACTION
METHOD

As previously mentioned, we use the method of configura-
tion interaction for determining the solution of the many-body
problem specified by the N-fermion general Hamiltonian

(AL)

N N N
Hwvp = Z H(@) + Z Z V(r;,r;)),
i—1

i=1 j>i
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where r; and r; denote the vector positions of the i and j
fermions (e.g., Li atoms). This Hamiltonian is the sum of a
single-particle part H (i), which includes a kinetic energy term
and a single-particle external confinement potential (see Fig. 1)
that expresses the formation of an interwell barrier between
the individual wells and the two-particle interaction V (r;,r;).

For the case of 2D ultracold atoms, the two-body repulsion
is taken as a Gaussian function given by Eq. (1).

In the CI method, one writes the many-body wave function
CD%I(rl,rz, ...,Iy) as a linear superposition of Slater deter-
minants WV (ry,ry, ...,ry) that span the many-body Hilbert
space and are constructed out of the single-particle spin orbitals

xj@xy)=9;x,y)a for 1<j<K (A2)

and
xi(x,y) =¢j_x(x,y)p for K < j<2K, (A3)

where « (8) denotes an up (down) spin, namely,

o (. ...ty =Y CHUN(ry, .. ry), (Ad)
1
where
X (1) Xjn (1)
1
N _

vy = Wi (A5)

X (rn) Xin(@N)

and the master index / counts the number of arrangements
{j1,J2, ..., jn} under the restriction that | < j; < jo < --- <
Jjv < 2K. Of course, g = 1,2, ... counts the excitation spec-
trum, with ¢ = 1 corresponding to the ground state.

The many-body Schrodinger equation

Hwvs (D%I,q = Elg’l,q CD%IJ] (A6)

transforms into a matrix diagonalization problem, which yields
the coefficients C} and the eigenenergies E,?,I 4+ Because
the resulting matrix is sparse, we implement its numerical
diagonalization employing the well known ARPACK solver
[46].

The matrix elements (\IffV |H|\II§V ) between the basis deter-
minants [see Eq. (AS5)] are calculated using the Slater rules
[16]. Naturally, an important ingredient in this respect is the
matrix elements of the two-body interaction

/ / dr gt (E)@T () V (0 e g (AT)

in the basis formed out of the single-particle spatial orbitals
¢i(r),i =1,2,...,K. In our approach, these matrix elements
are determined numerically and stored separately.

The Slater determinants \II;V [see Eq. (AS)] conserve
the third projection S., but not the square 8> of the total
spin. However, because $? commutes with the many-body
Hamiltonian, the CI solutions are automatically eigenstates
of §? with eigenvalues S(S + 1). After the diagonalization,
these eigenvalues are determined by applying S? onto @%‘ q
and using the relation 7

SWY = | (Ny = NpP/4+ N2+ @y |W), (A8)

i<j
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where the operator ;; interchanges the spins of fermions i
and j provided that their spins are different; N, and Ng denote
the number of spin-up and spin-down fermions, respectively.

When there is no tilt [i.e., A = 0; see Fig. 1(b)], the xy
parity operator associated with reflections about the origin of
the axes is defined as

Pry®F 112, .. ky) = OF (—r1, =12, ..., — 1) (A9)

and has eigenvalues £1. With the separable in x and y basis
that we use, it is easy to calculate the parity eigenvalues for
the Slater determinants [Eq. (A5)] that span the many-body
Hilbert space. The many-body Hamiltonian used in this paper
(without an applied magnetic field) conserves also the partial
P, and 73y parities.

APPENDIX B: SINGLE-PARTICLE DENSITIES AND
CONDITIONAL PROBABILITY DISTRIBUTIONS: SPD,
SPOL, SRCPD2, AND SRCPDN

Denoting the CI wave function by |®¢!), the SPD is defined
as

N
n(r) = (&> 8(r; — )| @), (B1)

i=1

Furthermore, the single-particle SPOL (denoted below by S)
is defined as

N
Sr) = (@D 8(r = 1)(815, — 810,) @), (B2)

i=1

where 1 and | denote the up and down values, respectively, of
the o spin variable. The SPOL is the difference between the
up and down spin densities.

We probe the intrinsic structure of the CI eigenstates
using the spin-resolved conditional probability distribution
P(ro,rgop) defined by the expression [15,33]

N N

P(ro,roo0) = (@Y ") " 8(ri — 1)8(r; — 10)850,80,0,|0%).
i=1 j#i

(B3)

where § is the Dirac delta function, N is the total number of
particles, i and j are particle indices, and o; and o; represent
the spins of particles i and j. The position of the fixed point
is ro and the spin of the fixed particle is oy; ry (together with
the associated spin at that location oy) is referred to as the
observation point. Further, o is the spin of the particle whose
spatial distribution we want to know. Since the spin-resolved
conditional probability distribution [in Eq. (B3)] is represented
by a two-body operator, we denote it by SRCPD2.

However, we found that sometimes SRCPD2s alone are
not sufficient to fully decipher the intrinsic configuration of
the emerging quantum states. In such a case, one needs to
calculate higher correlation functions. In this paper we use
the SRCPDN (N -point correlation function) defined as the
modulus square of the full many-body CI wave function, i.e.,

P(ro;ri01,r202,....,tN10N_1)

= |0 o ;1101,1202,....tx_10x_)>, (B4
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where one fixes the positions and spins of N — 1 particles and
inquiries about the (conditional) probability of finding the Nth
particle with spin o at any position r.

APPENDIX C: SPIN EIGENFUNCTION DETERMINATION

1. The RVB state in a single plaquette

In this section we provide a detailed description of the
procedure used to identify the d-wave RVB state in our
spin-resolved SRCPD2s. As first described in Ref. [15], one
can map SRCPD2s to spin eigenfunctions by analyzing the
volumes underneath the SRCPD2s. The versatility of this
method has been demonstrated several times [13,15] and
detailed explanations of the methodology can be found in
[13,15,47]. This procedure was carried out by us to identify
the RVB states within our plaquettes. The starting point is the
general spin eigenfunction for four spin-1/2 fermions trapped
in a single plaquette with quantum numbers S = 0 and S, = 0,
which is given as [15]

Xoo = \/gsiHGITNi) + (% cost) — \/gsiné’)INN)
L \/T -
— (5 cos 6 + Esm >|T¢¢T)

1 1 .
—(— cosf —smé))NTTM

\S]

12

—_

1

+ (E cosf — - sin9>|¢T¢T) + \/gsin9|¢¢TT).

(ChH

This function is parametrized by the angle 6 and yields the
quantum numbers S = 0 and S, = 0 for all values of 6. The
angle 6 is a free parameter that for certain values gives spin
functions with specified characteristics (e.g., the orthogonal
functions mentioned below) or can be treated as a fitting
parameter [see the discussion below Eq. (C5) in connection
with 6¢r]. Equation (C1) expresses in a compact form the fact
that the dimension of the total-spin space for N =4, § =0,
and S; = 0 is 2; see the branching diagram in Ref. [48] and
Ref. [13]. For example, two orthogonal basis functions can be
obtained by setting & = 0 and & = /2. From the general spin
function, one can read off the spin components contributing
to a specific SRCPD2. For instance, for a spin-down SRCPD2
with a fixed spin-up fermion on position 1 (counting from
left to right in the corresponding kets), the spin components
contributing to the conditional probability densities are

1

| 35O, (€2)
1 P 1 o C3
(Ecos —,lﬁsm )|T¢Ti«>’ (©3)
Lo [Ty 4
<§cos +/ 75 sin )|T¢¢T>' (&)
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The volume under the hump in position 2 of such a SRCPD2
is therefore proportional to

H (1 2) = C()SO ‘/ Si]l@
+ 0 + mn 9 .
COS S

This is referred to as the partial conditional probability
T4, (1,2) (partial because it corresponds to a part of the full
SRCPD2, i.e., one peak for a specific spin configuration).
Using a normalized SRCPD2. one can directly equate the
volume underneath the hump in position 2 to IT4,(1,2) and
determine the angle 6¢;. Due to the involved squares, this
procedure is not necessarily unique. The unique solution can
be found by comparing another hump (i.e., at position 3) to
the corresponding partial conditional probability IT4(1,3).
However, it is important to note that this procedure is only
exact as long as (i) the overlap between sites is sufficiently
small and (ii) the amount of double occupancy is small. From
Figs. 2(c) and 2(d), it is clear that (i) is fulfilled. To ensure
that the possible error due to (ii) is as small as possible, we
minimize
§ = [M4,(1.2) = VP + [M4,(1.3) = VO)P
+[M4y(1,4) — VAP, (Co)
where V(i) represents the volume under the SRCPD2 hump at

position i.

2. The d-wave RVB determination

For the ground-state SRCPD2 shown in Fig. 2, this
procedure yielded an angle O¢; = 2.618 6147 It is known that
the spin function for the d-wave RVB is given as [26]

1 1 1
Xd RVB = ﬁWTiU - ﬁWlTi) + m|T¢¢T>
1 1 1
+ z—ﬁNTTU - %NTiT) + mNiTT),
(C7

which corresponds to an angle of 6;ryp = 5?”. We can
therefore conclude that our CI results show the presence of
a d-wave RVB state with

Oct — 04 rvB

1— = 99.98% (C8)

9(1 RVB

fidelity. However, while the CI result shows the presence
of a RVB with high fidelity, the SRCPD2 also undoubtedly
shows the presence of double occupancy. The volume of the
hump at position 1 amounts to 10.39%. This might seem
at first contradictory, but is in fact the correct solution for
an interaction strength of U/t = 2.461. To show this we
calculated the ground-state solution of the Hubbard model

N
H=—t Z (C,‘T’O—Cj.o + cj’gci,(,) +U ZniTnils (&)

(i,j).o i=1
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which is given as

Vs = 0.455(11, 4, 1,4) + 11,4, 1,40 + 0.228(— 1,1, 4, 4) — 14410 = [ 04 — 411
+0.149( o L. 1, 1) — [0, 1 LMD +0.149(11, 4, o 1) — [ 1, 0, M) +0.149(1, o, 1)L 1) — 11, 0, 1)
+0.149(11, 4,14 0) — a1, 10) + 0.149(1, 1 o0 1) — 111, o ) +0.149(L o, 11 ) — o 14t
+0.149(11, o, 4, 1) — M4, 0, 1,4) + 0.149(1 . 1, o) — 1144, 1,0))
+0.078(= o, o, 1. M) + 1o, M. to) + 10,0, 1)) = 1.1, 0,0)
= 0.79x4 rv + 0.38xp0O (C10)

The first two lines of Eq. (C10) are the d-wave RVB component and appear with dominant coefficients; however, the wave
function clearly contains contributions from doubly occupied states (represented as xpo). Summing the squared coefficients of
the spin primitives that contain doubly occupied sites yields a double occupancy of 10.17% in excellent agreement with the CI
result.

3. The s-wave RVB determination

The same analysis can be performed for the s-wave RVB state. The spin function for an s-wave RVB state is given in literature
as [24,26]

xsrvB = 5(IMHLL) + L) — [UA1)) — 1) (CID)
This corresponds to an angle of 6; ryp = —ZT”. The angle determined from our CI is 6cf = —0.666 327, corresponding to a
fidelity of
Oct — 6
1 — | 2R — 99 95%. (C12)
05 RVB

However, just like the ground-state SRCPD2, the SRCPD2 for the second excited state shows a nonzero double occupancy.

Therefore, we computed the Hubbard model solution for the second excited state at U/t = 2.461:

Yaex = 0.361(= 114 4) + 11441 + A1) = W4 110D + 0.085(= 1, 0,1 ,0) — o1, 0, 1)
+0.153(f o, b, 1) = Tou M D)+ 0.053(= 14 o M) + 11 0 d 1) +0.053(H, o 1) = 11, 0 1)
+0.153(=[1.4.1.0) + L. 1. 14.0) + 0.153(H. ML 0 1) — 11,14 0 ) +0.153(=[ o . A1) + [0 ML)
F0.153(I 1, 0,4, 1) = 14, o, 1) + 0.053(= 14,1, 4 L0) + 11,4, 1,0))
+0.093(=[ o, o, 1. 1) = o .t tho) = [T o, 0, M) = 1.1, 0,0))

= 0.72 s rvB + 0.48 xpo.

(C13)

This eigenfunction predicts a double occupancy on site 1 of 14.52%. The volume of the hump on position 1 indicating double
occupancy in our CI amounts to 15.78%, in good agreement with the Hubbard result.
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