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Two-point momentum correlations of few ultracold
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Spatial and momentum correlations are important in the analysis of the quantum states and different phases
of trapped ultracold atom systems as a function of the strength of interatomic interactions. Identification and
understanding of spin resolved patterns exhibited in two-point correlations, accessible directly by experiments,
are key for uncovering the symmetry and structure of the many-body wave functions of the trapped system. Using
the full configuration interaction method for exact diagonalization of the many-body Hamiltonian of N = 2–4
fermionic atoms trapped in single, double, triple, and quadruple wells, we analyze both two-point momentum
and space correlations, as well as associated noise distributions, for a broad range of interparticle contact
repulsion strengths and interwell separations, unveiling characteristics allowing insights into the transition, via
an intermediate phase, from the noninteracting Bose-Einstein condensate to the weakly interacting quasi-Bose-
Einstein regime, and from the latter to the strong-repulsion Tonks-Girardeau (TG) one. The ab initio numerical
predictions are shown to agree well with the results of a constructed analytical model employing localized
displaced Gaussian functions to represent the N fermions. The two-point momentum correlations are found to
exhibit damped oscillatory diffraction behavior. This diffraction behavior develops fully for atoms trapped in a
single well with strong interatomic repulsion in the TG regime, or for atoms in well-separated multiwell traps.
Additionally, the two-body momentum correlation and noise distributions are found to exhibit “shortsightedness,”
with the main contribution coming from nearest-neighboring particles.
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I. INTRODUCTION

Recent groundbreaking experimental progress in time-of-
flight measurements is providing an abundance of information
for the two-point and higher-order momentum correlations of
one-dimensional (1D) systems with a large number of trapped
bosons [1–12]. Such information reflects directly the nature
of the correlated many-body wave function and can be used
as a tool to probe theoretical models and methodologies; e.g.,
it has been found [11] that 1D boson systems deviate from
the predictions [13] (see also Ref. [14]) of the Bogoliubov
theory [15] in the quasi-Bose-Einstein condensate (QBEC)
regime between the ideal-Bose gas and the strongly correlated
Tonks-Girardeau (TG) regimes.

Motivated by the above developments and the experimental
advances in controlling a few deterministically prepared
fermions [16,17], we present exact configuration-interaction
(CI) results for the two-point momentum, as well as spatial,
correlations of a few ultracold fermionic atoms confined in
quasi-1D single- and multiwell traps. Theoretical investiga-
tions of two-point space correlations for a few fermions (elec-
trons) confined in semiconductor quantum dots abound; for a
small sample of earlier literature, see Refs. [18–20]. Several
studies of two-point space correlations have also been reported
for a few trapped ultracold atoms [21–26], but the correspond-
ing theoretical predictions for the momentum correlations,
which can be directly compared to time-of-flight measure-
ments, are still missing. (Studies of two-point momentum
correlations for bosons in the TG regime are also lacking [11].)
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Based on configuration-interaction (CI) calculations, this
paper provides a complete range of ab initio two-point
momentum-correlation maps (including noise distributions)
for a small number N of ultracold trapped fermions, as a
function of the strength g of the short-range repulsion, the
total spin (S, Sz), and for both the cases of a single-well or
a multiwell trap with different interwell separations. One of
our main findings shows that at the Tonks-Girardeau regime
the momentum correlations exhibit a signature pattern of
damped diffraction (interference) oscillations associated with a
typical distance scale arising from the emergent spatial particle
localization in this regime. Control of the typical diffraction
length is achieved by increasing the interwell separation in
singly occupied multiwell traps, resulting in a larger number
of visible diffraction minima. The diffraction behavior of
two-point momentum correlations was reported early on by
Coulson for the case of the natural H2 molecule, aiming at gain-
ing momentum-space insights into molecular bonding [27]. It
readily lends an interpretation of the Tonks-Girardeau regime
as a special limit in the context of a general unified theory
of Wigner-molecule formation in finite systems with strongly
repulsive interparticle interactions [18,21,22,24,25], in partic-
ular, here, ultracold Wigner molecules (UCWMs) [24,25].

The plan of the paper is as follows: We begin in Sec. II with
a short description of the theoretical methodology developed
and used in this work, including (i) the CI method for
exact diagonalization of the many-body Hamiltonian of N

optically trapped ultracold atoms (Sec. II A), (ii) ab initio
numerical calculations of one- and two-point real-space and
momentum-space correlation, and noise, functions (Sec. II B),
and (iii) analytic modeling of the above-noted correlation
functions, illustrated in detail for the case of two particles
with a discussion of the two-particle interference pattern and
correlation-map derivation (Sec. II C). In Sec. III we display
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and discuss the results of our CI calculations for the following
cases: (A) two fermions in a single quasi-1D well with an
emphasis on the dependence on the interatomic interaction
strength and the Tonks-Girardeau limit, including an illus-
tration of the shortsightedness of the two-body momentum
noise distribution, (B) two fermions in a quasi-1D double
well, and (C) three fermions trapped in quasi-1D single
or triple wells, with an emphasis on spin resolved, versus
spin unresolved, two-point correlation maps. Section IV is
devoted to comparisons between the ab initio CI numerically
calculated two-point spin resolved (and spin unresolved)
correlations in real and momentum space for two, three, and
four ultracold fermionic atoms trapped in double, triple, and
quadruple wells. We summarize our work in Sec. V. In the
appendixes, we give explicit expressions for the analytically
derived two-point correlation functions for two (including also
two-point noise functions), three, and four atoms, as well as
the effective Heisenberg Hamiltonians for three and four well-
localized atoms. We note that, for a small number of repelling
trapped particles (electrons in semiconductor quantum dots
and ultracold fermions or bosons), the mapping of the micro-
scopic many-body Hamiltonian onto spin-chain-type, effective
Heisenberg Hamiltonians has been demonstrated recently and
it constitutes an ongoing active area of research; for electrons
in semiconductor quantum dots see Refs. [19,20], for ultracold
fermions or bosons in quasi-1D traps see Refs. [24,25,28–36].

II. METHODS

A. Many-body Hamiltonian

In this paper we employ the configuration-interaction (CI)
method (referred to also as exact diagonalization method)
to determine the solution of the two-dimensional N -body
fermionic Hamiltonian

HMB =
N∑

i=1

H (i) +
N∑

i=1

N∑
j>i

V (ri ,rj ), (1)

where H (i) represents the single-particle part of the many-
body Hamiltonian and V (ri ,rj ) represents the interaction term,
with ri ≡ (xi,yi) and rj ≡ (xj ,yj ) being the space coordinates
of the ith and j th particle respectively. The single-particle part
H (i) of the Hamiltonian contains the kinetic-energy term and
a single-particle external confining potential; in this paper we
consider double-, triple-, and quadruple-well confinements in
a linear arrangement.

The external confining potential has been extensively
described in [24,25]. The relevant potential parameters for this
paper are the interwell spacing dw, which is indicated in our
figures (obviously, dw = 0 for a single well) and the value of εb

(determining the interwell barrier height) which is taken to be
0.5 throughout the paper. Each of the parabolic confining wells
is characterized by two harmonic frequencies, h̄ωx (along the
long x axis of the well) � h̄ωy (along the y direction), resulting
in a (quasi-one-dimensional) needlelike shape confinement, so
that only the lowest-in-energy single-particle space orbital in
the y direction is populated. In our calculations h̄ω = h̄ωx =
1 kHz, and h̄ωy = 100 kHz (hereafter we drop for convenience
the subscript x). In experimental realizations of quasi-1D

(needle-shape) confinement, a similar strategy is employed,
with a ratio of 10–250 between the transverse and longitudinal
confining frequencies [11,16,17]. The interaction term is given
by

V (ri ,rj ) = g

σ 2π
e−(ri−rj )2/σ 2

. (2)

In this paper we use σ = √
2l0/10 = 0.1833 μm where l0 is

the harmonic oscillator length l2
0 = h̄/(M6Liω) with M6Li =

10 964.90me being the mass of 6Li. The division of l0 in the
expression for σ by a factor of 10 is motivated by the need
to model short-range, contactlike interactions. Any Gaussian
width σ that is much smaller than the harmonic oscillator
length l0 along the x direction is suitable and yields essentially
identical final results.

Common values for g in this paper are given below, in both
atomic units (energy in Rydberg and length in Bohr-radius
units, a0) and in h̄ω l2

0 (often used in describing experimental
setups):

g (units of Ry a2
0 ) g (units of h̄ω l2

0 )

0.0001 0.5486
0.001 5.486
0.01 54.86

B. Configuration-interaction method, correlation
functions, and noise distributions

Details of our CI methodology and the single-particle ex-
ternal confining potential can be found in Refs. [18,22,24,25].
A CI many-body wave function �N

CI has good total spin S

and spin projection Sz quantum numbers and is specified
as a superposition of Slater determinants �N built out of
spin-and-space orbitals ϕi(w) [w → (r,σ )] belonging to a
given single-particle basis set; i.e.,

�N
CI =

∑
J

CJ �N
J . (3)

In expansion (3), we use all the determinants that can be
built out from a basis set of K single-particle spin orbitals.
The number K is allowed to increase stepwise. When the
result converges with respect to the number (K) of the spin
orbitals in the basis, one obtains an exact diagonalization of
the many-body Hamiltonian defined in Eq. (1) [37,38]; the
converged CI is often termed “full CI.”

Given an N -particle wave function �(w1,w2, . . . ,wN ), the
two-point real-space correlation function normalized to unity
is given as

P(w1,w′
1,w2,w′

2) =
∫ ∞

−∞
�†(w′

1,w
′
2,w3, . . . ,wN )

×�(w1,w2,w3, . . . ,wN )dw3 . . . dwN,

(4)

where wi represents the space ri and spin coordinate σi

of particle i. The one-point real-space correlation function
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normalized to unity is obtained as

ρ(w1,w′
1) =

∫ ∞

−∞
�†(w′

1,w2,w3, . . . ,wN )

×�(w1,w2,w3, . . . ,wN )dw2 . . . dwN

=
∫ ∞

−∞
P(w1,w′

1,w2,w2)dw2. (5)

We note that the physically relevant quantities for the
purpose of this paper are the diagonal parts of the correlation
functions. The off-diagonal parts are used as auxiliary quanti-
ties to Fourier transform from real space to momentum space
and vice versa. For the two-body and one-body momentum
correlation functions, the physically relevant diagonal parts
are obtained via the following Fourier transforms:

G(q1,q2) = 1

4π2

∫
e−iq1·(w1−w′

1)e−iq2·(w2−w′
2)

×P(w1,w′
1,w2,w′

2)dw1dw′
1dw2dw′

2, (6)

and

τ (q) = 1

2π

∫ ∞

−∞
e−iq·(w1−w′

1) ρ(w1,w′
1)dw1dw′

1, (7)

where qi represents the momentum ki and spin coordinate σi of
particle i. Once one has obtained the one-point and two-point
correlation functions, the calculations of noise distributions in
real PN and momentum GN space are straightforward:

PN (w1,w2) = P(w1,w1,w2,w2) − ρ(w1,w1)ρ(w2,w2), (8)

and

GN (q1,q2) = G(q1,q2) − τ (q1)τ (q2). (9)

C. Analytic modeling: Two-particle interference pattern
and correlation map derivation

The microscopic numerical CI evaluation of the correlation
functions defined in Sec. II B are complemented by analytical
expressions extracted from a simple model of localized
particles represented by displaced Gaussian orbitals in the
spatial Hilbert space. In this section and the Appendixes,
we display such analytical modeling for two, three, and four
fermions. Here we illustrate in some detail the derivation
of such interference formulas for two particles, allowing a
rather immediate generalization to more complex cases, like
N = 3 and N = 4 particles; the analytical expressions for
the noise function for N = 2 are given in Appendix A, and
the two-point real-space and momentum-space correlation
functions for N = 3 and N = 4 particles, as well as the
corresponding Heisenberg model Hamiltonians, are given in
Appendixes B–D. For simplicity the calculations are done here
in one dimension, with the generalization to higher dimensions
being rather straightforward.

This analytic modeling grasps the main physics of particle
localization in the case of repulsive two-body interaction.
Moreover, it offers immediate insight why the particle local-
ization (induced by the separated wells, as well as by Wigner-
molecule formation in the case of a single well) produces
a characteristic signature of a damped diffraction pattern in
the two-point momentum correlations. In this modeling, we

assume that the spatial part of the j th particle is approximated
by a displaced Gaussian function (each localized at a position
dj ),

ψj (x) = 1

(2π )1/4
√

s
exp

(
− (x − dj )2

4s2

)
, (10)

where s denotes the width of the Gaussian functions.
The single-particle orbital ψj (k) in the momentum

Hilbert space is given by the Fourier transform of ψj (x),
namely ψj (k) = (1/

√
2π )

∫ ∞
−∞ ψj (x) exp(ikx)dx. Perform-

ing this Fourier transform, one finds

ψj (k) = 21/4√s

π1/4
exp(−k2s2) exp(idj k). (11)

Equation (11) explicitly illustrates how the displacement
dj in the real space (associated with particle localization)
generates a plane-wave behavior [the factor exp(idj k)] in the
momentum space. As is calculated explicitly below, in the case
of several localized particles, these plane-wave factors produce
interference diffraction patterns in the two-body momentum
correlations that depend in general on the characteristic mutual
distances 2dij = di − dj between the particles. One of the
main conclusions from the analytic modeling, however, is
that these interference patterns are primarily controlled by the
minimum distance 2d = d1 − d2 between adjacent particles.
Moreover the interference patterns do not extend in the full
range of momenta −∞ < k < ∞, because they are damped
by the damping factor A(k) = exp(−2k2s2) (see below) which
is the square of the exponential in Eq. (11).

As a consequence, the two-point momentum correlation
function (derived from the many-body wave function) fo-
cuses on properties associated with the smallest interparticle
distance in the multiparticle system—that is, it provides
information associated with nearest-neighbor particles. This
shortsightedness suggests that information extracted from
investigations of two-point momentum distributions for finite
(small) numbers of particles (for which reliable many-body
results can be obtained computationally, i.e., using full CI
and exact Hamiltonian diagonalization as described in this
work), could enhance in a significant way the understanding
of properties of larger systems under similar conditions (for
example, similar interparticle interaction strength) for which
reliable many-body solutions are complex and often unknown
(see below).

To compare the spin resolved two-body CI correlations with
those derived from the analytic model, we need to guarantee
that the approximate many-body wave functions of the analytic
model conserved the total spin S and its projection Sz, a
property that is automatically satisfied in the microscopic CI
approach in the absence of energy degeneracies. In the analytic
modeling, we need to construct appropriate total-spin eigen-
functions which obey the branching diagram [20,25,39] of
total-spin multiplicities and other properties described in detail
in Ref. [39]. For localized particles, where (as described above)
the spatial part of the wave function can be approximated by the
displaced Gaussian functions, the complex task of determining
the appropriate total-spin components simplifies because these
can be readily obtained as total-spin eigenfunctions through
the exact eigenvector solutions of an effective Heisenberg
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Hamiltonian [19,20,24,25,28–36]. We stress that we need to
obtain here exact solutions of the Heisenberg Hamiltonian, a
task that is feasible for a small number N of particles. It is
pertinent also to remark explicitly that, for the purpose of this
work, specifically for analyzing the properties of the two-body
correlation functions (particularly in the strongly interacting
highly correlated regime), use of the most familiar mean-field
solutions [40], most often employed for the description of
larger particle systems, will not suffice.

As mentioned earlier, we address in this section the case of
two (N = 2) localized fermions, for which the corresponding
effective Heisenberg Hamiltonian is very simple, i.e.,

H = J S1 · S2 − J

4
, (12)

where S1 and S2 are spin operators and J is the coupling
constant. Using the spin primitives | ↑↓〉 and | ↓↑〉 this
Hamiltonian can be expressed in matrix form as

H = J

(
0 1

2
1
2 0

)
, (13)

with eigenvalues e1,e2 and eigenvectors v1,v2,

e1 = −J/2, (14)

e2 = J/2, (15)

v1 = 1√
2

(| ↑↓〉 − | ↓↑〉), (16)

v2 = 1√
2

(| ↑↓〉 + | ↓↑〉). (17)

Naturally, as mentioned earlier, the above Heisenberg-
model solutions pertain to the spin part of the wave functions.
To include the spatial component of the wave functions we
need to associate each spin primitive (i.e., | ↑↓〉 or | ↑↓〉) with
a determinant of spin orbitals ψjσ (x) (j denotes the j th space
orbital, σ represents the spin). The corresponding determinants
D’s to each primitive are

| ↑↓〉 −→ D↑↓(x1,x2)

= 1√
2!

∣∣∣∣ψ1↑(x1) ψ2↓(x1)
ψ1↑(x2) ψ2↓(x2)

∣∣∣∣
= 1√

2!
[ψ1↑(x1)ψ2↓(x2) − ψ1↑(x2)ψ2↓(x1)], (18)

| ↓↑〉 −→ D↓↑(x1,x2)

= 1√
2!

∣∣∣∣ψ1↓(x1) ψ2↑(x1)
ψ1↓(x2) ψ2↑(x2)

∣∣∣∣
= 1√

2!
[ψ1↓(x1)ψ2↑(x2) − ψ1↓(x2)ψ2↑(x1)]. (19)

We can use the two determinants in Eqs. (18) and (19)
together with the ground-state eigenvector v1 [Eq. (16)] to
form the Heitler-London [41–43] ground-state wave function
�HL(x1,x2) and the associated two-body correlation func-
tion [see Eq. (4)] PHL(x1,x′

1,x2,x′
2), where the boldfaced

x → (x,σ ),

�HL(x1,x2) = 1

N2

1√
2

[D↑↓(x1,x2) − D↓↑(x1,x2)], (20)

PHL(x1,x′
1,x2,x′

2) = �
†
HL(x′

1,x
′
2)�HL(x1,x2), (21)

where the factor 1/N2 normalizes the HL wave function.
Specifically, N2 =

√
1 + S2

12, where S12 is the overlap of the
two (in general nonorthogonal) localized space orbitals; see
Eqs. (10) and (11) in Ref. [43].

We stress here that for the case of more than two particles
the additional particle coordinates need to be integrated out
to arrive at the two-point correlation function, e.g., for three
particles:

P(x1,x′
1,x2,x′

2)

=
∫ ∞

−∞
�†

gs(x
′
1,x

′
2,x3)�gs(x1,x2,x3)dx3; (22)

see Refs. [44,45] for details.
To proceed further with the Fourier transform, we take

the spin orbitals to have a Gaussian-function spatial part [see
Eq. (10)], that is

ψjσ (x) = ψj (x)σ, (23)

where σ denotes the up (↑ or α) or down (↓ or β) spin. As
mentioned earlier, the physically relevant quantities are the
diagonal parts of the two-point correlation function in both
real and momentum space [44,45], i.e.,

PN=2
HL (x1,x2) =PHL(x1,x1,x2,x2), (24)

GN=2
HL

(
qx

1,q
x
2

) = 1

4π2

∫ ∞

−∞
e−iqx

1 ·(x1−x′
1)

∫ ∞

−∞
e−iqx

2 ·(x2−x′
2)

×PHL(x1,x′
1,x2,x′

2)dx1dx′
1dx2dx′

2, (25)

where here the boldfaced qx → (k,σ ) with k being the
momentum along the x direction; the analytic modeling is
performed as a strictly 1D case, unlike the quasi-1D case of
the CI calculations earlier.

−2.0  2.0
−2.0

 2.0
2 particles

FIG. 1. Momentum correlation map for two particles separated
by a distance of 2d = 4.8 μm according to the analytic model in
Sec. II C. This map was obtained by plotting Eq. (26) with k1 on the
horizontal axis and k2 on the vertical axis. s = 0.71 μm.
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FIG. 2. Space (a),(c),(e),(g),(i),(k) and momentum (b),(d),(f),(h),(j),(l) two-point correlation maps for CI states of two 6Li fermions in a
single quasi-1D harmonic trap. The interatomic repulsion strength g in units of h̄ωl2

0 is indicated in the figure. (m),(n), (o),(p), (q),(r), and
(s),(t): spatial and momentum noise distributions corresponding, respectively, to the (c),(d), (e),(f), (g),(h), and (i),(j) correlation maps. Results
are shown for both the ground-state singlet S = 0, Sz = 0 [(a)–(j) and (m)–(t)] and the first-excited triplet S = 1, Sz = 0 (k),(l) state. Features’
amplitudes are given by the color bars on the right of each panel.

In this step it is pertinent to note that integrals over spin
orbitals with different spins vanish. In order to calculate the
spin resolved correlation map, we pick the terms involving
the appropriate spin orbitals. For instance to calculate the
correlation map with down spin for one particle and up spin
for the second particle, we pick the terms involving ↑2↓2

and ↓2↑2 in Eqs. (24) and (25). For the spin unresolved
correlation map, we take all spin terms into account. For two
particles with the Gaussian functions centered at d1 = −d and
d2 = d, we obtain in this way for the spin resolved correlation
map the following expression (we added the superscript
N = 2 to denote the two-particle case illustrated here; see
Appendixes B and C for N = 3 and N = 4):

GN=2
HL (k1↓,k2 ↑) = 4s2e−2s2(k2

1+k2
2) cos2[d(k1 − k2)]

πN 2
2

(26)

which agrees with results found [27] in the chemical literature
for the case of the natural H2 hydrogen molecule. An
illustration of the diffractive pattern along the cross diagonal
embodied in Eq. (26) is portrayed in Fig. 1. Here we wish
to emphasize that the diffractive interference pattern created
by the cos2[d(k1 − k2)] ∝ {1 + cos[(d1 − d2)(k1 − k2)]} term
should be an experimentally detectable signature and it is also
the dominant pattern in our CI calculations (see Sec. III below).
We also emphasize the presence in Eq. (26) of the cutoff
prefactor e−2s2(k2

1+k2
2 ), which dampens the constant-amplitude

oscillatory behavior of the sinusoidal diffraction term. The
expression for the spin unresolved correlation map for two
particles has the same functional form as Eq. (26). This is
a special property of the two opposite spin particles and
for systems with more particles the spin resolved and spin
unresolved expressions are in general different.
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FIG. 3. Comparison of CI-calculated two-body momentum cor-
relation map for (a) two and (b) four particles in a quasi-1D
single well with g = 0.5486h̄ωl2

0 . For both system sizes, we find
similar characteristic sign alternation of the momentum correlations
in adjacent quadrants of the (k1,k2) plane, thus supporting the
shortsightedness of the two-body momentum correlation map. The
appearance of the negative correlations (anticorrelations) indicates
deviations from the Bogoliubov theory.

Similar expressions can be derived for the case of three
and four fermions in a multiwell potential (see Appendixes B
and C), with the localized fermions modeled by displaced
Gaussian functions. A similar diffraction pattern (with an
intrawell interparticle distance 2d = d1 − d2) develops for two
repelling atoms (fermions or bosons) confined in a single well,
in the TG regime (see below). When analyzing the CI results
for G(q1,q2) below, we often make the comparison with those
from the displaced-Gaussians molecular modeling.

III. CONFIGURATION-INTERACTION RESULTS

A. Two fermions in a single quasi-1D well

As mentioned earlier, we consider a short-range interpar-
ticle repulsion with a Gaussian form defined in Eq. (2). In
Fig. 2 we investigate the evolution with increasing repulsion
of the two-point momentum correlations [Figs. 2(b), 2(d) 2(f),
2(h), 2(j), and 2(l)] compared to the corresponding two-point
real-space ones [Figs. 2(a), 2(c) 2(e), 2(g), 2(i), and 2(k)] in the
case of two fermions in a single quasi-1D well. In real space
we calculate the CI function P(w1,w2) = P(w1,w1,w2,w2)
[see Eq. (4)]; in momentum space we calculate G(q1,q2) [see
Eq. (6)]. Because our system is quasi-1D (that is, needlelike
shaped along the x direction due to the strong confinement in

the y direction), it is natural to overlook the variation along the
y direction of the trap and plot the cuts of the previous quan-
tities at y1 = y2 = 0 and k

y

1 = k
y

2 = 0. This yields the plotted
correlation maps for the position (x1, x2) and momentum (k1,
k2) variables along the long x direction of the trap. The main
features in these plots develop along the main diagonal (i.e.,
the line x1 = x2 or k1 = k2, bottom left to top right) or the
cross diagonal (i.e., the line x1 = −x2 or k1 = −k2).

For the noninteracting (g = 0) singlet state, the two-body
spatial-correlation density is azimuthally uniform having a
maximum at x1 = x2 = 0 [see Fig. 2(a)]. This comes from the
fermions with up and down spins occupying the same spatial
1s orbital of the harmonic-oscillator confinement along the x

direction. However, as the strength of the interaction parameter
g increases [Figs. 2(c), 2(e) 2(g), and 2(i)], two peaks along
the cross diagonal develop and gradually move away from
each other. This is reminiscent of the formation of a molecular
dimer (like the natural H2), often referred to as an ultracold
Wigner molecule [24]. For large g = 5.486h̄ωl2

0 , a deep valley
of almost zero values (black color) develops along the diagonal
[Fig. 2(g)]. For very large g = 54.86h̄ωl2

0 , the separation 2d

between the two peaks saturates and the dimer reaches the
Tonks-Girardeau regime [Fig. 2(i)].

This molecule formation is reflected in the evolution of the
two-point momentum correlations which follows the damped
diffraction pattern [Eq. (26)] associated with a Heitler-London
wave function. The diffraction pattern develops along the cross
diagonal and the number of visible diffraction oscillations
depends on the distance 2d and the spreading of the product
of Gaussian functions A(k1)A(k2), with A(k) ∝ exp(−2k2s2)]
being the square of the Fourier transform of the space orbital in
Eq. (23) with dj = 0. Characteristically the maximal values of
the momentum correlation maps form a ridge along the main
diagonal; such behavior is sometimes termed as “bunching”.
For smaller values of g � 0.5486h̄ωl2

0 [Figs. 2(b) and 2(d)],
the separation 2d is not large enough to generate secondary
maxima along the cross diagonal. However, for larger values
of g � 2.194h̄ωl2

0 [Figs. 2(f), 2(h) and 2(j)], the separation 2d

increases, and a one-oscillation (below, as well as above, the
main diagonal) diffraction pattern develops which saturates at
the Tonks-Girardeau limiting regime [the largest value of g
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FIG. 4. Spin-resolved space (a)–(d) and momentum (e)–(h) two-point correlation maps for the CI singlet ground state (with S = 0, Sz = 0)
of two 6Li fermions, in quasi-1D double-well traps, with g = 54.86h̄ωl2

0 . Four different interwell separations dw are considered. Insets in
(e)–(h) display the variation as a function of k1 along the cross-diagonal [the second diffraction peaks are marked by stars in (g),(h)].
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FIG. 5. Spin-resolved space (a)–(d) and (i)–(l) and momentum (e)–(h) and (m)–(p) two-point correlation maps for the CI ground state (with
S = 1/2, Sz = 1/2) of three 6Li fermions in a quasi-1D single-well trap; noninteracting (g = 0) (a)–(h) and strongly repelling (g = 54.86h̄ωl2

0 )
(i)–(p). The labels f ↓�↑ , f ↑�↓ , and f ↑�↑ indicate the spin restriction of the 2D correlation maps. (d),(h) and (l),(p) give spin unresolved
maps.

considered, Fig. 2(j)]. For a single well, saturation of 2d with
increasing g limits the number of oscillations in the diffraction
pattern due to the damping factors, and a larger number of
diffraction oscillations cannot be observed as g → ∞.

For the triplet state, the short-range repulsion has no
influence, and the correlation maps are independent of g. The
g-independent real-space correlation map [Fig. 2(k)] agrees
with that of the singlet UCWM state near the Tonks-Girardeau
limit [large g, Fig. 2(i)], suggesting that the Pauli exclusion
acts in a similar fashion as a contact repulsion with infinite
strength. This is in agreement with the well-known mapping
between the two-fermion singlet and triplet wave functions

referred to as “fermionization,” observed also experimentally
[46]. The corresponding momentum correlation map for the
triplet [Fig. 2(l)], however, is drastically different compared to
that of the singlet state [Fig. 2(j)]. In particular, the momentum
correlation map exhibits a deep trough (colored black) along
the main diagonal instead of a ridge (colored green); such
trough formation is sometimes termed “anti-bunching”. This
trough denotes a vanishing of the probability for finding two
fermions with parallel spins having the same momentum, a
property imposed by the Pauli principle in momentum space.

It is rewarding to note that the analytic modeling yields
result in full agreement with the CI result in Fig. 2(l). Indeed
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−2  2 −2  2
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FIG. 6. Spin-resolved space (a),(b) and momentum (c),(d) two-point correlation maps for the CI ground state (with S = 1/2, Sz = 1/2) of
three 6Li fermions in quasi-1D triple-well traps (g = 54.86h̄ωl2

0 ). Two different interwell separations dw are considered.
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FIG. 7. Comparing the spin resolved correlation map predictions from the analytic model with the CI results calculated for the singlet
ground state (with S = 0, Sz = 0) of two 6Li fermions, interacting with g = 54.86h̄ωl2

0 , in a quasi-1D double-well trap (see Fig. 4). The
interwell distance dw in μm is indicated in the figure panels. The first row gives the two-point spatial correlation maps, and the second row
shows the two-point momentum correlation maps. The first (a),(b) and third (e),(f) columns correspond to the CI results, and the second (c),(d)
and fourth (g),(h) display the analytic results; the insets in (b) and (f) show cuts in the momentum correlation maps along the cross diagonal. In
(i) and (j) we show, respectively, a cut through the cross diagonal in the CI and analytic momentum-correlation maps, calculated for dw = 5 μm
(b),(d), and for dw = 8 μm (f),(h); the analytic results in (i) and (j) (blue curves) were matched at their maximum value to the maximum in
the corresponding CI (red curves) calculated momentum correlation. In the analytic formulas, s = 0.91 μm for both distances dw = 5 μm and
dw = 8 μm.

the two-body momentum correlations for the Heitler-London
triplet, built out of two displaced Gaussian space orbitals
(positioned at d1 = −d and d2 = d), are given by

GN=2
HL,t (k1 ↑ ,k2 ↑) ∝ 4s2e−2s2(k2

1+k2
2 ) sin2[d(k1 − k2)]

π
. (27)

It is apparent that the term sin2[d(k1 − k2)] in Eq. (27)
reproduces the deep trough visible in the CI correlation map
[see Fig. 2(l)] along the main diagonal (k1 = k2).

From the two-point correlation maps, one may extract
the often used [1,11,13] corresponding noise distributions
[Figs. 2(m)–2(t)]; the two-point noise distributions are ob-
tained by subtracting the product of the corresponding one-
point momentum correlations, see Eqs. (8) and (9). These noise
distributions show both positive and negative values, with
the negative ones corresponding to the vanishing probability
troughs in the correlation maps proper. In the case of real-space
plots [Figs. 2(m), 2(o) 2(q), and 2(s)], the noise distributions

again reveal the progressively increasing separation of two
positive peaks (colored green) along the cross diagonal, which
corresponds to the formation of a UCWM. For the momentum
plots [Figs. 2(n), 2(p) 2(r), and 2(t)], it is remarkable that
for the weak repulsion value g = 0.5486h̄ωl2

0 [Fig. 2(n)], our
noise distributions closely resembles the QBEC square-shaped
pattern (+, − , + ,−) measured for a system comprised of
a large number of 1D bosons [11]. For even stronger g’s
[Figs. 2(p), 2(r) and 2(t)], close to the TG regime, our
noise maps display a more complex shape that reflects the
oscillations in the corresponding diffraction pattern of the
two-point momentum correlations, that is two negative areas
(red color) enclosed by three positive areas (green color).

Before presenting our results for multiwell systems, we
illustrate in Fig. 3 the shortsightedness of the two-body
momentum correlations by comparing the two-body momen-
tum noise maps for two [Fig. 3(a)] and four [Fig. 3(b)]
particles confined in a single well, for a repulsion strength
g = 0.5486h̄ωl2

0 [see momentum noise map in Fig. 2(n)];
for additional information about the shortsightedness of the
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FIG. 8. Comparing the spin resolved real-space (top row) and momentum-space (bottom row) correlation-map predictions from the analytic
model with the CI results calculated for the ground state (with S = 1/2, Sz = 1/2) of three 6Li fermions in a quasi-1D triple-well trap with
interaction strength of g = 54.86h̄ωl2

0 (see Fig. 6). The first and third column represent the CI results, the second and fourth the analytic results.
The interwell distances dw (evenly spaced wells) are specified in the panels. In the analytic formulas, s = 0.91 μm for both interwell distances.

momentum correlation function, see text following Eq. (B4) in
Appendix B. Comparison of the noise maps in Fig. 3, reveals
that these show similar characteristic sign alternations por-
traying opposite-momentum correlations and anticorrelations,
as predicted [7] and, more recently, observed experimentally
[11]. As we noted in the Introduction, the appearance of such
characteristics in the two-body momentum noise correlations
is a signature of deviations from the time-honored Bogoli-
ubov theory [7,11], whose treatment necessitates many-body
theories beyond the mean-field approximation. Underlying
the persistent appearance of these characteristics in few
particle quasi-1D systems of variable size (see Fig. 3) is the
aforementioned shortsightedness of the two-body momentum
correlations.

These findings support our suggestion that investigations
of few-body systems could be used to shed light on experi-
mental observations pertaining to certain complex many-body
properties (such as the effect of interparticle interactions of
variable strength on the nature of quantum liquids, including
deviations from the Bogoliubov theory in quasi-1D systems in
the QBEC regime and for stronger repulsive interactions, that
is the TG regime) even when such experiments are carried on
larger systems (see, e.g., Ref. [11]).

B. Two fermions in a quasi-1D double well

To gain further insight into the trends generated through
varying the separation between the two high-probability peaks

−10  10
−10

 10

 0

 0.035

−10  10
−10

 10

−2  2
−2

 2

 0

 0.8

−2  2
−2

 2

−14  14
−14

 14

−2  2
−2

 2

−14  14
−14

 14

−2  2
−2

 2

 0

 0.8

 0

 0.016

3 particles 4 particles

FIG. 9. Comparing the spin unresolved two-body correlation map predictions from the analytic model with the spin unresolved CI results
for the ground state of three 6Li fermions in a quasi-1D triple-well trap, and four 6Li fermions in a quasi-1D quadruple-well trap, with interaction
strength of g = 54.86h̄ωl2

0 . The interwell distance dw (evenly spaced wells) in μm is indicated in the figures. The first and second columns
represent the three-particle results, the third and fourth columns represent the four-particle results. The top row shows the CI results, the bottom
row shows the analytic predictions. For each distance we show both the real-space correlation function (left) and the momentum-space one
(right). In the analytic formulas, s = 0.91 μm for both the cases of three and four 6Li fermions.
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FIG. 10. Illustration of the noise-map calculation [see Eqs. (A5) and (A6)], for two particles in a single well, separated by a distance
2d = 3.4 μm. The noise maps are obtained by subtracting the product of one-body correlation functions for the two particles from the
two-body correlation function. The first row shows the real-space correlation functions and the resulting noise map after subtraction. The
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In the analytic formulas, s = 0.71 μm.

in the real-space two-point correlation maps, we display in
Fig. 4 spatial and momentum correlation maps for the CI
singlet ground state of two 6Li atoms confined in quasi-1D
double-well traps at different interwell separations dw = 2d =
1, 5, 7, and 8 μm. An important observation is that the pair of
maps for the smallest separation dw = 1 μm [see Figs. 4(a) and
4(e)] closely resembles those of the two fermions in a single
well near the Tonks-Girardeau regime [see Figs. 2(i) and 2(j)].
This further supports the interpretation of the Tonks-Girardeau

0.10
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0.30
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0.30

−1.7  1.7 −1.7  1.7

3 particles 4 particles

0.10

FIG. 11. Plot of the interference pattern for the fix down look up
(f ↓�↑ ) spin configuration for three (left) and four (right) particles.
The interparticle distance (evenly spaced particles) is 2d = 4.8 μm.
The plots were obtained by plotting Eqs. (B2) and (B4) divided
by the exponential term e−2s2(k2

1+k2
2 ) and setting k2 = −k1; that is,

these are cuts along the main cross diagonal (top left to bottom right
in Fig. 12). Neither plot shows higher-order oscillations since the
coefficients of the additional cosine terms are getting increasingly
smaller. They therefore modify the main oscillation pattern created
by the cos[2d(k1 − k2)], but do not show additional higher frequency
oscillations. In the analytic formulas, s = 0.71 μm.

regime as a special limit of the more general Wigner-molecule
approach, which extends also to 2D and 3D systems [21].
As the interwell separation increases from 5 [Figs. 4(b) and
4(f)] to 7 μm [Figs. 4(c) and 4(g)] and 8 μm [Figs. 4(d) and
4(h)], an additional diffraction oscillation gradually emerges,
becoming clearly visible for the separation of 8 μm.

C. Three fermions in a quasi-1D single and triple wells

Figure 5 displays the evolution of the spatial and momentum
two-point correlations for the S = 1/2, Sz = 1/2 ground state
of N = 3 6Li atoms in a single-well trap for the noninteracting

− 2.0  2.0
− 2.0

 2.0

− 2.0  2.0
− 2.0

 2.0
3 particles 4 particles

FIG. 12. Spin resolved (f ↓�↑ ) two-body momentum correla-
tion maps for three (left) and four (right) particles at a distance
2d = 4.8 μm. The plots were obtained by plotting Eq. (B2) (left)
and Eq. (B4) (right) with k1 on the x axis and k2 on the y axis. In this
figure further oscillatory patterns beyond the ones shown are damped
by the exponential factors. In the analytic formulas, s = 0.71 μm.

053632-10



TWO-POINT MOMENTUM CORRELATIONS OF FEW . . . PHYSICAL REVIEW A 96, 053632 (2017)

0.45

−1.7  1.7 −1.7  1.7

0.15
0.20

0.40

3 particles 4 particles

FIG. 13. Plot of the interference pattern in the spin unresolved
case for three (left) and four (right) particles. The interparticle
distance (evenly spaced particles) is 2d = 4.8 μm. The plots were
obtained by plotting Eqs. (C2) and (C4) divided by the exponential
term e−2s2(k2

1+k2
2 ). It is remarkable that the plots for three and four

particles are very similar and their difference is only the overall
scaling (

√
3/2) and a constant shift [(6 − 3

√
3)/(6π )]. In the analytic

formulas, s = 0.71 μm.

(g = 0) [Figs. 5(a)–5(h)] and the strongly repelling (g =
54.86h̄ωl2

0) case [Figs. 5(i)–5(p)]. Furthermore, both cases of
spin resolved [Figs. 5(a)–5(c) and 5(e)–5(g) and Figs. 5(i)–5(k)
and 5(m)–5(o)] and with no-spin restriction [Figs. 5(d) and 5(h)
and Figs. 5(l) and 5(p)] are presented. In interpreting these
maps, we can use the spin resolved conditional probability
distribution function defined in Refs. [19,20] and in Eqs. (6)
and (7) of Ref. [24]. First, we invoke the spin resolved
two-point anisotropic correlation function. The spin resolved
two-point anisotropic correlation function is defined as

Pσσf
(r,rf ) = 〈

�N
CI

∣∣∑
i �=j

δ(r − ri)δ(rf − rj )δσσi
δσf σj

∣∣�N
CI

〉
.

(28)

Using a normalization constant N (σ,σf ,rf ) =∫
Pσσf

(r,rf )dr, we further define a related spin resolved
conditional probability distribution (CPD) as

Pσσf
(r,rf ) = Pσσf

(r,rf )/N (σ,σf ,rf ). (29)

The label “f ↓” in “f ↓ � ↑” corresponds to a selected
observation (“fixed,” or “f ”) point, with the arrow denoting
the chosen spin direction at that observation point. For that

−2.0  2.0
−2.0

 2.0

−2.0 2.0
−2.0

 2.0
3 particles 4 particles

FIG. 14. Spin unresolved correlation maps for three (left) and
four (right) particles at a distance 2d = 4.8 μm (evenly spaced
particles). The plots were obtained by plotting Eq. (C2) (left) and
Eq. (C4) (right) with k1 on the x axis and k2 on the y axis. In the
analytic formulas, s = 0.71 μm.

selected observation (fixed) point on the x1 (or k1) axis,
corresponding to particle “1,” we search (“look for,” or “�”)
at all points along the x2 (or k2) axis, corresponding to
particle “2,” with a spin direction ↑, and record in the map
the probabilities of finding particle 2 with the specified spin
direction at these points. Repeating this process for all values
along the x1 axis (that is, all observation points) completes the
interpretation of the label f ↓�↑ in the correlation maps. To
reiterate, the physical meaning of the notation f ↓�↑ , f ↑�↓ ,
f ↑�↑ is based on the fact that a conditional probability can
be extracted from the correlation maps by fixing the indices
of one particle, i.e., spin and position. Indeed the cuts in the
correlation maps defined by x1 = const (k1 = const) portray
the conditional probability of finding a second particle with
predetermined spin at x2 (k2) assuming that the first particle
with given spin is fixed at x1 = const (k1 = const).

To facilitate understanding of the spin resolved maps in
Fig. 5, we mention that for g = 0 the many-body configuration
is 1s21p, i.e., there are two spin-up fermions occupying the 1s

and 1p orbitals and one spin-down fermion occupying again
the 1s orbital. For the strong g = 54.86h̄ωl2

0 , the appropriate
spin function for a linear Wigner molecule of three localized
fermions is [19] (2| ↑↓↑〉 − | ↑↑↓〉 − | ↓↑↑〉)/√6. For the
noninteracting case, our CI calculations give double-peaked
space and momentum correlation maps (f ↓�↑ and f ↑�↓ )
that reflect the presence of the 1p orbital [Figs. 5(a), 5(e) 5(b),
and 5(f)]. Fixing a spin-up and looking for the other spin-up
(f ↑�↑ ) exhibits a valley of vanishing probabilities along the
main diagonal; this is a reflection of the Pauli fermion statistics
in both the space and momentum correlations [Figs. 5(c) and
5(g)]. The spin unresolved correlations [Figs. 5(d) and 5(h)]
can be understood as the sum of the three spin resolved ones.

The UCWM case when g = 54.86h̄ωl2
0 exhibits structures

in real-space maps [Figs. 5(i)–5(l)] associated with the three
localized fermions, i.e., a total of six peaks. For the spin
resolved maps [Figs. 5(i)–5(k)], a pair of peaks is stronger,
as follows from the UCWM spin function listed above (see
the coefficient 2). Unlike the noninteracting case, the valleys
of vanishing probabilities along the main diagonal are present
for all three spin resolved maps [Figs. 5(i)–5(k)]; this is due
to the fact that the three fermions do not overlap because they
are well localized by the strong repulsion. The momentum
maps [Figs. 5(m)–5(p)], however, are not as revealing as
the space maps concerning the particle localization. Indeed,
qualitatively, the main pattern in these maps is similar to
that found for two fermions (see Fig. 2). Namely, there is a
damped diffraction pattern along the cross diagonal exhibiting
an oscillation (below, as well as above, the main diagonal)
with one minimum and one secondary maximum; see pairs of
narrow black troughs in Figs. 5(m), 5(n) and 5(p). This pair of
troughs is less prominent for the f ↑�↑ case [Fig. 5(o)] where
a strong valley of vanishing probability develops along the
main diagonal due to the Pauli exclusion principle. Naturally,
there are still significant quantitative differences between the
maps in Figs. 5(m)–5(p) and the maps in Fig. 2, which could
be explored experimentally.

To explore further the diffraction pattern for three localized
fermions, we display in Fig. 6 spin resolved (f ↓�↑ ) real-
space and momentum maps for three fermions in a triple-well
trap for two different interwell separations dw = 2d = 4 μm
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and dw = 2d = 8 μm in the UCWM case (g = 54.86h̄ωl2
0).

As noted earlier for two fermions, increasing the separation
enhances the prominent features described in Fig. 5 for the
three fermions in a single well. In particular, the patterns for
the real-space correlations are enhanced versions of the pattern
in Fig. 5(i). The momentum correlation map for 2d = 4 μm
[Fig. 6(c)] shows a single diffraction oscillation along the
cross diagonal. However, the momentum correlation map
for 2d = 8 μm [Fig. 6(d)] shows a well-developed second
diffraction oscillation, in agreement with the analytic formula
of the simple model listed in Appendix B.

IV. COMPARISON OF ANALYTICAL PREDICTIONS
WITH CI RESULTS

The success of the analytic modeling is evidenced by
comparing analytical predictions with the ab initio CI nu-
merical results. In Figs. 7–9, we compare the CI-calculated
correlation maps with the correlation maps obtained from the
analytical expressions (see Sec. II C and Appendixes A–C) for
two, three, and four particles in double, triple, and quadruple
well confinements, respectively. The agreement between both
methods is excellent. We note here that the model used
here (localized Gaussian functions with small overlap, and
the Heisenberg Hamiltonian) becomes more complicated for
smaller interwell distances. Interestingly, for the cases that
we have investigated here the analytical expressions that we
have derived from our model predict adequately, at least
qualitatively, the features found through the microscopic CI
calculations.

V. CONCLUSIONS

In this paper we have explored systematically the char-
acteristics of spin resolved spatial and momentum-space
correlations and noise distributions for two, three, and four
ultracold fermionic atoms trapped in single and multiple
wells; see also Appendixes A–C. These investigations aim at
gaining insights into the quantum states of different phases of
ultracold matter and the nature of trapped multiple-ultracold-
atom moleculelike assemblies, and providing fingerprinting
guidance for experiments, particularly ones with a few op-
tically trapped, deterministically prepared and spin resolved,
ultracold fermionic atoms.

Using full configuration-interaction exact-Hamiltonian di-
agonalization, we have evaluated and investigated two-point
spatial and momentum-space correlations and noise distribu-
tions for the entire range of interatomic contact repulsions and
interwell distances, exploring the transition from a noninter-
acting assembly to the quasi-Bose-Einstein condensate and
then to the Tonks-Girardeau regime. A main result emerging
from our numerical simulations using the exact many-body CI
wave functions is a damped oscillatory diffraction behavior
of the two-point momentum correlations and noise distribu-
tions, agreeing with our analytical model results for multiple
ultracold fermionic atoms trapped in single and multiple wells.

Furthermore, the two-body momentum correlation and
noise distributions are found to exhibit shortsightedness,
with the main contribution coming from nearest-neighboring
particles. This suggests that investigations of two-body (and

possibly higher-order) momentum correlations in few-particle
confined systems could be employed in the interpretation of
studies carried on larger particle systems. We illustrated this
approach for quasi-1D few-fermion systems with intermediate
repulsive interactions which yielded two-body momentum
noise correlations exhibiting opposite-momentum correlations
and anticorrelations at small momenta, which closely re-
semble those predicted [7] and measured [11] for a system
comprised of a large number of 1D bosons in the QBEC
regime. These studies address deviations from the celebrated
Bogoliubov theory of quantum liquids. Moreover, a more
complex characteristic pattern is predicted by our calculations
in the Tonks-Girardeau regime. The treatment developed here,
which incorporates the effects of interatomic interactions in the
two-body momentum and spatial correlations, goes beyond
the Hanbury Brown and Twiss interferometry, where the
free-particle statistics brings about bunching (fermions) versus
anti-bunching (bosons) behavior [4,5]; in this context compare
Figs. 2(j) and 2(l) for the two interacting-particles singlet and
triplet states, respectively.
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APPENDIX A: ANALYTIC MODELING: NOISE MAPS FOR
TWO PARTICLES

To illustrate the formation of the patterns seen in the noise
maps, we outline in this appendix the calculation of the noise
distribution for two particles separated by a distance 2d. The
calculation of the two-body correlation function proceeds as
described in Sec. II C, with the one-body correlation function
obtained by applying Eq. (5), or by evaluating directly from the
many-body wave function as described in Ref. [44]. We have
derived the analytic expressions using the algebraic computer
program Mathematica. In general, for the noise maps for N =
2 and for the two-body correlation functions for N > 2, these
expressions are too long and complicated to be reproduced in
print. For simplicity, in this appendix, and in Appendixes B
and C, we present the analytic results for the case of strongly
localized particles when the overlaps Sij between adjacent
space orbitals can be neglected—in this case, N2 ≈ 1.

Having obtained the one- and two-body correlation func-
tions, the noise maps can be obtained by applying Eqs. (8)
and (9). Setting d1 = −d and d2 = d, the needed product
expressions for the one-body correlation function in real and
momentum space are

ρ(x1,x1)ρ(x2,x2) = C(s)
e−(d+x1)2/2s2

(e2dx1/s
2 + 1)

2
√

2πs

× e−(d+x2)2/2s2
(e2dx2/s

2 + 1)

2
√

2πs
(A1)

and

τ (k1,k1)τ (k2,k2) = C(s)
2

π
s2e−2(k2

1+k2
2 )s2

(A2)
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and the expressions for the two-body correlation functions are

PN=2(x1,x2) = C(s)
e−[2d2+2d(x1+x2)+x2

1 +x2
2 ]/2s2

(edx1/s
2 + edx2/s

2
)2

4πs2
, (A3)

GN=2(k1,k2) = C(s)
4s2e−2s2(k2

1+k2
2) cos2[d(k1 − k2)]

π
(A4)

which after subtraction of the one-body terms yield the desired expressions for the noise maps [see Eqs. (8) and (9)],

PN=2
N (x1,x2) = PN=2(x1,x2) − ρ(x1,x1)ρ(x2,x2), (A5)

GN=2
N (k1,k2) = GN=2(x1,x2) − τ (x1,x1)τ (x2,x2). (A6)

C(s) is an overall normalization constant (different at each one of the above formulas) whose precise value can be easily
determined for a given numerical s value. The subtraction process is illustrated in Fig. 10 where we plot the real-space and
-momentum correlation functions and the corresponding noise map obtained after subtraction. The resulting noise maps can be
compared to Figs. 2(q) and 2(r), corresponding to the Wigner molecule case. The remaining differences in shape between the
analytical and the CI noise maps originate from the spatial structure of the Wigner molecule, which is more complicated than
the two separated Gaussian functions used in the analytical modeling. Nonetheless the dominant features are well reproduced.
Note that all features in both the one-body and two-body correlation-function maps are positive, whereas the noise map contains
patterns with opposite signs.

APPENDIX B: ANALYTIC MODELING: SPIN-RESOLVED FORMULAS ( f ↓�↑ ) FOR THREE AND FOUR PARTICLES

Following the derivation illustrated in Sec. II C, we may generalize it to the cases of N = 3 and N = 4 particles; see the
corresponding effective Heisenberg Hamiltonians given in Appendix D. The resulting spin resolved expressions for the two-body
correlations of three and four particles can be rather long, but they can be greatly simplified assuming that the Gaussian functions
are equally spaced and far enough separated so that they have negligible overlap.

Here we present results for the “fixed down look up” (f ↓�↑ ) spin configuration. For three Gaussians centered at d1 = −2d,
d2 = 0, and d3 = 2d we obtain

PN=3
↓↑ (x1,x2) = C(s)

e−[8d2+6d(x1+x2)+x2
1 +x2

2 ]/2s2

36πs2
(−2e3d(x1+x2)/s2+4e2d(d+x1+x2)/s2 + 4ed(2d+3x1+x2)/s2 + ed(5x1+x2)/s2 + ed(2d+x1+3x2)/s2

+ ed(2d+5x1+3x2)/s2 + ed(x1+5x2)/s2 + 4ed(2d+3x1+5x2)/s2 + 4e2d[d+2(x1+x2)]/s2
) (B1)

and

GN=3
↓↑ (k1,k2) = −C(s)

2s2e−2s2(k2
1+k2

2)

9π
(−4 cos[2d(k1 − k2)] + cos[4d(k1 − k2)] − 6). (B2)

For four Gaussians centered at d1 = −3d, d2 = −d, d3 = d, and d4 = 3d we obtain

PN=4
↓↑ (x1,x2) = C(s)

e−(18d2+6dx1−6dx2+x2
1 +x2

2 )/2s2

144πs2
[(

√
3 − 4)(−e2d(2d+x1)/s2

) + (
√

3 + 4)e4d(d+x1)/s2

− (
√

3 − 4)e2d(2d+3x1−2x2)/s2 − (
√

3 − 4)e2d(2d+2x1−3x2)/s2 + 4e3d(x1−x2)/s2 + 4e6d(x1−x2)/s2

+ 4e4d(2d+x1−x2)/s2 + 4e2d(4d+x1−x2)/s2 − 4(
√

3 − 1)e2d(2d+2x1−x2)/s2 − 4(
√

3 − 1)e2d(2d+x1−2x2)/s2

+ 4ed(8d+3x1−3x2)/s2 + 4(
√

3 + 1)ed(4d+5x1−x2)/s2 + 4(
√

3 + 1)ed(4d+x1−5x2)/s2

+ (
√

3 + 4)e2d(2d+3x1−x2)/s2 + (
√

3 + 4)e2d(2d+x1−3x2)/s2 − (
√

3 − 4)e2d(2d−x2)/s2

+ (
√

3 + 4)e4d(d−x2)/s2 + 4] (B3)

and

GN=4
↓↑ (k1,k2) = C(s)

s2e−2s2(k2
1+k2

2 )

9π
[cos[6d(k1 − k2)] − 2(

√
3 − 1) cos[4d(k1 − k2)]

+ (2
√

3 + 3) cos[2d(k1 − k2)] + 12]. (B4)

Further support for the shortsightedness of the two-body momentum correlation is found through considerations of the analytic
expression in Eq. (B4). From that expression, we find that the nearest-neighbor (2d term) contribution is a dominant 72.4% of
the total, compared to 16.4% and 11.2% contributions from the next-nearest-neighbor (4d term) and next-next-nearest-neighbor
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(6d term), respectively. The resulting interference patterns are illustrated in Fig. 11 (neglecting the exponential damping) and in
Fig. 12.

APPENDIX C: ANALYTIC MODELING: SPIN UNRESOLVED FORMULAS FOR THREE AND FOUR PARTICLES

For the following spin unresolved expressions we restricted ourselves to the same simplifications as in the spin resolved case
in the previous section. Namely the Gaussians are equally spaced and far enough apart so that their overlap can be neglected.

For three Gaussians centered at d1 = −2d, d2 = 0, and d3 = 2d, we obtain

PN=3(x1,x2) = C(s)
e−[8d2+6d(x1+x2)+x2

1 +x2
2 ]/2s2

12πs2
(−2e3d(x1+x2)/s2 + e2d(d+x1+x2)/s2 + ed(2d+3x1+x2)/s2 + ed(5x1+x2)/s2 + ed(2d+x1+3x2)/s2

+ ed(2d+5x1+3x2)/s2 + ed(x1+5x2)/s2 + ed(2d+3x1+5x2)/s2 + e2d[d+2(x1+x2)]/s2
) (C1)

and

GN=3(k1,k2) = C(s)
2s2e−2s2(k2

1+k2
2)

3π
{cos[2d(k1 − k2)] − cos[4d(k1 − k2)] + 3}. (C2)

For four Gaussians centered at d1 = −3d, d2 = −d, d3 = d, and d4 = 3d, we obtain

PN=4(x1,x2) = C(s)
e−(18d2+6dx1−6dx2+x2

1 +x2
2 )/2s2

24πs2
[e4d(d+x1)/s2 + e2d(2d+x1)/s2 +

√
3(−e2d(2d+2x1−x2)/s2

)

+
√

3ed(4d+5x1−x2)/s2 −
√

3e2d(2d+x1−2x2)/s2 +
√

3ed(4d+x1−5x2)/s2 + e6d(x1−x2)/s2

+ e4d(2d+x1−x2)/s2 + e2d(4d+x1−x2)/s2 + e2d(2d+3x1−x2)/s2 + e2d(2d+3x1−2x2)/s2 + e2d(2d+x1−3x2)/s2

+ e2d(2d+2x1−3x2)/s2 + e4d(d−x2)/s2 + e2d(2d−x2)/s2 + 1] (C3)

and

GN=4(k1,k2) = C(s)
s2e−2s2(k2

1+k2
2)

3π
(
√

3 cos[2d(k1 − k2)] −
√

3 cos[4d(k1 − k2)] + 6). (C4)

The resulting interference patterns are plotted in Fig. 13 (neglecting the exponential damping) and Fig. 14.

APPENDIX D: EFFECTIVE HEISENBERG HAMILTONIANS AND CORRESPONDING
GROUND-STATE SOLUTIONS FOR THREE AND FOUR PARTICLES

Here we give for the readers’ convenience the effective Heisenberg Hamiltonians for three and four particles and their
corresponding ground-state eigenvectors. We note again that, for a small number of repelling trapped particles (electrons in
semiconductor quantum dots and ultracold fermions or bosons), the mapping of the microscopic many-body Hamiltonian onto
spin-chain-type effective Heisenberg Hamiltonians has been demonstrated recently and it constitutes an ongoing active area of
research; for electrons in semiconductor quantum dots see Refs. [19,20], for ultracold fermions or bosons in quasi-1D traps see
Refs. [24,25,28–36].

The three-particle Heisenberg Hamiltonian in matrix form with spin primitives | ↑↑↓〉,| ↑↓↑〉,| ↓↑↑〉 is given as

H =

⎛
⎜⎝

0 J 0

J −J J

0 J 0

⎞
⎟⎠, (D1)

the corresponding ground-state eigenfunction is

v1 = 1√
6
| ↑↑↓〉 −

√
2

3
| ↑↓↑〉 + 1√

6
| ↓↑↑〉. (D2)

For four particles the Hamiltonian in matrix form with spin primitives | ↑↑↓↓〉,| ↑↓↑↓〉,| ↓↑↑↓〉,| ↑↓↓↑〉,| ↓↑↓↑〉,| ↓↓↑↑〉
is given as

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− J23
4 + J12

2
J23
2 0 0 0 0

J23
2 − J23

4 − J12
2

J12
2

J12
2 0 0

0 J12
2

J23
4 − J12

2 0 J12
2 0

0 J12
2 0 J23

4 − J12
2

J12
2 0

0 0 J12
2

J12
2 − J23

4 − J12
2

J23
2

0 0 0 0 J23
2 − J23

4 + J12
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D3)
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where we have set J34 = J12 due to symmetry (we have equally spaced wells). For well-separated wells, one can further
approximate J12 ≈ J23. Then the corresponding ground-state eigenvector is

v1 = 1√
2 + 2(1 + √

3)2 + 2(2 + √
3)2

(| ↑↑↓↓〉 − (2 +
√

3)| ↑↓↑↓〉 + (1 +
√

3)| ↓↑↑↓〉

+ (1 +
√

3)| ↑↓↓↑〉 − (2 +
√

3)| ↓↑↓↑〉 + | ↓↓↑↑〉). (D4)
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