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Aiming at elucidating similarities and differences between quantum-optics biphoton interference phenomena
and the quantum physics of quasi-one-dimensional double-well optically trapped ultracold neutral bosonic or
fermionic atoms, we show that the analog of the optical biphoton joint-coincidence spectral correlations, studied
with massless noninteracting biphotons emanating from Einstein-Podolsky-Rosen Bell-Bohm single-occupancy
sources, corresponds to a distinct contribution in the total second-order momentum correlations of the massive,
interacting, and time-evolving ultracold atoms. This single-occupancy contribution can be extracted from the
total second-order momentum correlation function measured in time-of-flight experiments, which for the trapped
atomic system contains, in general, a double-occupancy, NOON component. The dynamics of the two-particle
system are modeled by a Hubbard Hamiltonian. The general form of this partial coincidence spectrum is
a cosine-square quantum beating dependent on the difference of the momenta of the two particles, while
the corresponding coincidence probability proper, familiar from its role in describing the Hong-Ou-Mandel
coincidence dip of overlapping photons, results from an integration over the particle momenta. Because the
second-order momentum correlations are mirrored in the time-of-flight spectra in space, our theoretical findings
provide impetus for time-of-flight experimental protocols for emulating with (massive) ultracold atoms venerable
optical interferometries that use two space-time separated and entangled (massless) photons or double-slit optical
sources. The implementation of such developments will facilitate testing of fundamental aspects and enable
applications of quantum physics with trapped massive ultracold atoms, that is, investigations of nonlocality and

violation of Bell inequalities, entanglement, and quantum information science.
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I. INTRODUCTION

The rapid advances in the experimental control of trapped
ions and ultracold neutral atoms in optical lattices (whether
bosonic or fermionic) is opening unprecedented opportunities
for simulating phenomena that allow new vistas into issues of
fundamental value pertaining to the foundation of the quan-
tum description of nature, as well as for studying complex
condensed-matter systems and exploring their many-body
physics. Accordingly, in situ [1-5] and time-of-flight (TOF)
[6-12] experimental techniques and protocols that measure
key quantities such as second- and higher order many-body
correlations of interacting particles in real (space coordinates)
and momentum space, respectively, are being developed. In
addition, the importance of such quantities has been reflected
in a growing number of theoretical studies [13—17] which
have mainly analyzed space correlations. In this sense, it
is notable that two recent theoretical publications [18,19]
have focused, with the use of exact diagonalization and the
Hubbard model, on second-order momentum correlations for
trapped, interacting ultracold atoms beyond earlier studies of
first-order momentum correlations [20,21].
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Simultaneously with the many-body-physics-oriented ex-
perimental endeavors cited above, ultracold bosons in opti-
cal lattices in conjunction with site microscopy have been
employed [22,23] to probe indistinguishability and mode en-
tanglement using quantum-interference aspects in real space
for two separated and noninteracting bosonic atoms. In this
respect, it is pertinent to note here two earlier experimental
publications [6,7] on ultracold atomic gases released from
an optical lattice with a connection to the Hanbury Brown-
Twiss interferometry. Such developments promise to generate
a wealth of technological applications in the fabrication of
quantum devices and for quantum information processing
[24].

A. Quantum optics with massive interacting
double-well-trapped ultracold atom dimer:
Momentum correlations, interference, entanglement,
and Bell inequality testing

The aims of this paper are to elucidate comparisons be-
tween optical biphoton and trapped-dimer-atoms experiments
and to serve as a resource and a guide for the analysis of
current experiments, as well as for the design of future ones.
Toward these goals, we focus on a system made of a pair of
interacting atoms trapped in a double-well optical potential.
Indeed, having control over the trapping potential [that is, the
confining wells’ frequencies along the axis (x) connecting
the two wells and in the transverse directions (y, z), and the
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relative depth of the two wells], distance (D = 2d) between
the wells, the tunneling parameter (J) between the two wells,
and the strength ({/) of the contact interaction between the
trapped ultracold atoms (via the use of the Feshbach resonance
technique) makes this system well suited for comparing,
elucidating, and placing in context the results of specific
measurements employing ultracold (massive and interacting)
atoms by invoking an analogy to the large body of work
done in the past several decades in quantum optics (using
massless noninteracting photons). Furthermore, the double-
well trapped ultracold atom system can serve as a test bed for
assessing concepts and formalisms addressing many-body in-
teracting and highly correlated systems, as well as for testing
fundamental quantum behavior (addressing entanglement and
violation of Bell’s inequalities) with implications for quantum
information and quantum simulations.

In the double-well-trapped interacting-atoms experiment,
one prepares first an eigenstate of the system (modeled
here by the corresponding Fermi- or Bose-Hubbard model
Hamiltonian) or a nonstationary state made of a superpo-
sition of eigenstates; in this work, we restrict ourselves to
a quasi-one-dimensional double-well confinement. There are
two ways for probing the system after preparation: (i) in situ
detection (imaging) of individual particles’ positions, which
may be combined with resolving the particle’s hyperfine
(spin) state, and (ii) release of the optical confinement, with
the resulting time-of-flight measurement allowing determi-
nation of the momentum wave function with single-atom
resolution, as well as the construction of two-body (second-
order) momentum correlation maps. In this paper, we address
mainly the second (ii) measurement protocol.

In making the analogy between the atom-based (matter-
wave) interferometry and the optical one, the two wells (mak-
ing up the double-well) are regarded as the sources [left (L)
and right (R)] from which the particles emanate after the
confinement is relieved (trap release), arriving upon free flight
to the far-field detectors where their momenta are measured.
As we discuss at some length below (see in particular Sec. IV),
the development and detailed characterization of the pho-
ton sources in quantum-optics interferometry measurements
played an important role, with the primary source produced
via spontaneous parametric down conversion generating twin
pairs of spatially separated photons in an entangled (Einstein-
Podolsky-Rosen [EPR]-Bell-Bohm state [25]); nonentangled
photon pairs from independent primary sources have also been
produced [26].

The key difference of the double-well (two-atom) source
from the quantum-optics photon sources described above is
that in general (for an arbitrary value of the interparticle
interaction /), the state of the two trapped atoms contains
a superposition of both singly occupied [with one parti-
cle in each well, EPR-Bell-Bohm state () = (|1, 1) £
[1g, 1 L))/ﬁ] and doubly occupied [with both particles in
one of the wells, NOON (+) = (|2, 0) %+ |0, 2))/+/2] compo-
nents; only for infinitely strong interparticle repulsion does
one obtain a pure single-occupancy two-particle state. The
two-particle momentum correlation function measured in the
TOF experiments gets contributions from all components of
the two-particle wave function of the double-well-trapped
system. In order to make direct contact with the majority of

quantum optics coincidence interferometry measurements
that use single-occupancy (referred to also as twin-pair)
sources, it is imperative that a method be developed for
extraction of the contribution of the single-occupancy com-
ponent (soc) from the total momentum correlation function
determined by the total two-atom wave function. Indeed,
such methodology is developed in this work. In the follow-
ing, the extracted contribution associated with the single-
occupancy wave-function component (the EPR-Bell-Bohm
component) is called the single-occupancy-component par-
tial joint-coincidence probability spectral map, psoc(ki, k2),
where ki, k, are the TOF measured momenta of the two parti-
cles. Integration over the k; and k, momenta yields a scalar
joint-coincidence probability, Piy = [[ psoc(ki, ka)dkidka,
which can be determined by in sifu two-atom double-well
measurements [19,22]; Py, is directly analogous to the joint-
coincidence probability measured in the celebrated Hong-Ou-
Mandel quantum-optics experiment [27].

The methodology developed in this paper, in conjunction
with the incorporation of interaction effects via the Hubbard
model, opens the way for gaining deep insights into the
structure of the many-body wave function and its evolution
as a function of the strength of interatomic interaction (both
repulsive and attractive). Subsequently, it is used here in a
discussion of time evolution when starting from a nonstation-
ary state in the double well, in exploration of entanglement
aspects, and for demonstration of the violation of Bell’s
inequalities with trapped ultracold atoms. A more detailed
plan of the paper is offered in the last subsection of this
introduction.

More precisely, motivated by the potential of time-of-flight
measurements, we develop in this paper a theory of second-
order interference (referred to as fourth order in quantum
optics [28]) in momentum space. This development, relating
the field of quantum optics, employing massless noninteract-
ing photons, to that of the physics of (massive and interact-
ing) ultracold atoms, is indeed most desirable and appears
natural when one realizes the following correspondences: (i)
w/c — k and (ii) cAt — D, where the quantities to the left
of the arrow, w, ¢, and Art, are, respectively, the frequency,
speed of light, and time delay between individual photons,
and those to the right of the arrows are the atom momentum
(k) and the interatomic distance (D, distance between the
optical-lattice microtraps, or optical tweezers trapping sites).
Our approach allows us to explore analogies with biphoton
(nonlocal two-photon) interference [28-30] beyond the ex-
ample of the Hong-Ou-Mandel (HOM) dip [27]. We wish
to clarify at this point that the measurements at the time-
of-flight far-field image are actually performed in space and
that the space coordinates X; and X, for the positions of the
two particles at the far field are related to the single-particle
momenta k; and k; at the source (i.e., the double-well trap) as
X = hkjtrop)/M, j = 1,2 [31], where M is the mass of the
atom and foF is the time of flight [32].

B. Hong-Ou-Mandel and other interference phenomena

In the original HOM experiment [27], two photodetectors
were used to monitor the output modes of a beam splitter on
which two photons impinged. The coincidence count of the
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detectors, P;;, was found to drop to zero (total destructive in-
terference) when the identical input photons overlap perfectly
in both time and space on a 50:50 beam splitter. This is called
the Hong-Ou-Mandel dip, or HOM dip. The HOM dip as a
function of the time delay At between the two photons has a
characteristic shape resembling an inverted Gaussian flanked
by two shoulders, e.g., in the simplest case, P;j(At) x 1 —
exp[—(AT1)*(Aw)?/2], where Aw is the frequency bandwidth
of the downconverted photons [27,28,33].

The HOM dip has been reproduced using two beams
of traveling ultracold He atoms [34], as well as beams of
free electrons [35-38]. The parameter underlying the HOM
coincidence dip is the extent of the overlap of the wave
packets of two atoms in the beams, which is controlled by
the time delay At [or equivalently relative distance D; see
(ii) above] between the atoms. These accomplishments with
free-space particle beams are in the spirit of the original
HOM dip [27,33]. In this context, we note a proposal [39]
to reproduce the HOM dip with two colliding Bose-Einstein
condensates. In the case of trapped noninteracting ultracold
atoms, the demonstrated [22,23] joint-coincidence variation is
due to the tunneling—described by the tunneling parameter J
in the Hubbard Hamiltonian [see Eqs. (1)—(3) in Sec. I B]—
between the two separated wells (near-vanishing wave packet
overlap). The ensuing time evolution generates (as a function
of time ) a sinusoidal pattern for Pj;(¢), resulting from
the combinations exp(i¢) £ exp(—i¢) associated with the
accumulated phase ¢ o Jt/h.

Constructive and destructive interference effects in quan-
tum optics have been shown to occur [40-48] also with-
out mixing of the photon beams (as it takes place on the
beam splitter in the HOM experiments [27,34-38]). In these
nonmixing cases, the association of the resulting sinusoidal
coincidence probability curves is affected by accumulation
of phases, brought about by a variety of experimental tech-
niques that are used to control the optical path lengths, or
with the use of phase-shifting devices. These phase-based
interference phenomena opened further perspectives for fun-
damental quantum physics investigations and applications, in
particular nonlocality, entanglement, and testing of the Bell
inequalities [28-30,40—48] using EPR-Bell-Bohm biphoton
states generated via spontaneous parametric down conver-
sion; the nonlocality mentioned above reflects the separation
of the two photons in these nonmixing interference phe-
nomena. More recently, double-slit biphoton quantum-optics
experiments have been performed [49-52] where, in addi-
tion to the EPR-Bell-Bohm component, a double-occupancy
NOON component is included in the prepared biphoton
state.

Here we demonstrate an extensive correspondence be-
tween the dynamical evolution of two inferacting ultracold
fermionic or bosonic atoms trapped in a double well with
the physics underlying the biphoton nonlocal quantum in-
terference [28-30,51]. We show that this analogy extends
beyond, and carries deeper consequences, than just the pat-
tern of the integrated scalar coincidence probability P (see
Sec. T A above and Sec. IIIC below) associated with the
EPR-Bell-Bohm-state component, to include an analogy be-
tween the underlying frequency interferograms (optical spec-
tral frequency correlation maps over the frequencies (w;, )

of the two massless photons [51,53-55]) and the partial
joint-coincidence probability maps, psoc(ki, k2) (see Sec. [A
above and Sec. IIIC below), for the two trapped massive
atoms.

The psoc(ki, kz) map constitutes a distinct contribution to
the total second-order momentum correlation maps, exhibit-
ing a general form of a cosine-square quantum beat on the
difference of the two momenta with fringes parallel to the
main diagonal of the maps. Furthermore, we demonstrate
that the NOON component of the two-atom wave function
generates another distinct contribution to the total second-
order momentum correlation maps exhibiting a general form
of a sinusoidal quantum beat on the sum of the two par-
ticle momenta with fringes parallel to the antidiagonal of
the maps; this behavior is in agreement with the findings
from recent double-slit biphoton quantum-optics experiments
[49-52].

Our findings will enable experimental extraction of the
massive-particle single-occupancy- and NOON-component
interference contribution terms from time-of-flight measure-
ments which mirror [31] the total second-order momentum
correlations of the trapped ultracold particles. In this context,
we note ongoing efforts in the experimental community to
explicitly measure [12] the total second-order momentum
correlations of two interacting double-well trapped fermions
or to devise protocols based on such correlations for the
characterization of entanglement of two noninteracting distin-
guishable bosons [11].

C. Theoretical methodology

The theoretical model employed in these investigations is
the Hubbard model, formulated and implemented for three
case studies of a double-well-trapped ultracold atom dimer:
(i) two spinless bosons, (ii) two spin-1/2 bosons, and (iii)
two spin-1/2 fermions. The use of the Hubbard model al-
lowed us to employ efficiently and effectively a unifying
theoretical methodology to systems of varied characteristics,
e.g., quantum statistics (bosons, fermions) and spin functions,
and across the entire range of interparticle contact interaction
range (from strong attraction to the high repulsion limit).
Furthermore, along with the numerical results we provide a
wealth of analytical solutions that we expect to aid the design
of future experiments, as well as guide the analysis of current
and forthcoming investigations.

It is pertinent to add here that in past publications
[18,19,56-58] we have employed the Hubbard model in con-
junction with exact diagonalization (EXD) of the microscopic
Hamiltonian, through the use of extensive, large-scale, conver-
gent configuration interaction (CI) calculations. These com-
parative studies have verified that, with proper parametrization
of the Hubbard model Hamiltonian (via use of the microscopic
EXD calculations), the results of the Hubbard model agree
well with those obtained from the ab initio microscopic
EXD calculations, as well as with experimental results, when
available; see, e.g., Refs. [5,19,56].

Beyond uncovering valuable analytical and numerical so-
lutions to complex physical problems, the results obtained in
this work illustrate the outstanding merits of the Hubbard-
model framework used here in enabling and aiding theoretical
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research into fundamental problems, as entanglement and its
dependence on interparticle interactions and on time, as well
as through illustrating the suitability and applicability of the
model to Bell-inequality testing of the nonlocal nature of the
phenomena studied here.

D. Plan of the paper

In light of the broad scope of this paper, as well as the
varied audiences targeted by it (including researchers in the
fields of ultracold atoms, quantum optics, and condensed-
matter physics), we provide here a most detailed plan of
the paper, aiming at facilitating easy navigation through this
rather expansive work. The paper is organized as follows.
In Sec. II, the Hubbard model is briefly reviewed in a com-
pact way applicable to all three cases of a pair of particle
considered here [see (i)-(iii), above]. The Hubbard model
eigenstates are given in analytical forms for all three cases
in Sec. IIC. Section III addresses the topic of particle co-
incidence interferograms and the second-order momentum
correlations. The discussion is divided into the following
subsections: III A, two-particle wave functions in momentum
space; III B, the total second-order momentum correlations;
and III C, the two-particle coincidence interferogram, where
a special role is played in the interpretation of the time-of-
flight experiments by the extracted partial joint-coincidence
probability spectrum psoc(ki, ky) for detecting a pair of par-
ticles in the time-of-flight expansion image (far field), with
the simultneously detected particles being associated with the
single-occupancy-in-each-well component of the total two-
atom wave function. This partial joint-coincidence proba-
bility is of particular significance here, because unlike the
primary photon optics sources used in the biphoton HOM
experiments where the twin pair of photons are generated in
an EPR-Bell-Bohm entangled state (pure, with no double-
occupancy contribution), our source, namely an ultracold
atom dimer trapped in a double well, contains an entangled
double-occupancy [NOON(=)] component. This partial joint
coincidence probability is related to the part of the momentum
total wave function that involves exclusively the symmetrized
or antisymmetrized cross products of both the left and right
single-particle orbitals, respectively. Finally, Sec. IIID con-
tains illustrative special cases, where selected cases are illus-
trated in the context of time-dependent evolution of a prepared
wave packet. Section III C discusses also the complementary
double-occupancy spectral correlation maps, paoro2(ki, k2),
associated with the NOON(£) component of the two-atom
wave function.

Section IV is devoted to a discussion of the similarities and
differences of the double-well-trapped ultracold-atom dimer
with the biphoton used in quantum optics experiments. First,
we discuss in Sec. IV A the double well as a different type
of source producing a larger variety of pairs of entangled
particles, and in Sec. IV B we present a detailed mathematical
analysis of the correspondence between the joint probabilities
in quantum optics and the second-order momentum correla-
tions of two double-well-trapped ultracold atoms [expanding
on the comment we made above in connection to pg.c(k1, k2)].
A connection between the ultracold-atom interference results

and the Hanbury Brown-Twiss interferometry is discussed in
Sec. IVC.

Section V is devoted to a demonstration, using the Hubbard
model, that in the context of two ultracold atoms confined
in a double-well trap, our theoretical extraction of the partial
coincidence probability psoc(ki, kz) from the total joint coin-
cidence probability allows for the use of interacting massive
trapped particles to experimentally test the Bell inequalities,
in close analogy with previous quantum-optics experiments
[46,59-61] that used twin pairs of entangled, but separated,
photons. Entanglement aspects are discussed and illustrated,
again with the use of the Hubbard model, in Secs. VI and
VII. These show analytical and numerical results from in-
vestigations of entanglement properties of the double-well
trapped dimer and the effects of interparticle interaction on the
entanglement characteristics. In Sec. VI, we discuss the von
Neumann entropy for mode entanglement for the Hubbard-
dimer eigenstates (Sec. VIA) and for time-dependent wave
packets made from these states. Entanglement concurrencies
for two particles are displayed in Sec. VII for both the eigen-
states (Sec. VII A) and for wave packets made of these states
(Sec. VII B). We summarize the paper, including a discussion
of recent work on double photoionization of molecular hydro-
gen, in Sec. VIIL

The Appendix contains results pertaining to the diagonal-
ization of the Hubbard-dimer Hamiltonians for the three cases
discussed in this paper.

II. HUBBARD MODEL FOR TWO INTERACTING
PARTICLES IN A DOUBLE WELL

A. Historical introduction and current effort

We begin with a short summary of the history of the
Hubbard model and a summary of our current efforts em-
ploying this model for studies of trapped finite ultracold atom
systems; readers familiar with the Hubbard model may skip
this introductory material.

The Hubbard model, independently conceived in several
papers in 1963 (see an editorial [62] on the occasion of
half a century of the Hubbard model), all aiming at treating
correlated electrons in solids, is one of the most success-
ful quantum mechanical model Hamiltonians in condensed-
matter physics. From a technical point of view, the model
is an extension of the so-called tight-binding model, where
particles can hop (tunnel) between lattice sites; in most ap-
plications only nearest-neighbor sites are included, and all
hopping events have the same kinetic energy, denoted in this
paper as —J instead of the more common notation —¢ (in this
paper, ¢ denotes time). The interaction between particles is
limited in the simplest Hubbard Hamiltonian [63,64] to that
between particles occupying the same site, represented by an
energy U.

Applications of the Hubbard model to ultracold atoms
trapped in optical-lattice potentials have been discussed since
the late 1990s [65-67] and they have been shown to be
a most useful and versatile tool in this field. It should be
noted here that the simplicity of the Hubbard model is rather
deceptive. Indeed, it has been found to be a “mathematically
hard” problem, and an exact solution has been obtained only
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for the one-dimensional case. However, with increasing com-
puter power it is possible to solve more complete Hubbard
models—that is, extended Hubbard Hamiltonians [68] that
may include hopping processes beyond nearest-neighboring
sites, consideration of interparticle intersite interactions (be-
yond the on-site Hubbard U), and multistate Hubbard
models.

Furthermore, the Hubbard model, originally written for
fermions (electrons), has been adapted to treat bosonic sys-
tems [69,70]. Indeed, occasions where experimental find-
ings boosted the popularity of the model include the exper-
imental demonstrations of transitions from a superfluid to a
Mott insulator, found first for an optical lattice of ultracold
bosonic atoms [71] and later for fermionic ones [72]. Ap-
plications of the Bose-Hubbard model to two coupled Bose-
Einstein condensates trapped in a double-well confinement
[73,74] have further contributed to this popularity. Another
surge in the popularity of the model has been marked by
the introduction of an adaptation of the Hubbard model,
the so-called #-J model [57,58,75], as a candidate model
for the emergence of a superconducting state, developed in
the context of searching for a theory of high-7, supercon-
ductivity. From a practical perspective, increasing computer
power and new computational platforms allow the numerical
solution of ever larger and more complex Hubbard model
Hamiltonians.

In the past several years, we have developed and applied
Fermi and Bose Hubbard models for the treatment of finite
ultracold atom systems trapped in optical lattices of variable
size [18,19,56-58]. In these studies, we have treated varied
systems, from Fermi dimers trapped in quasi-one-dimensional
double wells as the elementary building blocks of the Hubbard
model [56], to trapped Fermi dimers and trimers and finite
spin chains [57], and to investigations on eight fermions in
coupled four-site plaquettes as basic units, aiming at emula-
tion and development of effective models for uncovering hole
pairing in high-T, superconductivity [58].

More recently we have formulated and explored the
properties of double-well trapped interacting ultracold atom
systems (fermions or bosons) via investigations of two-
particle (second-order) density matrix and second-order
momentum correlations, exhibiting quantum biparticle in-
terference behavior, thus extending earlier (massless and
noninteracting) biphoton fundamental quantum behavior to
the domain of massive and interacting quantum systems
[18,19].

In all these previous studies, we have performed Hubbard
model calculations in conjunction with exact diagonaliza-
tion (EXD) of the corresponding microscopic Hamiltonian
through large-scale, convergent, configuration-interaction
(CI) calculations. These calculations allowed us to determine
the appropriate Hubbard Hamiltonian parameters via fitting
the Hubbard model results to the corresponding results from
the EXD calculations. In all of these studies, the Hubbard
modeling provided a faithful description of the EXD results.
Particularly relevant to our current paper are our comparative
results for the two-particle density matrix and two-particle
(second-order) momentum correlation maps for bosonic and
fermionic ultracold atoms calculated for the entire range

(repulsive and attractive) of interatomic contact interactions
[18,19].

B. Two-site Hubbard-model Hamiltonians
1. Two spinless bosons

In this case, the two-site Hubbard Hamiltonian has the
following form in second quantization,

2 U 2
Z blbj+ = Y A =1). (1)
j=1 i=1

where b! and b; are bosonic operators and A; = b!b; is the
number operator at each site { = 1,2. J is the tunneling
parameter between the two wells and U is the onsite Hubbard
parameter. U can be either positive (repulsive interaction)
or negative (attractive interaction). Note that in this work,
depending on context, we designate the two wells (sites) as
“1” and “2,” or alternatively as L (left) and R (right).

HE

spinless —

2. Two spin-1/2 bosons

In this case, the two-site Hubbard Hamiltonian has the
following form in second quantization,

2
B pt b
Hspin—1/2 == Z bl o

where BZU and b j,c are bosonic operators and Ni =
> 52.015110’ with o denoting the up (1) or down () spin; N,
is the number operator at each site i including spin.

3. Two spin-1/2 fermions

In this case, the two-site Hubbard Hamiltonian has the
following form in second quantization,

2 2
=1 Y aldie + U Ahal, )
i#j=l0 i=1

Al

where a; , and a;, are fermionic operators and ﬁf
aT Sbio; lf ., 1s the number operator at each site i for a given
spin.

The solutions of the above three Hubbard Hamiltonians are
obtained by diagonalizing the associated matrix Hamiltonians
as described in the Appendix.

C. Hubbard-model eigenstates

Following Refs. [18,19], we assign space orbitals
(Wannier-type single-particle wave functions) to the trapped
particles in the double well. In particular, we assume that
the pair of single-particle v (x) and Yg(x) ground-state
orbitals for each corresponding left or right well are sufficient
for defining the relevant many-body Hilbert space (case of
well-separated wells). Then the two-particle wave functions
(see Hubbard solutions in the Appendix) associated with the
corresponding two-site Hubbard model can be summarized
in a compact way for all three cases examined here, namely,
(i) two spinless bosons, (ii) two spin-1/2 bosons, and (iii) two
spin-1/2 fermions.
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For all three cases of the Hubbard dimer considered here,
the two-particle Hubbard eigenfunctions are written as a prod-
uct of a space part W(x;, x2) and a spin part x (S, S;), where S
is the total spin and S is its projection. For spinless particles,
obviously one has x (S, S;) = 1. For two spin-1/2 particles,
one has two spin eigenfunctions with spin projection S, = 0,

V2x(0,0) = a(HB(2) — B(Ha(2), “4)

a spin singlet state, which is antisymmetric under an exchange
of particle indices, and

V2x(1,0) = a(1)B2) + B(1)a(2), ®)

a spin triplet state, which is symmetric under an exchange
of particle indices. Similarly, for all three cases, the space
part is a superposition of either symmetric or antisymmetric
combinations of the L, R space orbitals. For the symmetric
combinations, one has three possibilities:

V2n, g (x1, x2) = YL (0)VR() + YrDYL(x),  (6)
V21 @ (x1, x2) = Y (x)YL () — Yr(xDYR(), (7)

or

V21, @g3(x1, x2) = YL (x)YL(0) + Yr(x)VR(R).  (8)

For the antisymmetric combination, there is a single
possibility:

V2n_® 4 (x1, x2) = Yr(x)YR() — YrO)YL().  (9)

The above [Egs. (6)-(9)] applies for cases where the over-
lap S = f Y (x)Yg(x)dx is small. In such cases, ni =1x
S?~ 1.

Taking into account that the total wave functions ¢’s are
symmetric (antisymmetric) for bosons (fermions) under inter-
change of particle indices, one has the following:

(1) for two spinless bosons (that is, two bosonic atoms with
the same hyperfine state),

@3 = Eg3(x1, x2);
(10)

o1 = Bs1(x1,x2), @2 = Bs2(xy, x2),

(ii) for two spin-1/2 bosons (that is two bosonic atoms in a
pair of hyperfine states),

@1 = Es1(x1, x2)x(1,0), ¢ = Es(xi, x2)x(1,0),

@3 = Ega(x1, x2)x(1,0), @4 = Exlx1,x2)x(0,0); (11)
(iii) for two spin-1/2 fermions,

@1 = Bs1(x1,x2)x(0,0), ¢ = Ega(x1, x2)x(0, 0),

@3 = Bs3(x1,x2)x(0,0),  @a = Ealxr, x2)x(1,0), (12)
where

Esi(x1, x2) = AU D1 (x1, x2) + BU)Ds3(x1, x2),

Esa(x1, x2) = Psa(xy, x2),

Es3(x1, x2) = DU)Ps1(x1, x2) + EU)Ps3(x1, X2),

Bax1, x2) = Palxy, x2),

(13)

E (units of J) O

10f Doy
L 902
Ps1 _#3 10 By
CDA -10 P4 01 U q)Sl
Dso 10f
Ps3

FIG. 1. The Hubbard-dimer energy levels for all three cases of
(i) spinless bosons, (ii) spin-1/2 bosons, and (iii) spin-1/2 fermions
given by Eq. (15). See text for an explanation of the symbols ¢’s
denoting the four Hubbard stationary wave functions, as well as their
limiting ® forms atf — Fo0.

and the coefficients A, 13, D, and £ are given by

U+VU>+16

VIV A UVIE F 16+ 16
4 (14)

VIV A UVIE F 16+ 16

DU) = -A-U), EU) = B(-U),
andU = U/J,where U and J are the Hubbard parameters for

onsite interaction and intersite tunneling, respectively.

The Hubbard eigenenergies corresponding to these eigen-

functions are independent of the bosonic or fermionic nature
of the two particles. They are given by

J
E, = E(L[ —VU*+16), E,=JU=U,

J
E3=§at+vu%+mx E4s=0.

These energies are plotted in Fig. 1. For spinless bosons,
the total antisymmetric wave function ¢4 = &, and corre-
sponding energy E4 are apparently missing.

AU) =

BU) =

15)

III. PARTICLE COINCIDENCE INTERFEROGRAM AND
TOTAL SECOND-ORDER MOMENTUM CORRELATIONS

A. Two-particle wave functions in momentum space

The space orbital of a particle trapped within the jth
well can be approximated by a displaced Gaussian function
[localized about the position x = d;, j = 1, 2 or, equivalently
L (left) or R (right) in our one-dimensional trap], given by

| (x —d;)?
—(27[)]/4\/3 eXP (_ 4S2 )7 (16)

where s denotes the width of the Gaussian function. The
single-particle orbital v/;(k) in the momentum Hilbert space
is given by the Fourier transform of ¥;(x), namely v;(k) =

(1//271) ffooo Yj(x)exp(ikx)dx. Performing this Fourier

Yi(x) =
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transform, one finds

2/
vik) = Y

exp(—k?s?)exp(idk). (17)

Below we will also use the notation L (left) and R (right) to
denote the j = 1, j = 2 wells, respectively.

The Fourier transformed quantities ®g;(ki, k) and
4 (ky, ky) preserve the same symmetry under particle ex-
change [see Egs. (6)—(9) for the coordinate-space orbitals]
and are easily obtained by replacing v;(x;) by ¥;(k;) [see
Eq. (17)]. Taking for simplicity the position of the left (right)
well to be at d; = —d (d, = d), this yields

2 2
O, (ki ky) = T;e—'* KD cosld(ky — ka)],  (18)

2
Dy (ki ky) = —"TS;fSZ("‘Z*"%’ sin[d(k; + ko)1, (19)

2 2
D3k k) = J—;e—s WK+ cosd(ky + k)], (20)

and

Sathr. ko) = —i e P sinld e~ k)l 2D

The total spin-space wave function is symmetric for bosons
and antisymmetric for fermions. In addition, for N = 2 mas-
sive particles and for eigenstates and wave packets that con-
serve the total spin, the spin and space degrees of freedom
separate; i.e., in all cases, the total wave function is a product
of a pure spin eigenfunction and a pure space component. As
a result, the corresponding momentum part of the total many-
body wave function, in the general case of a nonstationary
superposition of the Hubbard-dimer eigenstates (referred to
also as wave packets below) that also conserves the total spin,
can be written as follows:

(A) a symmetric superposition of the form

3
W(ki, ky) = Zci(uat)q)Si(kl»kZ) (22)

i=1

for the following three cases: (A1) two spinless bosons, (A2)
two spin-1/2 bosons in the triplet spin state, and (A3) for
two spin-1/2 fermions in the singlet spin state. Note the time
argument, 7, in the above equation; for examples of C; (U, 1),
see Sec. [II D; and

(B) a single term

Wy ki, ko) = Dalky, k) (23)

in the following cases: (B1) two spin-1/2 bosons in the singlet
spin state, or (B2) two spin-1/2 fermions in the friplet spin
state.

These results hold for both the ground and excited station-
ary eigenstates, as well as for the time-evolving wave packets
of the two-site Hubbard model. The coefficients C; (U, t)’s
admit analytic dependence on the Hubbard parameter U/ for
eigenstates and on both the interaction parameter I/ and time
t for wave packets; explicit examples will be discussed below.
For eigenstates, these coefficients are real numbers, but they
are complex numbers for time-evolving wave packets.

B. The total second-order momentum correlations

Generally, the second-order (two-particle) space den-
sity p(x1, x{, x2, x5) for an N-particle system, is de-
fined as an integral over the product of the many-body
wave function W(xy, x5, ..., xy) and its complex conjugate
W*(x}, x5, ..., xy), taken over the coordinates xs,...,xy
of N —2 particles. To obtain the second-order space cor-
relation function, G(x;, x2), one sets x| = x; and x; = x,.
The second-order momentum correlation function G(ky, k») is
obtained via a Fourier transform (from real space to momen-
tum space) of the two-particle space density p(xy, X1, X2, X5)
[18,19]. In the case of N = 2, the above general definition
reduces to a simple expression for the two-particle correlation
functions, as the modulus square of the two-particle wave
function itself; this applies in both cases whether the two-
particle wave function is written in space or in momentum
coordinates. Consequently, the total second-order momentum
correlations for the above-noted (A1)—(A3) cases [wave func-
tion with space part symmetric under particle exchange, see
Eq. (22)] is given by

Gs(k, ky) = [Ws(ky, ko)I?
= (4s%/m)e 2 WD (3¢ cos?[d (k) — k)]
+ C3Ca sin*[d(ky + k2)]+C5C3 cos?[d (ki + k»)]
+ Re(—iCCy)[sin(2dk, ) + sin(2dky)]
+ Re(C{Cs)[cos(2dk;) + cos(2dk,)]
+ Re(iC3C3) sin[2d (k; + k2))). (24)

The total second-order momentum correlations for the
above (B1) and (B2) cases (wave function with a space part
that is antisymmetric under particle exchange) are

Galki, ko) = |Walky, ko)
= (452 /m)e 2 ®HR) 6in2[d(ky — ky)]. (25)

The specific cases of Gg(ky, ky) or G4(ky, ky) for the four
Hubbard eigenstates of two interacting spin-1/2 ultracold
fermions were investigated in a recent publication [19]; see
Egs. (5) and (6) therein. To facilitate the comparison for
the three spin-singlet states in this case of two fermions, we
note that C; = 0 for the ground and third excited states, and
Cy = C3 = 0 for the second excited state. We further remind
the reader about the trigonometric identity cos?(x) = [1 +
cos(2x)]/2.

C. The two-particle coincidence interferogram

The partial joint-coincidence probability spectrum
Dsoc(k1, kp) for detecting a pair of particles in the time-of-
flight expansion image (far field) with the double-well-trapped
particles belonging to the single-occupancy component of the
two-atom wave function, that is, with each of the particles
originating from a different well (single occupancy at each
one of the two wells) is related (see also Ref. [76]) to the
part of the momentum total wave function that involves
exclusively the symmetrized

D1 (ki ko) = Y k)Yrky) + Yr(k)YL (ko) (26)
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or antisymmetrized

D4 (ki, k2) = (k) Yr(ka) — Yr(k)YL(k2) 27)
cross products of both the left (indexed by a subscript L)
and right (indexed by a subscript R) single-particle orbitals,
respectively. As noted above, below we will use the subscript
“soc” (single-occupancy component) to label this partial co-
incidence probability at the far field.

Taking into consideration the above and the expressions in
Eqgs. (18) and (21) [for ®g(ky, k) and P 4(ky, k7), respec-
tively], the partial joint-coincidence probability spectrum, for
detecting a pair of particles in the time-of-flight expansion
image (far-field) with the double-well trapped particles be-
longing to the single-occupancy component of the two-atom
wave function, is given by

P ki, ko) = CiCi s (ky, ko)

4 2
= CT61%6_2S2("“"5) cos?[d(ky — k)], (28)

for the (A1)—(A3) cases [wave function with momentum (or
space) part symmetric under particle exchange, see Eq. (22)],
and by

pa (ki ko) = | alky, ko)

4s° —252(K24-k2) ;2
= —e Nt 5in[d (k) — k)], 29)
T

for the (B1) and (B2) cases [wave function with a momentum
(or space) part that is antisymmetric under particle exchange].

Likewise, the complementary double-occupancy probabil-
ity spectrum, pfo o2 (k1. k2), or pg‘o 02 (k1, kp), for detecting
a pair of particles in the time-of-flight expansion image with
both particles originating from the same well (whether the left
or right one) is related to the part of the momentum total wave
function that involves exclusively the product of left-left and
right-right orbitals, namely

P§o+02(kl’ ky)
= C3Co|Psa(ky, ko) |* + C3C3|Ps3 k1, ko))
+ C3C3 D, (ki ko) Ps3(k1, k2)
+ GG P (ky, ky) g5 (ki k2)

IRE
= 2D (30, cos [d (ky + ka)]
b

+ C;Cssin’[d(ky + k2)] + Re(iC;C5) sin[2d (ki + k2)]),

(30)

for the cases with a symmetric space (or momentum) part, and

Pioror(ki k2) =0 31

for the cases with an antisymmetric space (or momentum)
part.

Furthermore, the in situ (integrated) joint single-occupancy

probability, Pjj, and the in sifu (integrated) joint double-

occupancy probability, P42, associated with destructive and

constructive interference, respectively, are obtained by an
integration over the momenta k; and k,. One gets

P1S1 =1- P2S0+02 = // Pssoc(klv ka)dkdk,

=CiU, nNCiU, 1) (32)

for the cases with a symmetric space (or momentum) part, and
Pi=1 (33)

for the cases with an antisymmetric space (or momentum)
part.

D. Illustrative specific cases

One can generate a variety of time-evolving two-particle
wave packets by considering an initial superposition of all
four eigenstates ¢;, i = 1,...,4 of the Hubbard dimer [see
Egs. (10)-(12)]. As an illustrative example, we will consider
in this section an initial state that is a superposition of the
lowest and highest in energy pair of eigenstates ¢, and @3,
ie.,

—iEt/h —iEst/h

+ y@ese
V1+9y2 '

where y is a mixing parameter that can take both positive
and negative values. In the noninteracting case (U = 0), the
initial (at # = 0) wave function in Eq. (34) describes a single
particle in each well, i.e., an EPR-Bell-Bohm state, when the
mixing parameter takes the value y = —1. In the interacting
case (U # 0), the initial wave function in Eq. (34) is not
in general a pure EPR-Bell-Bohm state, but a mixed one
comprising a NOON component as well; see below the case
with constant y = 1/2 and independent variable /. However,
the initial wave function in Eq. (34) can be forced to be a
pure EPR-Bell-Bohm state if the mixing parameter is chosen
to depend on U as in Eq. (38) below. Both of these two
initial-state cases are investigated below.

The two eigenstates ¢; and @3 have the same spin function
x(S, S;), which factorizes. Thus, for investigating Q(z), we
can focus only on the time evolution of its space part, which
has the form of Eq. (22) with the following specific coeffi-
cients:

CU, t) = [AU)e BT+ y DU B M/ y? + 1,
U, 1) =0, (35)
CU. 1) = [BUe 1 yeWe My + 1.

For the wave packet specified by the coefficients in
Eq. (35), the left-right joint-coincidence interferogram is
given by

Q) = &

(34)

45262 (+K) cos?[d (k) — k)]

pa (ki ko) =

T
y 1+ (1=y>U =8y cos(t JNU2+16/h)
2 2(1 + y2)VUZ ¥ 16 '

(36)

Following the discussion in the previous section, summa-
tion over the momenta k; and k, yields the integrated joint-
coincidence probability

s 1 N (1 — y2U — 8y cos(tJVU* + 16/h)

- 37
2(1 + y2)WIUE £ 16 G7

11 2
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t=0, U=-3

=0, =0

t=1,U=0 t=1,U=-3

0.14

t=0,U=3

t=1,U4=15

t=1,U=3

t=0,U=-15

t=0,U=15

0.14

FIG. 2. Total momentum correlation Gg(k;, k,) maps [top panels with blue background denoted as (a), (b), (d), (e), and (j)—(0)] and
left-right joint-coincidence interferograms pssoc(kl, k») [bottom panels with brown background denoted as (f), (g), (h), (i), and (p)—(u)] for
the space-symmetric two-particle wave packet defined in Egs. (34) and (35) for y = 1/2 and for two different times t =Oandr =1 %/J at
five different values of the Hubbard interaction parameter I = 0, £3, 15. (c) Integrated coincidence probability P as a function of U for
two values of time t = 0 and t = 1 //J. Here and in all figures (unless explicitly stated otherwise): interwell distance 2d = 2 um and width
s = 0.25 um. Momenta k; and k; in units of 1/um. Gs(ky, k;) and pS _(k;, k;) in units of wm?. See text for details.

We note that this wave packet allows for the occurrence of
total destructive interference. Indeed, from Eq. (37), one sees
that Py = O whent =0and U = 2(y* — 1)/y.

Case of Q(t) with constant y = 1/2 and variable U (initial
state contains both EPR-Bell-Bohm and NOON components).
In this case, Eq. (37) yields a vanishing integrated joint-
coincidence probability, PIS1 =0, fort =0andf = —3. This
vanishing value is indicated by a star in the full curve of P}
[specified by Eq. (37)] when plotted as a function of &/ while
t is kept constant at ¢ = 0; see Fig. 2(c). The corresponding
curve for setting t = 1 i/J in Eq. (37) is also displayed for
comparison in the same frame [Fig. 2(c)]. Unlike the r = 0
curve, the + = 1 curve does not reach a vanishing value at any
point U/; in addition, it exhibits an oscillatory behavior with
varying U, in contrast to the + = O curve.

For a 2d =2 pm interwell separation and a Wannier
space-orbital width s = 0.25 pum, total second-order momen-
tum correlation maps Gg(kj, kz) [top row, blue background
frames) are displayed in Figs. 2(a), 2(b) 2(d), 2(e),and 2(j)—
2(o) along with the corresponding joint-coincidence spectral
maps pSSOC(k1, ky) [bottom row, brown background frames]
in Figs. 2(f), 2(g) 2(h), 2(i), and 2(p)-2(u) for the pairs of
(t,U) values indicated by black stars on the two PIS1 curves
displayed in Fig. 2(c). The topology of the patterns in the
Gs(ky, ky) maps illustrate the fact that the total seconnd-
order momentum maps result from the interference of sev-

eral components that vary sinusoidally as a function of the
single momenta k; and k,, as well as their sum k; + k, and
difference ki — ky [see Eq. (24)]. As a result, this topology
varies significantly between different pairs (¢, {/) of time and
interaction-strength values. We note that in all subsequent
figures (unless explicitly stated otherwise), we will use the
same interwell distance 2d = 2 um and width s = 0.25 pum,
when such parameters are relevant.

In contrast, the topology of the pgoc(ki, k) maps remains
unchanged, exhibiting a number of fringes parallel to the
main diagonal. This reflects the fact that only one sinusoidal
component dependent on the difference of the momenta
ki — k, contributes [see Eq. (28)] to the joint-coincidence
correlation spectrum. The number and amplitude (visibility)
of these fringes depend on the value of PIS1 [see Eq. (32)];
naturally for the special values (t = 0,/ = —3) (where Plsl =
0), no fringe structure is present [see Fig. 2(f)]. We note
that the uniformity of the topology of fringes, as well as the
dependencies on the difference of the single-photon momenta
ki — k, (or frequencies w; — w,) and on the magnitude of
the integrated joint coincidence P are also characteristic
properties of the optical spectral correlation maps; see, e.g.,
Fig. 3 in Ref. [53] and Fig. 1 in Ref. [54].

From Eq. (37), it is seen that the integrated joint-
coincidence probability P}’ is independent of the interwell
separation 2d; this is a consequence of the large interwell
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t=1,U4=0
2d=3
0.4
0
0.08
0

FIG. 3. Second-order total momentum correlation maps
[Gs(ky, ky), upper row, blue panels] and corresponding
joint-coincidence spectral maps [p3 (ki, k), lower row, brown
panels] for the space-symmetric two-particle wave packet defined
in Eqs. (34) and (35) and for y = 1/2. Three different interwell
separations, [(a), (d)] 2d = 2 pum, [(b), (¢)] 2d = 3 um, and [(c), ()]
2d = 4 pm, are considered. Note that the number of visible fringes
increases with increasing 2d. Remaining parameters ¢t =1 7i/J
and U/ = 0. Momenta k; and k, in units of 1/um. Gs(ky, kp) and
pS (ki k) in units of um?.

separation [d >> s, where s is the Gaussian-width parameter
in Eq. (16)], which yields an exponentially small overlap be-
tween the space orbitals of the two trapped particles. Because
the interwell separation in our two-particle case corresponds
to the time delay At between the two photons that impinge
on a beam splitter in a HOM-like experimental arrangement
(see also the electronic HOM [35-37] and Ref. [34]), it is
apparent that our maps correspond to points on the shoulders
of the HOM dip when compared to the spectral maps in
Refs. [53,54]. Nevertheless, a dependence on the interwell
separation is evidenced by the py.c(ki, ko) spectral maps
themselves, because the distance between fringes equals 1/d
[see the argument of the cosine term in Eq. (28)]. Thus, a
larger interwell separation yields a larger number of fringes
within the visible window allowed by the damping factor
exp[—2s%(k} + k3)]; this behavior is illustrated in Fig. 3. To
further stress the analogy with biphoton quantum optics, we
note that a similar behavior is also present in the recently mea-
sured instances of optical joint-coincidence intensity spectra
(see Fig. 3 in Ref. [53] and Fig. 1 in Ref. [54]).

Figure 4 (left column) displays a complementary aspect of
the joint-coincidence probability Plsl, that is, the behavior of
the right-hand side of Eq. (37) as a function of time ¢ for
constant / and y = 1/2; the four frames correspond (from
top to bottom) to four different values &/ = —3, 0, 3, and
15. In all instances, this time evolution is oscillatory and
the period of oscillations 7 decreases with increasing |U/|.
Indeed, from the argument of the cosine term in Eq. (37),
one has T = 27 h/(J~/U?* + 16); in addition, the amplitude
of the oscillations decreases with increasing |U/|. For U =
—3, the minima of the oscillations reach vanishing values.

t=0, U=-3

t=1/4,U=3
0.14

0
0.08

/G
0

t=0,U=0 t=T/4,U4=0

u=0 1Py
t
-6 0 6
t=0,U=3 t=T/4,U=3
U=3 Pf’] 0.14
1 / “
| 0
-6 0
S
U=15 1 P11
-6 0

FIG. 4. Total momentum correlation Gs(k;, k) maps (top pan-
els, blue background) and left-right joint-coincidence interfero-
grams pgo.(ky, k2) (bottom panels, brown background) for the space-
symmetric wave packet defined in Egs. (34) and (35) for y =1/2
and for two different times + = 0 and t = /4 h/J at four different
values of the Hubbard parameter U/ = —3, 0, 3, 15 (from top to bot-
tom). The frames on the left display the integrated joint-coincidence
probability PJ as a function of time ¢ for these four values of I.
Momenta k; and k, in units of 1/um. Gs(ky, ky) and pS (k;, k;) in
units of um?. See text for details.

However, as mentioned previously, this vanishing of P} does
not correspond to the minimum value of an HOM dip because
the overlap of the space orbitals of the two trapped atoms
remains exponentially small (d > s).

For completeness, we present on the right side of Fig. 4 the
underlying joint-coincidence spectral decomposition maps at
pair of points (¢, /) marked by a black star on each of the four
P} curves. The corresponding total second-order momentum
correlation maps are also displayed for comparison. It is
rewarding to observe that these maps offer further confirma-
tion of the properties discussed in connection to Fig. 2, in
particular, the invariability of the topology of the fringes in the
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pfoc(kl, ky) interferograms (frames with brown background)
and the dependence of the fringe intensity on the value of the
integrated P;).

The oscillatory behavior of the joint-coincidence probabil-
ity P exhibited in Figs. 2 and 4 is analogous to that found
in many experiments [41-48] of quantum optics employing
time-delayed or distance-separated photons in biphoton-state
configurations [29,30], which confirmed important aspects of
quantal entanglement and quantum nonlocality.

Initial wave packet Q2(t = 0) with one particle in each well
for any value of U. In general, as mentioned previously, the
initial wave packet in Eq. (34) does not describe a state with
one particle in each well. For this to happen, one must have
Cs(U,0) = BU) + yEWU) = 0 [see Eq. (35)], which yields a
U-dependent y, i.e.,

yU) = Z—ll(u —VU?* +16). (38)

In this case, Egs. (36) and (37) yield the following two
expressions:

4522 (KHK) cos?[d(ky — k)]
T

16
x [1—
Uu*+16

pa (ki ka) =

2h

2 (m/u2 + 16)j|

(39)

and

Pl=1-

16 ., [tIVU>+16
sin” | —————].  (40)
U416 2h

From an inspection of Eq. (40), it is seen that the integrated
joint-coincidence probability now reaches a vanishing value
only for the noninteracting case (({ = 0). This defines a
variant behavior compared to that discussed in the previous
paragraph when y = 1/2 and was taken to be independent of
the controlling parameter .

Figure 5 displays the time-oscillatory behavior as a func-
tion of U of the integrated joint-coincidence Pls1 specified
by Eq. (40) at four characteristic time values t = jn /4 h/J,
j=1,2,34 Fort =n/4h/Jandt =37/4 hi/J], P (U =
0) equals zero, while for t =x/2 h/J and t =7 §h/J,
P} (U = 0) equals unity. In both cases, however, P} exhibits
an oscillatory behavior with diminishing amplitude and it
approaches unity rather rapidly for &/ — =o0. The period T
of the oscillations in U/ decreases with increasing ¢ values

according to Up = +/ 4n%/(tJ)?> — 16. We note that similar

“quantum-beating” patterns with variable amplitude, distinct
from the HOM dip, have been reported (as early as 1988)
in many experimental (see, e.g., Refs. [29,30,41,48]) and
theoretical [76] studies concerning biphoton interference.

For completeness, Fig. 5 displays also total second-order
momentum Gg(ky, k) correlation maps and corresponding
p3 .(ki, ky) joint-coincidence spectral maps at the values
marked by a black star on the PJ curves. Again, in contrast to
the Gs(k1, k) maps (blue background), one notices the invari-
ability of the topology of the fringe pattern in the p3 (ki, k)
maps (brown background). Apparently, in the case of the

t="7/4

t=7/2

2004 - | 20/

FIG. 5. Integrated joint-coincidence probability curves PJ [see
Eq. (40)] as a function of U for four characteristic values of time,
(@ t=mn/4 h/J, b) t =7/2 Kh/J, (¢c) t =37/4 h/J, and (d)
t =m h/J. This case corresponds to the space-symmetric wave
packet defined in Eqgs. (34) and (35), but for a variable y (i{) given
by Eq. (38). The insets display corresponding total second-order
momentum correlation Gg(k;, k) maps (right panels, blue back-
ground) and left-right joint-coincidence interferograms pgoc(k1, k2)
(left panels, brown background). Momenta k; and k; in units of
1/um. Gs(ki, ka) and pS (ki,k;) in units of um?. See text for
details.

joint-coincidence spectral maps, there is no fringe structure
when P = 0 [maps with brown background in Figs. 5(a) and
5(c)], while the fringe visibility is maximum when PIS1 =1
[maps with brown background in Figs. 5(b) and 5(d)]. Further-
more, the fringe structure of the total second-order momentum
correlation maps (blue background) in Figs. 5(a) and 5(c) re-
flect the fact that the biphoton state is a pure NOON, (|2,0 >
+10,2 >)/+/2, state (see also Ref. [19]), while in Figs. 5(b)
and 5(d), they coincide with the plsl (ki, k) maps (brown
background), which reflects the fact that the biphoton is a pure
maximally entangled Bell state, (|1,, 1g > +]|1g, 11 >)/ﬁ.
A measurement of the joint-coincidence probability [Eq. (40)]
for U = 0, in a system of trapped bosonic atoms, has been
reported recently [77].

IV. SIMILARITIES AND DIFFERENCES WITH THE
BIPHOTON OF QUANTUM OPTICS

A. Double well: A different type of source producing a larger
variety of pairs of entangled particles

Our approach of extracting a partial coincidence-
probability component pgo.(k;, k») out of the total second-
order momentum correlations G(ky, k) is congruent to the
reasoning underlying the introductory remarks of Mandel
in Ref. [28] made in the context of the case of far-field
interference of two entangled photons originating from two
separated quantal light sources A and B. In that review, a rel-
evant one-term partial joint-coincidence probability [denoted
as Pp(x1, x2), see Eq. (6) therein] was extracted from the most
general, but auxiliary (as of the time of Ref. [28]), multiterm
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interference expression ﬁg(xl, x7) given in his Eq. (5) [see
also Eq. (43) below]. As explicitly shown below, Mandel’s
general joint-probability P,(x;, x») corresponds to our total
second-order momentum correlations G(ky, k,) [78], whereas
Mandel’s partial joint-probability P,(x;, x») corresponds to
our psoc(kl ’ k2)

To appreciate why a comparison between general and
partial joint probabilities is of relevance in the context of the
TOF physics of two ultracold atoms in a double well, it is
pertinent to comment here on the type of primary light sources
in quantum optics versus that of the double well. Indeed,
the primary sources in quantum optics consist of twin pairs
of spatially separated photons representing EPR-Bell-Bohm
entangled states [25]. These states are produced through the
process of spontaneous parametric down conversion (SPDC).
Nonentangled photon pairs from two low-density independent
primary sources (usually semiconductor quantum dots) have
also been used in quantum optics [26]. Such separated-particle
pairs have also been used in experiments with propagating
electron [35-38] (independent sources) or ultracold-atom [34]
(entangled twin atoms) beams that aim to accurately replicate
with massive particles the quantum-optics repertoire. Below,
for convenience, such pairs will be labeled by us using a broad
brush as (14, 1g) [or (1., 1g)], that is, this round-bracket
(instead of ket) notation accentuates the spatial separation in
these states, and omits the aspects associated with the spin
degree of freedom and the wave function symmetrization or
antisymmetrization due to quantum statistics.

Concerning the two-ultracold-atom double-well primary
source studied in this paper, a crucial difference from the
primary sources described in the previous paragraph is the
presence of entangled NOON(=) states (broadly labeled as
[22,08) £ (0L, 2r)/ V2] here) as contributing components
in the two-particle wave function. Such NOON(=) states are
a direct result of the fact that double occupancy is allowed in
each well (see Hubbard-model description in the Appendix);
diagrams (I) and (II) in Fig. 6 correspond to the double
occupancy events. This NOON-state component enables the
nonvanishing of the interference cross terms between any two
of all four diagrams, (I), (II), (III), and (IV), portrayed in
Fig. 6, and it is responsible for the full complexity of our
G(ky, kp) or Mandel’s auxiliary P,(xy, x2). On the contrary,
if only single occupancy is allowed for each well or source
[type of primary sources labeled (14, 15) above], only the in-
terference cross term between diagrams (III) and (IV) in Fig. 6
survives and the quantities G(kj, k») or P,(xy, xp) reduce
to the simpler forms, pgo.(k1, k2) or P»(x;, x3), respectively.
Note that the light sources are designated as A and B, whereas
“particle sources” (confining wells) are denoted as L (left) and
R (right); see Fig. 6.

NOON components in the biphoton wave function were
originally generated in a secondary step in quantum-optics
experiments through the use of beam splitters; see the seminal
work of Hong-Ou-Mandel [27,30]. For electron beams, a
quantum-point contact is used for that purpose [35-37], and
in ultracold-atom free-space beams, Bragg diffraction setups
are employed [34]. For the case of a double-well trapped
ultracold-atom pairs, no physical beam splitter is required
because the NOON component can be generated already in the
primary (double-well) source. The role played by the physical

FIG. 6. Diagrams of the four different amplitudes that contribute
to the total second-order momentum correlations G(k;, k») [the total
fourth-order coincidence F’z(xl, X,) in Ref. [28]; see Eq. (5) therein].
In these diagrams, the two-photons (particles) in each event (I)-
(IV) are described by two lines of the same color. In the diagrams
labeled as (I) and (I) (green and magenta colors, respectively), both
particles (photons) originate from the same well (light source). In the
diagrams labeled as (IIT) and (IV) (blue and red colors, respectively),
each particle (photon) in the pair originates from a different well
(light source). L (A) and R (B) denote the two trapping wells
(light sources). X; and X, denote two positions in the time-of-flight
expansion cloud (the optics far field). In the case of the optics far
field, the symbols x; and x, (lowercase) are often used [28], instead
of the uppercase X and X,. The positions of the two particles in the
time-of-flight cloud are related to the single-particle momenta k; and
k, at the double-well trap as X ; = hkjtror)/M, j = 1,2 [31], where
M is the mass of the atom and f1oF is the experimental time of flight.
Note that the use of the term “second-order” by us corresponds to the
use of the term “fourth-order” in quantum optics.

beam splitter in generating a NOON state is replicated in the
double well by the time evolution due to interwell tunneling
[22,23] or by interparticle interaction effects [19]. However,
another key aspect of the HOM experiment, i.e., the coales-
cence of the two photons on the beam-splitter, which leads
to the celebrated HOM dip (typically having the shape of
an inverted Gaussian with shoulders [27,33,34]), cannot be
mimicked in the double-well case because of the physical
separation between the left and right wells.

Starting with the early 2000s, NOON(+) biphoton com-
ponents have been generated using lenses in the near field
to control the focusing of the light from a SPDC crystal on
a double slit [49-52,79]. In this case, the joint-coglcidence
probability at the far field resembles Mandel’s P,(xy, x2)
general expression, and thus our second-order momentum
correlations G(x;, xp). As a result, beyond the P>(xi,x;)
[Psoc(ki, kn) o cos®(d(ky — k2))] pattern with fringes parallel
to the main diagonal, some of the interferograms considered
in Refs. [49-52,79] correspond to additional terms in our
Eq. (24); namely, they exhibit fringes along the antidiagonal
or even plaid patterns. However, unlike the Hubbard-dimer
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double-well trap which naturally generates excited states with
negative parity, the double-slit biphoton states generated to
date do not contain states of the NOON(—) variety [asso-
ciated with sin?(d(k; + k»)) fringes], nor EPR-Bell-Bohm
states of the (|1., 1g) > —|1g, 1) >)/«/§ type [associated
with sin(d(k; — k2)) fringes]. In addition, a larger control
of engineered two-particle entangled states in the double-well
case is feasible via time evolution due to tunneling and via
interatom interactions; both of these tunability controls are
absent in the case of the two-slit biphoton.

Elaboration on the mathematics background associated
with the quantum-optics correspondence between the joint
probabilities in the far field and the second-order momentum
correlations of two double-well trapped ultracold atoms is
presented in the next Sec. IV B.

B. Detailed mathematical analysis

For the convenience of the reader and to facilitate compar-
isons, we will outline below relevant passages relating to the
four diagrams in Fig. 6 from Mandel’s review [28] on quantum
optics, as well as from one of our previous publications on two
ultracold fermionic atoms confined in a double-well trap [19].

1. Quantum-optics view

The positive- and negative-frequency parts [E*(x) and
E~(x)] of the optical field operator at a point x can be used to
define the fourth-order coincidence (referred to also as joint)
probability

Py(x1, x2) o (E~(x1)E~ (1) ET (x2)E™ (x1)), (41)

where two detectors have been placed at the far-field positions
x; and x;. As an intermediate step, one invokes the field
decompositions (j = 1, 2)

ET(x;) = fae' by + fpe'® by,
o A (42)
E~(x)) = f1e 0B} + e o),

where b, and by are the annihilation operators for the light
fields from the two sources A and B, respectively, and ¢4; and
¢p; are corresponding accumulated phases due to differences
in the optical path lengths. Then, one obtains from Eq. (41)

|
Po(xr, xa) ol fal* (s A% )+ sl (A% 1) 20 falPL P (Aa) (A p) L + cos(dpr — Paz + Par — p1)]
+ R LB B)e! Gmmtntom=ta) e | fu 2 fr fa(bibabg)[e! @) 4 i @nmda)] 4 c.
2

+ |fB|2f§fA(BJ;; ;;BgA>[ei(¢A1—¢m> T el @] L e (43)

where (: 717 :) denotes the gth normally ordered moment of
the number operator .

The expression for P(xy, x;) in Eq. (43) has 16 terms,
a fact that can be seen by considering the four amplitudes
labeled (I)-(IV) in Fig. 6 (this type of analysis was not
presented in Ref. [28]). Indeed, one has

= fjei(¢Al+¢A2)l;§’ = fgei(¢31+¢32)5%’

I = fAfBei(¢A]+¢BZ)BABB, vV = fAfBei(szr%])BA[)B’
(44)

and the expression in Eq. (43) can be also rewritten as

Po(xi,x2) = (U + 1T+ T+ IVYT+ 1T+ 111+ 1V)).

(45)

Obviously an expansion of the right-hand side of Eq. (45)
yields 16 terms.

2. Ultracold-atoms view
As described in Appendix D of Ref. [19], the second-order
momentum correlation for two atoms is defined as
Glki, k) = (P (k)P (ko )P (k)P (k2)) (46)
= Te[p¥ k¥ k) ¥ (k)P (k)] (47)

where p is the second-order density in the L, R single-particle
basis

p= Z pijrtli j)(k I, (48)

i,jkI=L,R

(

and

Pki)= > Pk, (49)

j=L.R

where i = 1, 2. The single-particle orbitals y;(k) are given
by Eq. (17), and ¢;; are bosonic or fermionic annihilation
operators.

As aresult, considering only the space part of the two-atom
state, one gets

Gki, kp) = Z Pkt (k)i (k)i (k) (ko)

i,j.kI=L,R

= Z ik (k1, ko). (50)

i.j.kI=L,R

In a previous publication [19] on two ultracold spin-1/2
fermionic atoms confined in a double-well trap and described
by the Hubbard model, we were able to specify the second-
order p and #j(ky, k) for the Hubbard-dimer eigenstates.

In this section, we use specifically the case of the ground-
state solution ¢; (see Appendix D.3 in Ref. [19]); for the
other two-fermions Hubbard eigenstates, ¢,, @3, and ¢4, see
Appendixes D.4, D.5, and D.6 in Ref. [19]. Here we consider
only the space part of ¢, so our discussion applies to all three
cases of ¢;’s associated with two spinless bosons, two spin-
1/2 bosons, and two spin-1/2 fermions [see Eqgs. (10)-(12)].
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UsingUd = U/J and QU) = +/16 + U? + U, the two matrices p

and 7j(ky, k) are given by

LL LR RL RR
4 Q) QW) 4 LL
) 1 QU +8) F(QUHU+8) QW) |LR
T TENT: Louu +8) ou) |RL Gl
H.c. 4 RR
LL LR RL RR
BU? AUBU) AUBU)  BU? \LL
1 AUy AU?  AUHBU) |LR
=3 AUP  ACHBU) |RL 62
H.c. BWU) )RR
and
LL LR RL RR
4 e 2dkQqy) e~2idh Q1) de~2datk)\ o
A 2520252 +13) QU g L Ak QUU +8) e XM QW) | LR
itk k) = o+ 16) QUU | 4 e 2 oty | RL (53)
H.c. 4 RR
[
Expression (50) has 16 terms which correspond term by bl and b, ie.,
term to the quantum-optics P,(xp, x») [see Eq. (43)]. To tot
facilitate this term-by-term comparison, we point out three (bib;brbi) = piju, (55)

types of identifications; in discussing these identifications
(correspondences between the quantum optics and double-
well cases), we write the quantum-optics quantity on the left
of the arrow and the corresponding double-well quantity on
the right.

(1) For the phases, the following correspondences apply:

¢p1 — Pa1 = kidgr — kidp = 2kid,

(54)
$p2 — Par — kodg — kodyp = 2kod.

(2) The matrix elements p;ji; correspond to expectations
values of the products of creation and annihilation operators

J

where i, j, k,l = L, R when they are indices of the p matrix

and i, j,k,l = A, B when they are indices for the creation

and annihilation operators; of course, L — A and R — B.
(3) The functions f4 and fp correspond to

24 J5

Tl/4

fa=fo— fh)= exp(—k>s?).  (56)

As an illustration, we display the following correspon-
dence between explicit terms in Egs. (43), Eq. (50), and the
cos?(d(k, — k»)) term in Eq. (24) for the total second-order
momentum correlations; the case of ¢ corresponds to having

Ci = AU), C, = 0,and C3 = B(UA) in Eq. (24):

20 fal* 517 () ()] + cos(Pppr — Paz + dar — dp1)]

— f2k) f2(k2)(pLRLR + PRLRL + PLRRLE

= 2£2(k1) fA(k) (AU /2){1 + cos[2d (ky — k)1} = 2 f2 (k1) (ko) AU cos*[d (ky — ko))

The term above is the partial joint-probability denoted as
P>(x1, x) by Mandel and as pg,.(k1, k2) by us.

Another example is the correspondence between ex-
plicit terms in Egs. (43), Eq. (50), and the cos?[d(k; +
ky)] term in Eq. (24) for the total second-order momentum
correlations

:2flg(l;j;zl’;%)ei@ﬂz*lﬁ/\frdﬁm*¢A1) +c.c.

— f2(k) f2(k2)(prirr + PrRRR + prirre” 2R

+ prrrper®itiady

013616-

(k1 —ko)d +PRLLR€2i(kl_k2)d)
(57)
[
= 2f2(k1) f2 (k) (BWU)* /2){1 + cos[2d (ki + k2)]}
= 2f2(k1) f2 (k) BU)* cos*[d (ki + ka)]. (58)

The mapping of additional terms in Eq. (43) and corre-
sponding terms in Eq. (24) for the ground state ¢; can be
established in a similar way.

C. Link to Hanbury Brown-Twiss interferometry

Of interest is the connection of our ultracold-atom inter-
ference results to the Hanbury Brown-Twiss interferometry.

14
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Indeed, for two thermal classical sources, Mandel’s general
Eq. (43) for the joint probability in the far-field reduces simply
to

PS'xr, xa) = (I + F251)° + 21 faPL fs1?(1a) ()
X coS(Ppr — P2 + Pa1 — dp1), (59)

To derive Eq. (59) from Eq. (43), one uses the following
[28]: (1) the creation and annihilation operators are treated
as complex c-number amplitudes, (2) (7i4(7ip)) becomes the
mean light intensity (I/4(Ip)), and (3) because of phase in-
dependence, only the three terms in the first line of Eq. (43)
are nonvanishing, and they regroup to Eq. (59). Equation
(59) corresponds to the celebrated Hanbury Brown-Twiss
interference [80], as can be seen through a direct comparison
with Eq. (6) in Ref. [80].

Using the amplitude diagrams in Fig. 6, one can write

P8 (xy, x2) = (12 4+ (I1%) + (LT + IV)I(ITT + 1V));
(60)

i.e., only the cross terms between diagrams (III) and (IV)
survive. On the other hand, as noticed (and also confirmed ex-
perimentally) by Gosh and Mandel [40], the joint probability
in Eq. (43) coincides with the partial coincidence P>(x;, x3),
i.e., our pfoc(kl, k>) [see Eq. (28)] when exactly one photon
occupies each source, i.e., the biphoton state is a pure EPR-
Bell-Bohm state of the form (|1,, 1g) + |1k, IL))/«/Z Using
the diagrams of Fig. 6, one has

pS ko) = ((IIT + IVYIITI+1V)).  (61)

Because both the classical ﬁ;l(xl, x7) and pfoc(kl, k>) [or
equivalently P>(x;, x2)] contain the same single interference
cross term between (IIT) and (IV), some recent literature [6,7]
concerning ultracold atoms in optical lattices in the regime
of a Mott insulator has described the associated time-of-flight
spectra as a special version of the Hanbury Brown-Twiss
effect. We prefer, however, to follow Ref. [40], and group

J

the correlation maps associated with an EPR-Bell-Bohm state
in the class of nonclassical and purely quantal biphoton
interference.

V. DEMONSTRATING THE VIOLATION OF BELL
INEQUALITIES WITH TRAPPED ULTRACOLD ATOMS

Thirty years after publication of the Einstein, Podolsky,
and Rosen paper [81], presenting the EPR paradox and ques-
tioning the completeness of the quantum theory, a seminal
proposal was put forward by Bell [82] for direct experimental
testing of the local realism notion on which the local-hidden
variable (LHV) descriptions (favored by the EPR local real-
ism) is based, versus the description advanced by quantum
mechanics, based on nonlocal entanglement. Accordingly,
experiments in which the Bell inequality is violated reject
local hidden variable descriptions in favor of the nonlocal
quantum mechanics theory.

Indeed, using entangled pairs of (massless) photons, the
violation of the Bell inequality [82,83] has been verified
experimentally [42,46,59-61,84-87], as well as in a couple
of experiments using massive particles (specifically ultracold
°Be™ ions [88] and spin-1/2 hadrons [89]), confirming the
nonlocal quantum-mechanical character of nature [81,90].

In the context of two ultracold atoms confined in a double-
well trap, our theoretical extraction of the partial coincidence
probability psoc(ki, kz) from the total joint coincidence prob-
ability, i.e., the total second-order momentum correlations
G(ky, ky), allows for the use of massive trapped particles to
experimentally test the Bell inequalities, in close analogy with
previous quantum-optics experiments [46,59-61,85] that used
twin pairs of entangled, but separated, photons.

Having obtained psoc(k1, k2), one can then proceed to spec-
ify a Bell-Clauser-Horne-Shimony-Holt (Bell-CHSH) param-
eter [46,59,83,85,91], S, defined as

S =Y (ki, ko) = Y(ki, k) + Y (k, ko) + Y (K, k3)|. (62)
The auxiliary quantity Y (k;, k) in Eq. (62) is given by

Dsoc(k1 + g, ko + q) + psoc (ki — q, ko — q) — Psoc(ki +q, ko — q) — psoc(ki — q, ka + q)

Y(ki, ky) =

with +q = £7/(4d) being used to define for our one-
dimensional (1D) system the four pairs of directions along
which measurements are performed, i.e., two pairs of par-
allel directions [(«—, <-) and (—, —)] and two pairs of
antiparallel directions [(<«—, —) and (—, <—)]. To facilitate
comparisons with corresponding expressions in the Rarity
and Tapster optics experiment [46,85], we note that the com-
binations (£g¢, =¢) in Eq. (63) correspond to coincidences
between detectors on the same side of the beam splitter,
whereas combinations (£¢, F¢) correspond to coincidences
between detectors on opposite sides of the beam splitter.
Moreover, the Rarity and Tapster phases ¢, and ¢, [46] (or
@, and P, [85]) correspond in our case to 2dk; and 2dk;,
respectively.

For the Hubbard-dimer ground state, further analogies to
the experiment of Refs. [46,85] can be pointed out. In par-

Psoc(ki + q. ko + @) + psoc(ki — . ko — ) + Psoc(ki + q. ko — q) + Peoc(ki — g, ko + )’

(63)

(

ticular, in this case pSSOC(kl, ko) o 1 + cos[2d (ki — k)] [see
Eq. (28)]. Then,

pS U £ q.ky £q) = 1 + cos[2d(k; — k)] (64)
and
pa ki Fq.ky £q)=1—cos[2d(k; — k2)]. (65)

Equations (64) and (65) correspond to the coincidence
probabilities given by Eq. (23) in Ref. [85]. Furthermore, the
quantity Y (ky, k») defined in Eq. (63) simplifies to

Y(ky, ka) = cos[2d (ki — ka)], (66)

which was also found for the case of two entangled atoms

produced in collisions of Bose-Einstein condensates [91].
The local hidden-variables theory predicts an upper limit

for the Bell-CHSH parameter SV <2 for all values of &,
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ka, ki, and k). The maximum quantal result is found directly
from Eq. (62) for values k; =0, k| = 7/(4d), k» = 7/(8d),
and k) = 37/(8d); itis S = 2+/2.

Unlike Ref. [11], our proposal here to use the partial coinci-
dence pyoc(ky, k) instead of the total G(ky, k) is particularly
advantageous, because the maximum quantal value of S =
24/2 decreases rapidly when higher occupancy components
are considered in the two-particle wave function, and can even
become smaller than the classical value of 2 [91].

The partial coincidence pgoc(ki, k2) can be experimentally
determined by fitting the theoretical expression for G(k, k»)
[see, e.g., Eq. (24)] to the measured second-order momen-
tum probability. The latter can be experimentally obtained
by performing measurements on the time-of-flight (far field)
expansion cloud [11,12].

VI. ENTANGLEMENT ASPECTS: VON NEUMANN
ENTROPY FOR MODE ENTANGLEMENT

In 1935, in a celebrated paper [81] referred to often as the
EPR paper, Einstein et al. announced the EPR paradox by
calling attention to certain features of two-particle quantum
theory that they found most disturbing with regard to the
completeness of this theory. In the same year, Schrodinger,
first in a letter to Einstein and shortly afterward in published
papers [92], attributed these features to entanglement (trans-
lation of the German word Verschrinkung); more precisely,
he wrote about entangled states that cannot be factored into
products of two single particle states in any representation.
Schrodinger went further to announce that he “would not
call [entanglement] one, but rather the characteristic trait of
quantum mechanics, the one that enforces its entire departure
from classical lines of thought.” (p. 555) In 1951, Bohm [93]
used the singlet state of two spin-1/2 particles [see ¢; in
Eq. (12)] in a discussion of the EPR paradox, and this spawned
further experimental work aiming at preparing and exploring
the properties of this, and other, entangled states (particularly
in the context of the Bell inequality; see Sec. V).

As already remarked in the introductory paragraph of
Sec. V, principal interest in entanglement aims at uncovering
fundamentals of the quantum world, principally the nonin-
tuitive notion of nonlocality (which contradicts local real-
ism), stating that no physical object has distinctive individual
properties that completely define it as an independent entity
and that the result of measurement on one system is not
independent of measurements and/or operations performed
on another, spatially separate, systems. Entanglement has
been used in many-body theoretical and experimental inves-
tigations of correlations, quantum magnetism, and quantum
phase transitions in condensed-matter physics [94—99], many-
particle ultracold atomic systems trapped in optical lattices
[23,24,100,101], atomic and molecular systems [102], and
even in biological structures [103—110]. Moreover, since the
discovery of Shor’s factoring algorithm [111], which is an-
chored in entanglement, and the consideration of a quantum-
gate mechanism based on electron spins in coupled semicon-
ductor quantum dots, which can be used as a general source
of spin entanglement in quantum computers [112], there has
been a growing interest in entanglement in the burgeoning
areas of quantum information, quantum cryptography, and

quantum teleportation. For reviews about quantum entangle-
ment and its applications, see Refs. [113-115].

We divide our investigation of entanglement into two parts.
We start our discussion here with the von Neumann entropy as
a measure of entanglement, applied to mode entanglement for
the double-well-trapped dimer. In the next section (Sec. VII),
we show entanglement concurrence results for the case of two
trapped fermions. In addition to exploring the dependence of
the entanglement on the interparticle interaction strength, we
study its time evolution.

We present results for the von Neumann entropy associ-
ated with the mode entanglement [116] in the case of the
Hubbard-dimer eigenstates ¢;, i = 1,...,4 (see Sec. I1C),
as well as the time-dependent wave packet Q(¢) described
by Eq. (34). Note that in the mode entanglement, one is
interested in estimating the uncertainty in the occupation of a
given site, regardless of the identities of the particles. The von
Neumann entropy in the case of two Hubbard sites A and B is
defined as

SN = —Tralpaln(pa)l, (67)

where Try denotes tracing with respect to indices associ-
ated with the site A and p4 is the reduced density matrix
[98,116]

pa = Trg(JW)(¥]) (68)

at the site A (trace taken over the site B) expressed in the local
basis [0) 4, [1) 4, [4)a, [14)a for two spin-1/2 particles, and
in the local basis [0) 4, [1) 4, |2) 4 for two spinless bosons. |W)
is any two-body Hubbard vector solution. The symbol In here
denotes natural logarithms.

As an example of how the calculation for SyN proceeds, we
consider the special case of the two-body Hubbard eigenvec-
tor [see Eq. (A3) in the Appendix]

ViU =0) = {172, 1//2, 1/2}7 (69)

for the case of two noninteracting spinless bosons. In this case,
one finds

pa = Trg(IVi)(Vi])
_ 1204421 +2[1)a {1l +10)4 4 (0]

, 70
2 (70)
which according to Eq. (67) yields
S =0)=1n(4)/4+1n(2)/2 + In(4)/4
=31n(2)/2 = 1.03972. (71)

Anticipating the discussion below, we mention that this
31n(2)/2 value is depicted by the point where the vertical axis
crosses the ¢; von Neumann entropy curve in Fig. 7(a).

As a second example, we consider the case of the two-body
Hubbard eigenvector [see Eq. (A3) in the Appendix]

ViU - —o0) = {1/3/2, 0, 1/v/2}7 (72)
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FIG. 7. [(a), (b)] von Neumann entropy for mode entanglement and (c) concurrence for the Hubbard-dimer eigenstates ¢;, i = 1,...,4

as a function of Y. In panel (a), the case of two spinless bosons with only three eigenstates is presented. The maximum value attained by the
von Neumann entropy is In(3) = 1.09861 at I/ = —+/2 for the ¢, state or at i = /2 for the @ state. The asymptotic values at i — 00 are
zero or In(2) = 0.693147 (nonsymmetric curves). In panel (b), the case of two spin-1/2 bosons or fermions is presented. The maximum value
attained (at U = 0) is 2In(2) = 1.38629, whereas the asymptotic values for i/ — 00 are In(2) = 0.693147 (symmetric curves). In panel (c),
the concurrence for all three cases yields the same result (of course the space antisymmetric state ¢4 is missing for the spinless bosons). The
maximum asymptotic value attained by the concurrence (for I/ — $00) is unity, whereas the minimum value (at &/ = 0) is zero (symmetric

curves).

for the case of two strongly attractive spinless bosons. In this

case, one finds

pa =Trg((Vi)y(V1l)

_ 1204 a2[+10)4 40l

2
which according to Eq. (67) yields

SiN(U — —o0) =1In(2) = 0.693147. (74)

This limit is reflected in the behavior of the ¢; von

Neumann entropy curve in Fig. 7(a).

A. Mode entanglement for the Hubbard-dimer eigenstates

Using Eqgs. (10)—(14) and applying the definition (67), one
can find analytic expressions for the von Neumann entropy
associated with the mode entanglement of the Hubbard-dimer

(73) eigenstates.

1. Two spinless bosons

state [see Eq. (10)]

8 [JUW +U) +4] — [UOW +U) + 8] In [5(55 + 1)]

SVN

where

El

UW+U)+ 16

W = VU? + 16.

For the first excited state ¢, [see Eq. (10)], one has simply

Syx = In(2).

For the second excited state @3 [see Eq. (10)], one gets
@ —UW+8)In (3 — 35) —8In[FUU — W) + 4]

VN =

Uuw -u)—-1e
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2. Two spin-1/2 bosons or fermions

In this case, we find that for both the eigenstates ¢; and @3
S 8In[RU) /4] + [RU) — 8] In[R(—U)/4]

VN — R(U) s

(79)

where
R(EU) = U> £ UVU? + 16 + 16. (80)

For the eigenstates ¢, and ¢4, one has a constant value
independent of U, i.e.,

Sy = In(2). (81)

We note the the result in Eq. (79) has been presented earlier
[98] for the case of a two-fermion Hubbard dimer.

In the top two rows of Fig. 7, we compare (as a function of
the Hubbard ¢f) the behavior of the mode entanglement SyN
for the four possible eigenstates of the Hubbard dimer and for
all three cases of particle pairs considered in this paper. In
Fig. 7(a), the case of two spinless bosons [three eigenstates;
see Eq. (10)] is presented. For the ¢ and @3 states, the Syn
curves are asymmetric about the origin. The maximum value
attained by the von Neumann entropy is In(3) = 1.09861 at
U = —+/2 for the ¢, state or at U = /2 for the @3 state,
whereas the asymptotic values at i/ — =00 are zero or In(2).

J

A In(2) asymptotic value indicates that the corresponding
state is a pure NOON(+-) one, whereas a vanishing asymptotic
value indicates that the corresponding state is a pure Bell
(+) one. In Fig. 7(b), the case of two spin-1/2 bosons or
fermions is presented. The Syn curves are now symmetric
about the origin. The maximum value attained (at U = 0)
is 2In(2), whereas the asymptotic values for &f — Foo are
In(2). A In(2) asymptotic value at { — —oo reflects the fact
that the corresponding state is a pure NOON (+) one, whereas
a In(2) asymptotic value at &/ — 4-o0 reflects the fact that
the corresponding state is a pure Bell (4) one. For both the
spinless and spin-1/2 pairs of particles, the maximum values
of mode entanglement are attained at or near / = O reflecting
a maximum uncertainty in the knowledge of which one of the
components of the local basis (defined above) at a given site
is present in the two-particle wave function.

B. Mode entanglement for the time-dependent
wave packet 2(¢) [Eq. (34)]

Following the same steps as in the previous section, one
can also derive analytic expressions for the von Neumann
entropy associated with the mode entanglement of the time-
dependent wave packet specified in Eq. (34). These expres-
sions are listed below.

1. Two spinless bosons

In this case, for a mixing parameter y = 1/2, one finds

SVN(I) =

1ow?

+ [—16W cos (1 JW/R) + 5U* + 3UW + 80]{111(10) —In [—

([—161/\/ cos (tJW/h) — 5U* + 3UW — 80] In {

L[l6cos(rJW/h) B y +5“

20 w w
16cos (¢ JW) 33U
—_——— + —+5 , 82
w + w * :H) 82)

whereas for a {/-dependent mixing parameter y () = %(Z/l — A/U? + 16), one gets

SN (1) = #mvz InOW) — [8cos(tJW/R) +U* + 8] In[8 cos (tJW/R) + U* + 8]

+ [8cos (tJW/h) — 8]In[4 — 4 cos (tJW/h)]}. (83)

The definition of W is given in Eq. (76).

Ilustrations of the behavior of the SN in Egs. (82) and (83)
as a function of time or the Hubbard parameter {/ are pre-
sented in Fig. 8. Specifically, the four left frames [Figs. 8(a)—
8(d)] describe variations of the von Neumann entropy at
given times ¢t = 0 [Figs. 8(a) and 8(c)] and t =nw/4 h/J
[Figs. 8(b) and 8(d)] as a function of U/, and for two different
cases of the mixing parameter y (see Sec. IIID), namely
y = 1/2 [Figs. 8(a) and 8(b)] and y () = %(Z/l — A/U? 4 16)
[Figs. 8(c) and 8(d)]. The four right frames [Figs. 8(e)-8(h)]
describe variations of the von Neumann entropy at given
values of U/ = 2 [Figs. 8(e) and 8(g)] and &/ = 30 [Figs. 8(f)
and 8(h)] as a function of time ¢, and for the same two different

(

cases of the mixing parameter y, namely y = 1/2 [Figs. 8(e)
and 8(f)] and y (U) [Figs. 8(g) and 8(h)]. The Syn curves in
Fig. 8 exhibit characteristic oscillatory patterns as a function
of ¢ and U. The range of these oscillatory variations of Syn
extends from zero to In(3) = 1.09861. This is in keeping
with the minimum and maximum values of the corresponding
Syn associated with the Hubbard-dimer eigenstates for two
spinless bosons [see Fig. 7(a)]. The vanishing of Syx for all
values of U in Fig. 8(c) reflects the fact that the initial state
Q(t = 0) in this case coincides with a pure spinless (14, 1)
state for all ¢/’s as a result of the choice of y ({/) for the mixing
parameter in Eq. (34).
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FIG. 8. von Neumann entropy for mode entanglement for two spinless bosons described in space by the time-dependent wave packet ()
in Eq. (34). The four left frames [(a)—(d)] describe variations of the von Neumann entropy at given times ¢t = 0 [(a) and (c)] and t = /4 i/ J
[(b) and (d)] as a function of U, and for two different cases of the mixing parameter y (see Sec. I[IID), namely y = 1/2 [(a) and (b)] and
yU) = %(Z/{ — +/U? 4+ 16) [(c) and (d)]. The four right frames [(e)—(h)] describe variations of the von Neumann entropy at given values of
U =2 [(e) and (g)] and U = 30 [(f) and (h)] as a function of time ¢, and for the same two different cases of the mixing parameter y, namely
y = 1/2[(e) and ()] and y () [(g) and (h)]. In agreement with the findings from the section on the von Neumann entropy for eigenstates [see
Fig. 7(a)], the range of oscillatory variations of S,x extends from zero to a value of In(3) = 1.09861.

4 t »2‘ zt

o

2. Two spin-1/2 bosons or fermions

In this case, for y = 1/2, one finds

1 200
Syn(t 16 tIW/h) + 5U* 4+ 3WU + 80
N() = IOWZ{[ W cos ( /h) + +3Wi + 80]In [_16cos(tJW/h)+5W+3u]
16 cos (tJW/R) + 5W — 3
+[—16Wcos(tJW/h)—5L{2+3WL{—SO]In[ cos V\;/OV)VJF W u“ (84)
while for y (U) = ; (U — ~VU? + 16), one gets
8[cos (tJW/h) — 1]In [N 4 (8 cos (tJW/R) + U + 81 In [ g rirs )
SN () = . (85)

[lustrations of the behavior of the S,y in Eqs. (84) and (85)
as a function of time ¢ or the Hubbard parameter U/ are pre-
sented in Fig. 9. Specifically, the four left frames [Figs. 9(a)—
9(d)] describe variations of the von Neumann entropy at
given times ¢ = 0 [Figs. 9(a) and 9(c)] and ¢t =n/4 h/J
[Figs. 9(b) and 9(d)] as a function of U, and for two different
cases of the mixing parameter y (see Sec. IIID), namely
y = 1/2 [Figs. 9(a) and 9(b)] and y () = }T(Ll —JU? +16)
[Figs. 9(c) and 9(d)]. The four right frames [Figs. 9(e)-9(h)]
describe variations of the von Neumann entropy at given
values of & = 2 [Figs. 9(e) and 9(g)] and U = 30 [Figs. 9(f)
and 9(h)] as a function of time ¢, and for the same two
different cases of the mixing parameter y, namely y = 1/2
[Figs. 9(e) and 9(f)] and y (Uf) [Figs. 9(g) and 9(h)]. As was the
case with the two spinless bosons (Fig. 8), the Syn curves in
Fig. 9 exhibit characteristic oscillatory patterns as a function
of ¢ and Y. The range of these oscillatory variations of Syn,
however, extends now from In(2) to 2In(2) = 1.38629. This
is in keeping with the minimum and maximum values of the
corresponding S,y associated with the Hubbard-dimer eigen-
states for two spin-1/2 bosons or fermions [see Fig. 7(b)]. The
constant value of S,y = In(2) for all values of ¢/ in Fig. 9(c)
reflects the fact that the initial state Q(¢# = 0) in this case
coincides with a pure Bell, (|14, 15) + |15, 14))//2, state

W2

(

for all U’s as a result of the choice of y(U/) for the mixing
parameter in Eq. (34).

VII. ENTANGLEMENT ASPECTS: CONCURRENCE
FOR TWO PARTICLES

For two fermions, one can calculate also the concurrence
following the formalism of Schliemann et al. [117] and
Eckert et al. [118], which generalizes for two fermions (by
allowing for nonzero double occupancy of each Hubbard site
by itinerant particles) the two-qubit concurrence introduced
by Wootters [119]. Due to the mapping [49,51] between
the Hilbert space of the Hubbard dimer for zero total-spin
projection and the two-qubit space discussed by Wootters
[119], the concurrence results here apply to all three cases of a
pair of particles considered in this paper, that is, two spinless
bosons, two spin-1/2 bosons, and two spin-1/2 fermions.

A. Concurrence for the Hubbard-dimer eigenstates

For pure states and according to Refs. [49,117,118], the
concurrence CC for the Hubbard-dimer eigenstates can be
expressed through the expansion coefficients in the LL, LR,
RL, and RR two-particle basis. In particular, for both the
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FIG. 9. Von Neumann entropy for mode entanglement for two spin-1/2 bosons or fermions described by the time-dependent wave packet
Q(z) in Eq. (34). The four left frames [(a)—(d)] describe variations of the von Neumann entropy at given times r = 0 [(a) and (c)] and ¢t =
/4 h/J [(b) and (d)] as a function of I/ and for two different cases of the mixing parameter y (see Sec. IIID), namely y = 1/2 and
yU) = %(U — +~/U?* 4 16). The four right frames [(e)—(h)] describe variations of the von Neumann entropy at given values of &/ = 2 and
U = 30 as a function of time ¢, and for the same two different cases of the mixing parameter y, namely y = 1/2 and y ({/). In agreement with
the findings from the section on the von Neumann entropy for eigenstates [see Fig. 7(b)], the range of oscillatory variations of S,y extends

from In(2) = 0.693147 to a value of 2In(2) = 1.38629.

Hubbard-dimer eigenstates ¢, and ¢3 [see Egs. (10)—(13)] one
finds

C = |AU)? — BU)?|. (86)
Using Eqgs. (14), one obtains from the above equation
||
VUE 16
On the other hand, for the eigenstates ¢, and ¢4 [see
Egs. (10)—(13)], one has

CC = (87)

cC=1. (88)

The concurrence results in Egs. (87) and (88) are plotted
in Fig. 7(c). Of course, the space antisymmetric state ¢4 is
not applicable for the two spinless bosons. In the case of the
¢ and @3 eigenstates, the concurrence curves are symmetric
about U = 0; the associated maximum asymptotic value at-
tained (for Y — =£00) is unity, whereas the minimum value
(at U = 0) is zero. Comparing Figs. 7(b) and 7(c) for two
spin-1/2 particles, one sees that the concurrence is maximum
where the mode entanglement is minimum, and vice versa.
These contrasting behaviors reflect the fact that these two
measures of entanglement probe different aspects of the two-

particle wave function. Indeed, the concurrence maximizes
when the two-particle wave function exhibits a maximum
uncertainty regarding the left or right position of each particle;
or equivalently of each (up or down) spin. On the other hand,
as mentioned previously, the mode entanglement attains a
maximum value when the two-particle wave function exhibits
maximum uncertainty concerning the knowledge of which
one of the components of the local basis (defined in Sec. VI)
at a given site is present.

B. Concurrence for the time-dependent
wave packet 2(¢) [Eq. (34)]

Following same steps as in the previous section, one finds
for the time-dependent concurrence of Q2(7) [Eq. (34)] when

y=1/2

V25U sin? (t JW/R) + [16 — 3U cos (t W12

CC(t) =

As aforementioned, the definition of W is given in Eq. (76).

C =
cew SW
(39)
whereas for y (U) = (U — ~V/U? + 16), one gets
J
V/—=8U2[cos 2t JW/h) — 4cos (tJW/R)] + U* + 8U? + 256
W . (90)
[
1/2 [Figs. 10(a) and 10(b)] and y () = i(u — A U?* 4 16)

Ilustrations of the behavior of CC in Egs. (89) and (90) as
a function of time ¢ or the Hubbard parameter { are presented
in Fig. 10. Specifically, the four top frames [Figs. 10(a)—
10(d)] describe variations of the concurrence at given times
t = 0 [Figs. 10(a) and 10(c)] and ¢t = /4 h/J [Figs. 10(b)
and 10(d)] as a function of U, and for two different cases
of the mixing parameter y (see Sec. IIID), namely y =

[Figs. 10(c) and 10(d)]. The four bottom frames [Figs. 10(e)—
10(h)] describe variations of the concurrence at given values
of U = 2 [(Figs. 10(e) and 10(g)] and &/ = 30 [Figs. 10(f) and
10(h)] as a function of time ¢, and for the same two different
cases of the mixing parameter y, namely y = 1/2 [Figs. 10(e)
and 10(f)] and y (U) [Figs. 10(g) and 10(h)]. In agreement
with the findings from the section on the concurrence for
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FIG. 10. Concurrence for all three cases of a pair of particles
described in space by the time-dependent wave packet 2(¢) in
Eq. (34). The four top frames [(a)—(d)] describe variations of the
concurrence at given times t = 0 [(a) and (¢)] and t =7 /4 h/J
[(b) and (d)] as a function of U, and for two different cases of the
mixing parameter y (see Sec. III D), namely y = 1/2 [(a) and (b)]
andy(U) = %(Z/{ — +/U? 4 16) [(c) and (d)]. The four bottom frames
[(e)—(h)] describe variations of the concurrence at given values of
U =2 [(e) and (g)] and U = 30 [(f) and (h)] as a function of time
t, and for the same two different cases of the mixing parameter y,
namely y = 1/2 [(e) and (f)] and y (i) [(g) and (h)]. In agreement
with the findings from the section on the concurrence for eigenstates
[see Fig. 7(c)], the range of potential oscillatory variations of CC
extends from zero to unity.

eigenstates [see Fig. 7(c)], the range of potential oscillatory
variations of CC extends from zero to unity. In Fig. 10(c), the
constant value of unity reflects the fact that the initial state at
t = 0 remains an EPR-Bell-Bohm state for all values of U/.
When the mixing parameter is given by y (i), a CC value of
unity is reached in the limit of strong interaction U/ — oo,
and for any given value of ¢ [see, e.g., Fig. 10(d)]. However,
note that this limiting concurrence value does not characterize
uniquely the associated two-particle wave function. Indeed,
in this case, an EPR-Bell-Bohm state emerges for repulsive
interaction, whereas a NOON(+) state emerges for attractive
interaction.

VIII. SUMMARY

Over the past few years, we have witnessed significant
gains in development and implementation of experimental

programs that exploit atom cooling techniques and laser-
generated microtraps [5,12] or optical tweezers [22,77] in
conjunction with time-of-flight and in sifu measurements.
Paralleling this experimental progress, advances were made
in the formulation, implementation, testing, and employment
of theoretical methodologies, including microscopic Hamil-
tonian exact diagonalization and Hubbard-Hamiltonian mod-
eling [18,19,56-58]. Motivated by these developments, we
focused in this paper on the quantum mechanical physical
nature of two ultracold atoms confined by a one-dimensional
double-well potential and on analogies, similarities, and dif-
ferences between this system and the physics of biphotons,
studied for over three decades [28—30] in the field of quantum
optics with the use of photon sources (such as the spontaneous
parametric down conversion), mirrors, beam splitters, and
photon detectors.

Aiming at enabling and aiding investigation of the build-
ing blocks of quantum simulators, which in the spirit of
Feynman’s inspiration [120] “will do exactly the same as
nature,” (p. 468) we addressed here theoretically issues and
methodologies of joint theoretical and experimental relevance
for investigations of the fundamentals of quantum mechanics.
In particular, we explored numerically and analytically quan-
tum entanglement, the properties of EPR-Bell-Bohm states,
and entanglement measures (the von Neumann mode entropy
in Sec. VI and two-particle concurrence in Sec. VII) of quan-
tum eigenstates of double-well-trapped ultracold atom-dimer
systems and the time evolution of prepared wave packets,
as well as Bell-Clauser-Horne-Shimony-Holt testing of the
nonlocal nature of the quantum world (Sec. V).

It is pertinent to emphasize here the goal of studying
foundational questions of the quantum world using a small
confined ultracold atom dimer, particularly in light of a com-
ment made by one of the fathers of the quantum theory
[121], Erwin Schrédinger, who in 1952 wrote [122] “we never
experiment with just one electron or atom or (small) molecule.
In thought experiments, we sometimes assume that we do; this
invariably entails ridiculous consequences ... in the first place
it is fair to state that we are not experimenting with single
particles, any more than we raise ichthyosauria in the zoo.”
(p- 239) Indeed, it took more than 20 years for this opinion
to be challenged by Dehmelt [123,124]. Moreover, employing
cooling and trapping techniques developed and refined since,
it has become now possible to experimentally trap, manipu-
late, and measure a precise number of ultracold neutral atoms
[5,12,22,77], providing impetus for the developments that led
to our studies.

Drawing on the many years of fruitful explorations in
quantum optics, we demonstrated here an extensive corre-
spondence between the dynamical evolution of two (mas-
sive and interacting) ultracold fermionic or bosonic atoms
trapped in a double well with the physics underlying the
nonlocal quantum interference exhibited by (massless and
noninteracting) biphotons [28-30]; see Sec. IV. We find this
correspondence to extend beyond the sinusoidal pattern of
the integrated coincidence probability, encompassing in detail
the underlying frequency interferograms (spectral frequency
correlation maps) and their fringes [53-55]. Throughout, we
illustrated our results for case studies relating to the following
double-well-trapped ultracold atom dimer systems: (i) two
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spinless bosons, (ii) two spin-1/2 bosons, and (iii) two spin-
1/2 fermions (for details of these states, see Sec. II and the
Appendix).

Importantly, we showed that the optical (with massless
noninteracting photons) frequency-frequency correlations as-
sociated with binary single-occupancy sources correspond to
a distinct contribution in the total second-order momentum
correlation maps of the two trapped massive and interacting
particles. This contribution is associated with the single-
occupancy component (EPR-Bell-Bohm component) of the
two-atom wave function and exhibits a general form of a
cosine-square quantum beat on the momenta difference. This
finding will enable experimental extraction of the massive-
particle soc coincidence interference from time-of-flight mea-
surements which mirror [31] the total second-order momen-
tum correlations of the trapped ultracold particles. In this
context, we noted ongoing efforts in the experimental com-
munity to explicitly measure [12] the total second-order mo-
mentum correlations of two interacting double-well trapped
fermions or to devise protocols based on such correlations
for the characterization of entanglement of two noninteracting
distinguishable bosons [11].

We specifically investigated the two-particle coincidence
interferogram, where a special role is played in the interpre-
tation of the time-of-fight experiments by using the extracted
partial joint-coincidence probability spectrum pg,.(k1, k7 ) for
detecting a pair of particles in the time-of-flight expansion
image (far field), with the double-well-trapped particles be-
longing to the single-occupancy component of the two-atom
wave function; see Sec. IV. This partial joint-coincidence
probability is of particular significance here, because unlike
the primary photon optics sources used in the biphoton HOM
experiments (where the twin-pair of photons are generated in
an EPR-Bell-Bohm entangled state), our source, namely an
ultracold atom dimer trapped in a double well, contains an
entangled double-occupancy [NOON (%£)] component. This
partial joint coincidence probability is related to the part of
the momentum total wave function that involves exclusively
the symmetrized or antisymmetrized cross products of both
the left and right single-particle orbitals, respectively. The
extracted single-occupancy component pgo.(k1, k> ) is also key
to the above-noted evaluation of the Bell-CHSH inequalities;
see Sec. V.

Finally, we drew attention to analogies of the second-
order momentum correlations for two ultracold atoms trapped
in a double well with the total coincidence measurements
performed in most recent double-slit biphoton quantum-optics
experiments [49-52] which, in addition to the EPR-Bell-
Bohm component, include also a double-occupancy NOON
component in the prepared biphoton state.

With the framework developed here, we close with some
remarks on recent studies of double photoionization of
molecules in high laser fields [125-127], following early
proposals by Cohen and Fano in 1966 [128] and Kaplan
and Markin in 1969 [129]. These authors predicted that
photoelectrons emitted from diatomic molecules (e.g., N,
0,, Hy) will exhibit two-center interference patterns in the
angular distribution of the emitted electrons with respect to
the molecular axis. In that early work, which was inspired by

undulations observed in measured records of photoabsorp-
tion cross sections versus photon energy for a few simple
molecules [130], Huygen’s point of view has been invoked
regarding the absorption of a photon by the initial coherent
state of the homonuclear diatomic molecule. The absorption
process was taken as causing the launch of two coherent
electron waves from each of the molecule’s nuclei (protons in
the case of Hy). In this single photoionization case, as well
as in the later extensions to double photoionization [125—
127], the superposition of the emitted waves from the two
sources (atoms) generates an interference pattern, akin to that
produced by the interference of a photon (two photons, or
matter waves) in a double-slit experiment, where the interfer-
ence patterns show a periodicity that depends on the initial
internuclear distance and the momenta of the emitted elec-
trons. These molecular-level results associated with double
photoionization are in the spirit of our findings for the case
of a double-well-trapped ultracold atom dimer (see Secs. I1I
and IV).

In the case of Hy, the initial two-electron electronic ground
state can be well described dominantly by a Heitler-London
wave function (an entangled, EPR-Bell-Bohm, state, which
has the two electrons located at the two different protons), and
by an added smaller contribution from a double-occupancy
component (with both electrons localized on one of the pro-
tons); the latter state is sometime termed the ionic contribu-
tion, and it corresponds to what we have referred to above as
aNOON, (|2, 0) = |0, 2))/+/2, state.

Early analysis of the experimental data showed that out
of the four different interfering breakup double-ionization
channels contributing to the double electron ejection from H;
(see Fig. 2 in Ref. [126]), only the two channels corresponding
to the small (double-occupancy) NOON component of the
ground state contribute to the observed data. This result has
been confirmed in more recent experiments and ab initio cal-
culations [127], where the measured and ab initio calculated
momentum-momentum (K, K;) correlation map (constructed
for the ejected electron pair) shows diffraction fringes along
the antidiagonal in the (k;, ky) map (see Fig. 3 in Ref. [127]),
corresponding to a two-electron emission probability pro-
portional to cos?[(k; + k») - R/2], with no EPR component,
cos’[(k; — k») - R/2] (see Eq. (1) in Ref. [127]), the latter
exhibiting diffraction fringes along the main diagonal of the
momentum-momentum interferogram (see Secs. III C and
IV B). Interestingly, two-point (second-order) momentum
correlation functions for the electronic ground state of H;
(described with the use of the Heitler-London wave function),
exhibiting a diffraction behavior similar to an EPR-Bell-
Bohm state, have been derived some 80 years ago by Coulson
[131] in early studies aiming at gaining momentum-space
insights into molecular bonding.
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APPENDIX: DIAGONALIZATION OF THE
HUBBARD-DIMER HAMILTONIANS

1. Two spinless bosons

Using the basis kets

2,0y, [1,1), 10,2), (A1)

where |ny, ng) (with ny + ng = 2) corresponds to a perma-
nent with n; (ng) particles in the L (R) site, one derives
the following matrix Hamiltonian associated with the spinless
bosonic Hubbard Hamiltonian in Eq. (1):

U —27 0
H=|-v2J 0 V27 | (A2)
0 —2J U

The three eigenenergies of the matrix (A2) are given by
the quantities E, E,, and E3 in Eq. (15) of the main text. The
corresponding three normalized eigenvectors are

Vi = (BU)/V2, AU, BU)/V2)T,
V, = {1/4/2, 0, —1/3/2)7, (A3)
Vs = [EU)/V2, DU), EU)/V2)T,

where the coefficients A(U), B(U), D(U), and E(U) are given
in Eq. (14).

To generate the space-dependent expressions in Sec. I1C,
one uses the following mappings:

[1,1) = Pg1(x1, x2),
12,00 —10,2) — V2P (x1, x2), (A4)
12,0) +10,2) — v2®Pg3(x1, x2).

2. Two spin-1/2 bosons

We seek solutions for states with S, = 0. Using the basis
set

114,00, 11.4), 1) 10, 1), (AS5)

where the kets correspond to permanents in first quantization,
one derives the following matrix Hamiltonian with the spin-
1/2 bosonic Hubbard Hamiltonian in Eq. (2):

U -J —-J 0
—J 0 0 —J

H = . (A6)
0 -J —-J U

The four eigenenergies of the matrix (A6) are given by the
quantities E;, i = 1,...,4, in Eq. (15) of the main text. The
corresponding four normalized eigenvectors are

Vi = (BU)/V2, AU)/NV2, AU/N2, BU)/N2YT,
V, ={1/3/2, 0, 0, —1/+/2)7,

Vs = (EU)/V2, DU)/N2, DU)/V2, EUNV2Y
Vs = {0, 1/3/2, —1/3/2, 0}7, (A7)

where the coefficients AU), BU), DU), and E(U) are given
in Eq. (14).

To generate the space-dependent expressions in Sec. IIC,
one uses the following mappings:

11, 4) 4 [ 1) = V21 (x1, x2)x (1, 0),
114, 0) = 10, 1) = V2@ (x1, x2)x (1, 0),

114, 0) + 10, 1) = v2®g3(x1, x2)x (1, 0),
11, 4) = 14, 1) = V24 (x1, x2)x (0, 0).

(A8)

3. Two spin-1/2 fermions

We again seek solutions for states with S, = 0. Using the
basis set

14,00, . 1), 11.4) 10, 1), (A9)

where the kets correspond to determinants in first quantiza-
tion, one derives the following matrix Hamiltonian associated
with the spin-1/2 fermionic Hubbard Hamiltonian in Eq. (3):

u J —-J 0
J 0 0 J

H=|" o o (A10)
0 J —-J U

The four eigenenergies of the matrix (A10) are given again
by the quantities E;,i = 1, ..., 4, in Eq. (15) of the main text.
The corresponding four normalized eigenvectors are

Vi = {BU)/V2, —AU)/V2, AU)/V2, BU)/V2)T,
V= {1/3/2, 0, 0, —1/+/2)7,

Vs = {EU)/V2, =DU)/V2, DU)/V2, EU/V2Y,
Vi = {0, 1/¥/2, 1/3/2, 0)7, (A11)
where the coefficients A(U), BU), D(U), and E(U) are given
in Eq. (14).

To generate the space-dependent expressions in Sec. IIC,
one uses the following mappings:

11.4) = 1. 1) > V21 (x1, 12)x (0, 0),
114.0) — 10, 1) > V2@ 52 (x1, x2)x (0, 0),
114.0) +10, 1) > V2®53(x1, x2)x (0, 0),

1.4 + 14, 1) = V20, (x1, x2)x (1, 0).

(A12)

Note that the difference between the matrices in Egs. (A6)
and (A10) is an opposite sign in specific matrix elements; this
is due to the commutation versus anticommutation property
between bosonic and fermionic creation and annihilation op-
erators.
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