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Patterns of the Aharonov-Bohm oscillations in graphene nanorings
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Using extensive tight-binding calculations, we investigate (including the spin) the Aharonov-Bohm (AB) effect
in monolayer and bilayer trigonal and hexagonal graphene rings with zigzag boundary conditions. Unlike the
previous literature, we demonstrate the universality of integer (hc/e) and half-integer (hc/2e) values for the
period of the AB oscillations as a function of the magnetic flux, in consonance with the case of mesoscopic
metal rings. Odd-even (in the number of Dirac electrons, N ) sawtooth-type patterns relating to the halving of the
period have also been found; they are more numerous for a monolayer hexagonal ring, compared to the cases
of a trigonal and a bilayer hexagonal ring. Additional, more complicated patterns are also present, depending
on the shape of the graphene ring. Overall, the AB patterns repeat themselves as a function of N , with periods
proportional to the number of the sides of the rings.
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I. INTRODUCTION

Due to the widespread interest in nanoscience and nan-
otechnology in the past 15 years, persistent currents (PCs) and
the Aharonov-Bohm (AB) effect in ring-type nanosystems
have attracted much attention. Originally, PCs and the AB
effect were studied theoretically for spinless electrons in
the ideal case of strictly one-dimensional (1D; zero-width)
metallic nanorings threaded by a solenoidal magnetic flux.1–4

Subsequently, consideration of spin in this ideal case was
shown5 to lead to a nontrivial odd-even behavior, associated
with halving (�0/2 versus �0) of the universal AB period
and of the corresponding amplitude of the AB oscillations as
a function of the applied magnetic field B; �0 = hc/e is the
unit of magnetic flux.

Recently fabricated new carbon-based materials, like
carbon nanotubes6 and two-dimensional graphene, provide
additional opportunities for investigations of PCs and the AB
effect, with potential future technological applications, in ring-
type nanodevices. However, despite the recent extraordinary
interest in graphene (starting with the isolation of a single
graphene sheet),7 only a few experimental8,9 and theoretical
studies (see, e.g., Refs. 10–13) of PCs and the AB effect
in graphene nanorings have appeared in the last couple of
years. Surprisingly, these graphene-ring studies have been
inconclusive regarding the aforementioned odd-even behavior
associated with the electron spin; at the same time, no regular
behavior or other pattern of the AB oscillations was reported.
Moreover, one11 of these publications has concluded that the
odd-even behavior fails to manifest in graphene nanorings
at all.

In this paper, based on extensive tight-binding (TB)
calculations, we investigate AB oscillations for the case of
trigonal and hexagonal narrow graphene rings terminating in
zigzag edges; for experimental advances in the fabrication of
graphene samples with well-defined high-purity edges, see
Ref. 14. Our systematic studies (in the size range 1 � N � 100
Dirac electrons) reveal clear signatures of several well-defined
patterns (including odd-even and halved-period behaviors)
that can be traced to consideration of both the spin degree
of freedom and the zigzag boundary conditions obeyed by
graphene Dirac electrons. The different conclusion arrived at

in this article in comparison with previous publications10,11

appears to be due to the simplified15 condition (infinite-mass
boundary condition, which, unlike the zigzag condition,
cannot describe different crystallographic terminations
and corner geometries in graphene) used in the latter, in
conjunction with the circular symmetry required for obtaining
analytic solutions of the continuous Dirac-Weyl equation.

II. PRELIMINARY THEORETICAL BACKGROUND

The spectra of an ideal metallic ring3 (IMR) are very
regular, exhibiting a parabolic dependence on the magnetic
flux �, which is portrayed by the simple analytic expression

εIMR
i (�) ∝ (l − �/�0)2, (1)

where the single-particle angular momentum l takes the values
l = 0,±1,±2, . . . . This regularity is directly reflected in AB-
related quantities, such as the persistent current I and the
total magnetization M , which exhibit a periodic behavior as a
function of � with period �0 (for spinless electrons3) or both
�0 and �0/2 (when the electron spin is considered).5 Indeed,
one has

I = −c
dEtot

d�
and M = −dEtot

dB
, (2)

where the total energy

Etot =
occ∑
i,σ

εi(B) (3)

is given by the sum over all occupied single-particle (noninter-
acting electron)16 energies; the index σ runs over spins. The
magnetic flux in Eq. (2) is specified as � = BS, where the
area S = πR2, with R being the radius of the 1D ideal ring;
for advances in the measurement of small PCs and magnetic
moments, see Ref. 14(b).

To determine the single-particle spectrum [energy levels
εi(B)] in the TB calculations for graphene rings, we use the
Hamiltonian

HTB = −
∑
〈i,j〉

tij c
†
i cj + H.c., (4)
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with the angle braces indicating summation over the nearest-
neighbor sites i,j . The hopping matrix element

tij = t exp

(
ie

h̄c

∫ rj

ri

ds · A(r)

)
, (5)

where t = 2.7 eV, ri and rj are the positions of the carbon
atoms i and j , respectively, and A is the vector potential
associated with the applied perpendicular magnetic field B.
The diagonalization of the TB Hamiltonian Eq. (4) is imple-
mented with the use of the sparse-matrix solver ARPACK.17 In
calculating Etot [see Eq. (2)], only single-particle TB energies
with εi(B) > 0 are considered.10,11 We note here that, unlike
the continuous Dirac-Weyl equations,10,11 both the K and the
K ′ valleys are automatically incorporated in the TB treatment
of graphene nanorings.

III. MONOLAYER TRIGONAL RING

First, we analyze TB results for a narrow trigonal graphene
ring having pure zigzag terminations for both the inner and the
outer edges [see Fig. 1(a)]. The corresponding TB spectra are
displayed in Fig. 2(a). Since the constant magnetic field B is
applied across the whole width of the ring, the magnetic flux
is defined here in an average sense, i.e., through the use of an
average area Sav given by

Sav ≈ (Sinn + Sout)/2, (6)

where the indices “inn” and “out” indicate the areas enclosed
by the inner and outer edges of the ring, respectively.

The graphene-ring spectra in Fig. 2(a) are different from
the simple spectra in Eq. (1), familiar from the case of 1D
metallic rings.3 Specifically, they are grouped in bunches of
six levels (see also Ref. 18), and each such bunch contains two
three-level units. Naturally, this organization is reflected in the
behavior of the AB oscillations. Indeed, we found that the AB
oscillations for the magnetization M(�) exhibits an overall
period of 2 × 6 = 12 as a function of the electron number
N (the factor of 2 resulting from the spin degree of freedom).
Within this period of 12 electrons, we find four distinct patterns
as a function of � (see Fig. 3), namely, (a) sawtooth, (b)
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FIG. 1. (Color online) Diagram of narrow trigonal and hexagonal
graphene rings with zigzag boundary conditions (for both the inner
and the outer edges) used in TB calculations. (a) Equilateral trigonal
ring with a width of three rows of carbon atoms; (b) hexagonal ring
(with edges forming concentric regular polygons) with a width of five
rows. The length unit is the lattice constant a = 0.246 nm.
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FIG. 2. (Color online) Characteristic TB low-energy spectra of
the narrow graphene rings with zigzag boundary conditions portayed
in Fig. 1. (a) Trigonal graphene ring; (b) hexagonal graphene ring.
Thick black lines indicate the highest occupied state for N = 15 (a)
and N = 43 (b) Dirac electrons (spin included). Note the threefold
energy bands for the trigonal ring in (a) and the sixfold ones for the
hexagonal ring in (b). In the case of the trigonal ring (odd number of
sides), the consecutive threefold bands are shifted by a phase �0/2
with respect to each other; this results in a doubling of the period
of the AB patterns as a function of N , i.e., a period of 12 instead of
6 (spin included). In the case of the hexagonal-ring spectrum (even
number of sides), no such shift is present, and the period as a function
of N remains 12 (spin included).

pinched sawtooth, (c) asymmetric rounded sawtooth, and (d)
halved-period sawtooth.

The first three patterns [Figs. 3(a)–3(c)] exhibit a period
of �0 as a function of �, while the fourth pattern [Fig. 3(d)]
has a halved period �0/2. As mentioned, the halving of the
fundamental period �0 was seen earlier in studies5 of the
AB effect for spinfull electrons in ideal 1D metallic rings.
In this case, it was described as an odd-even effect due to
a two-electron alternation as a function of N . In contrast,
the halving of the fundamental period in the case of trigonal
graphene nanorings exhibits a six-electron period as a function
of N , namely, for N = 6i + N0, and only when N0 = 3
(i = 1,2, . . .).

Another regular behavior in the AB patterns of trigonal
graphene rings is a constant shift of the � dependence by
±�0/2 for all electron sizes related by N = 6i + N0, with
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FIG. 3. (Color online) Magnetization as a function of the the
magnetic flux � (spin is included). The four characteristic patterns
of the Aharonov-Bohm oscillations associated with a trigonal
graphene ring having zigzag boundary terminations [see Fig. 1(a)]
are portrayed: (a) sawtooth; (b) pinched sawtooth; (c) asymmetric
rounded sawtooth; (d) halved-period sawtooth.

N0 = 1,2, . . . ,6; N0 is kept constant while i runs over i =
1,2,3, . . . . For example, the pattern of N = 8 is the same as
that of N = 2, but shifted by �0/2, and the same holds for the
pattern of N = 10 relative to that of N = 4, etc.

Taking consideration of the above, and through inspection
of magnetization curves in the range 1 � N � 100, the follow-
ing summary of AB patterns can be deduced (i = 1,2, . . .):

(1) Sawtooth pattern (a) with zero shift: N = 12i + 1, N =
12i + 2, N = 12i + 10.

(2) Sawtooth pattern (a) with a �0/2 shift: N = 12i + 4,
N = 12i + 7, N = 12i + 8.

(3) Pinched sawtooth pattern (b) with a �0/2 shift: N =
12i + 5.

(4) Pinched sawtooth pattern (b) with zero shift: N = 12i +
11.

(5) Asymmetric rounded sawtooth pattern (c) with zero
shift: N = 12i + 6.

(6) Asymmetric rounded sawtooth pattern (c) with a �0/2
shift: N = 12i + 12.

(7) Halved-period sawtooth pattern (d) with zero shift: N =
12i + 3.

(8) Halved-period sawtooth pattern (d) with a �0/2 shift:
N = 12i + 9.

To summarize, �0/2 oscillations as a function of the
magnetic flux occur only in cases 7 and 8, with the latter
also involving an overall �0/2 shift.

IV. MONOLAYER HEXAGONAL RING

Next we analyze AB oscillations in the case of a narrow
hexagonal graphene ring with zigzag edges [see Fig. 1(b)]. The
corresponding energy spectrum [see Fig. 2(b)] again exhibits
an organization in bands, as was the case with the spectra of the
trigonal ring. However, each band now contains six, instead
of three, single-particle levels, and this is clearly connected to
the sixfold point-group symmetry of the regular hexagon (the

three-level bands arising also from the threefold symmetry of
the equilateral triangle).

Compared to the trigonal-ring spectra, the hexagonal-ring
spectra are simpler in one way; namely, there is no phase
shift between two successive sixfold bands [see Fig. 2(b)], in
contrast to the �0/2 shift between successive threefold bands
for the trigonal rings [see Fig. 2(a)]. The presence (absence) of
a �0/2 shift between successive bands appears to be a general
behavior of the spectra of regular-polygon-shaped graphene
rings with an odd (even) number of sides.

The absence of a shift between consecutive energy bands
leads to a simplification of the AB patterns, since it results
in a period of 2 × 6 = 12 (avoiding the doubling to 24)
electrons as a function of N . Of particular interest is the
fact that, disregarding a potential shift of ±�0/2, the AB
patterns exhibited by the magnetization curves (see Fig. 4)
display a well-developed (although apparently not perfect)
alternation pattern between integer periods (�0) and halved
periods (�0/2), as long as the highest occupied state lies
in the interior of the sixfold energy band. The �0/2 period
reflects the zigzag nature of the interior states (which we term
W states to distinguish from the zigzag boundary condition);
examples of W states are given by the thick black lines in Fig. 2.
When the Fermi level (highest occupied state) coincides with a
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FIG. 4. (Color online) Magnetization as a function of the the
magnetic flux � (spin is included). Six patterns of the Aharonov-
Bohm oscillations associated with a hexagonal graphene ring having
zigzag boundary terminations [see Fig. 1(b)] are portrayed. The
first five patterns (a)–(e) correspond to single-particle states near
the middle of the 12-fold spectral band (spin included), while
the sixth pattern (f) corresponds to the top state [see Fig. 2(b)].
(a) N = 29; shifted halved-period sawtooth pattern. (b) N = 30;
shifted sawtooth pattern. (c) N = 31; halved-period sawtooth pattern.
(d) N = 32; sawtooth pattern. (e) N = 33; halved-period sawtooth
pattern. (f) N = 36; rounded sawtooth pattern. (a)–(e) The qualitative
development of an odd-even alternation between one-period, �0, and
halved-period, �0/2, sawtooth patterns is evident.
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FIG. 5. (Color online) Patterns of Aharonov-Bohm oscillations
associated with a wider [in comparison with Fig. 1(b)] hexagonal
monolayer graphene ring (with 12 rows of carbon atoms on each side)
having zigzag boundary terminations. (a) N = 27; halved-period
sawtooth. (b) N = 28; sawtooth.

W state, �0/2 oscillations occur. Note that there are four W
states for the hexagonal ring, but only one W state for the
trigonal ring.

In Fig. 4, we display the magnetization curves for several
instances of electrons occupying states in the 12-fold band with
a number of electrons ranging from N = 25 to N = 36 (the
doubling 2 × 6 = 12 is due to consideration of the electron
spin). In the range 27 � N � 34, the magnetization curves
exhibit an odd-even effect associated with the alternation
between a whole-period (�0) sawtooth oscillation and a
halved-period (�0/2) sawtooth pattern (exhibiting also a
halved amplitude); examples of this behavior are portrayed in
Figs. 4(a)–4(e). The two cases for N = 25 and N = 26, with
the 25th and 26th electrons occupying the bottom level of the
sixfold band, both exhibit a full-period (�0) sawtooth behavior.
Finally, the two electrons occupying the top level of this
energy band (corresponding to N = 35 and N = 36) exhibit
a dissimilar behavior, with the penultimate one (N = 35)
having a full-period (�0) sawtooth behavior and the ultimate
one (N = 36) showing a full-period (�0) rounded-sawtooth
behavior [see Fig. 4(f)]. Naturally, the aforementined AB
patterns repeat themselves with a period of 12 electrons.

In Fig. 5, we display illustrative magnetization curves for
the case of a wider hexagonal ring compared to the one in
Fig. 1(b) (by a factor of 2.4). From an inspection of the patterns
in Fig. 5, as well as others not shown here, we found that the
behavior of the AB oscillations in this wider ring changes
only in minor ways. Much wider rings are needed to reach a
substantial modification in the AB behavior.

V. SIMILARITIES TO THE IDEAL METAL RING

To gain further insight into the appearance of the odd-even
AB behavior in graphene nanorings with zigzag terminations
(described in Secs. III and IV), we plot in Fig. 6 the total
energy curves, Etot(�) [see Eq. (3)], as a function of the
average magnetic flux � [see Eq. (6)] for two characteristic
cases, namely, N = 30 and N = 31, discussed earlier for an
hexagonal graphene ring [see Figs. 4(b) and 4(c)].

A remarkable feature of these total energy curves is the
almost-parabolic (∝�2) dependence on the magnetic flux
(equivalently the applied magnetic field), which exhibits a
period �0 for N = 30 (even) and a half-period �0/2 for
N = 31 (odd). The odd-even sawtooth oscillations of the
magnetization portrayed in Fig. 4 are a direct consequence
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FIG. 6. (Color online) Total energy curves (as a function of the
magnetic flux �) corresponding to the magnetizations in Figs. 4(b)
and 4(c) [case of the thin monolayer hexagonal graphene ring with
zigzag terminations portrayed in Fig. 1(b)]. (a) N = 30; (b) N = 31.
Observe the doubling of the frequency and the halving of the
amplitude of the oscillations as one goes from N = 30 (even) to
N = 31 (odd).

of this parabolic dependence given the definition of the
magnetization as the derivative of the total energy with respect
to the magnetic flux [see Eq. (2)].

We have further examined the total energy curves, EIMR
tot (�)

(not shown here), for the case of an IMR, i.e., using the well-
known analytic energies of Eq. (1), and have confirmed that
their shape consists of similar parabolic segments exhibiting a
�0 or a �0/2 period for even or odd N , respectively.

Naturally, this overall parabolic (∝�2) dependence of
EIMR

tot (�) could have been anticipated due to the original
parabolic dependence on � of the single-particle levels
εIMR
i (�) [see Eq. (1)]. However, for graphene rings with zigzag

terminations, this result is a surprising one, given that the
associated single-particle spectrum is much more complicated;
it further indicates that the corresponding graphene single-
particle energies [associated with the W states; see Secs. III
and IV] are parabolic on � to a rather large degree.

We further briefly mention here that in preliminary calcu-
lations we found that graphene rings with armchair edge ter-
minations have, in contrast to those with zigzag terminations,
single-particle spectra with an almost-linear dependence on
�, and thus their AB patterns are different (as we describe in
detail elsewhere).19
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FIG. 7. (Color online) An example of the case of a narrow bilayer
hexagonal graphene ring with zigzag terminations on all 12 sides.
The bilayer ring is built by stacking (Bernal stacking) two monolayer
hexagonal rings resembling the shape in Fig. 1(b). (a) Characteristic
part of the spectrum. The thick black line denotes the level occupied
by the 29th electron (spin included). The dashed (blue) line denotes
the single W state here. (b) Corresponding magnetization curve (for
N = 29 electrons) as a function of the magnetic flux � (spin is
included).

VI. BILAYER HEXAGONAL RING

Having addressed the appearance of regular trends in AB
oscillations of monolayer graphene nanorings, we comment
next on possible modifications that arise in associated bi-
layer graphene-ring structures. To this end, we consider an
hexagonal bilayer ring formed by stacking two monolayer
rings [resembling the arrangement portrayed in Fig. 1(b)]
one on top of the other following the Bernal prescription.

Due to the Bernal-type coupling between the two rings, such
narrow bilayer graphene rings are analogs of the double-ring
configurations considered recently in the framework of the AB
effect in mesoscopic metallic devices.20

A characteristic part of the low-energy TB spectra for the
bilayer ring is displayed in Fig. 7(a). As was the case for
monolayer hexagonal rings, the emergence of sixfold energy
bands persists also for the case of a narrow bilayer hexagonal
ring. However, the couplings between the layers leads to
strong modifications within each energy band; namely, the
three top energy levels are strongly compressed compared to
the three bottom ones. This results in turn in several more
complicated profiles for the AB oscillations, an example of
which is displayed in Fig. 7(b). From an inspection of Fig. 7(a),
it is also clear that there is only a single well-formed W state
that may serve as a Fermi level [see second level from the
bottom, denoted by the dashed (blue) line], and thus a halved-
period sawtooth pattern occurs only once within the period of
12 electrons (with the spin degeneracy being accounted for).

VII. CONCLUSIONS

Using TB calculations and taking into account the spin,
we have demonstrated the universality of the integer (�0) and
half-integer (�0/2) magnetic-flux periods in the AB effect
in narrow graphene rings with zigzag boundary conditions
(trigonal and hexagonal shapes were considered in both
monolayer and bilayer structures). The AB patterns for the
monolayer hexagonal rings are dominated by an odd-even (in
the electron number) alternation of sawtooth-type oscillations
with �0 and �0/2 periods. This odd-even alternation persists
also for trigonal monolayer and hexagonal bilayer rings, with
a reduced occurrence frequency (related to the number of W
states in each energy band). Additional patterns of higher
complexity are also prominent, depending on the structure
of the graphene ring. All AB patterns repeat themselves as
a function of N , with periods relating to the point-group
symmetry of the geometrical shape of the rings.21 Our findings,
which contrast with the results in recent literature on the
subject (see, e.g., Refs. 10 and 11), provide the impetus for
experimental probing of AB effects in the graphene systems
explored in this paper.
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