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Few-electron anisotropic QDs
in low magnetic fields: 

exact-diagonalization results for excitations, 
spin configurations, and entanglement

N=2e: C. Ellenberger et al, PRL 96, 126806 (2006)

N=3e: Yuesong Li et al., PRB 76, 245310 (2007)

N= 4e: (double dots) Ying Li et al., PRB 80, 045326 (2009) 



TWO-STEP METHOD
EXACT 

DIAGONALIZATION

When possible 

(small N):
High numerical 

accuracy

Physics less

transparent
compared to

“THE TWO-STEP”

Yannouleas and Landman, Rep. Prog. Phys. 70, 2067 (2007)

Pair correlation functions,

CPDs
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Applications of EXD approach

(to strongly-correlated systems 

like 2D electrostatic QDs)

1) Detailed description of excitation spectra

(advantage over DFT, etc…)  [first part]

2) Description of  many-body entanglement

(advantage over DFT, etc…) [first part]

3) Transport properties in QDs (current intensity, 

phase lapses in Aharonov-Bohm interferometry)

[second part]



Control parameters

Neutral 
bosons

CONTROLLING PARAMETERS



(a) Measure of entanglement: Von Neumann entropy

Slater determinantI ~ 100,000

How does one describe entanglement in EXD wfs?

EXD:

Measure of how 
many determinants



Excitation spectrum of two correlated 

electrons in a lateral quantum dot with 

negligible Zeeman splitting

C. Ellenberger, T. Ihn (ETH, Zurich),

K. Ensslin (ETH, Zurich),

C. Yannouleas, Uzi Landman, 

D. Driscoll, A.C. Gossard (Santa Barbara)

Phys. Rev. Lett.  96, 126806 (2006)

(Anisotropic Quantum Dot Helium)



ETH single QD



EXD = Exact diagonalizationETH single QD



Total-spin projection DQD

Elongated QD

1) Symmetry breaking
2) Symmetry 

restoration

localized orbitals



hwx=4.23 meV;  hwy=5.84 meV;
m*=0.070;  kappa=12.5; a=0.86

UHF broken
symmetry
orbitals
used to

construct the
GHL wave 
function

ETH single QD



(Quantum Computing)

Measure of entanglement
Canonical form:

K=79;   M <= K

Von Neumann Entropy

(indistinguishable parties)

Measure of Entanglement    

Exact

Exact

GHL

GHL

Singlet

Triplet
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(Quantum Computing)

Measure of entanglement
Canonical form:

K=79;   M <= K

Von Neumann Entropy

(indistinguishable parties)

Measure of Entanglement    

ETH single QD

EXD



(N, S, S  )z

(b) In EXD total spin and its spin projection 

are good quantum numbers

Branching diagram

S

N

Spin degeneracies

N-qubit Dicke states

N-qubit W states

How does one describe entanglement in EXD wfs?





EXD:  N=3e in elliptic QD (hwx/hwy=1/2)

κ=12.5

κ=1

B=0; GS (S=1/2,Sz=1/2)
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α|         >+β |        >+γ |        >

Elliptic QD

localized space orbitals

Formation of three-electron Wigner molecule

Entangled three-qubit W-states

well-separated orbitals --> distinguishable particles

Only in limiting cases:

large Coulomb repulsion – large magnetic field 

1) α= 2, β=−1, γ=−1 => (1/2,1/2; 1) 
2) α=0, β=1, γ=−1 => (1/2,1/2; 2)
3) α=β=γ=1 => (3/2,1/2)



2|         >  − |        > − |        >EXD wf ~

(b) Study entanglement by using 

Electron density



N=3e;  EXD CPDs for Circular dot  [S.A. Mikhailov, PRB 65, 115312 (2002)]

L=1;  S=1/2, S  =1/2;  R   = 8z W 

Intrinsic wave function ;  rotating WM;  not pinned;
Cyclic group symmetry



Elliptic QD

Formation of 4-electron Wigner molecule

hwx/hwy =1/2 hwx/hwy =1/3

κ=0.60

(S=1,Sz =1) Lowest energy

hwy=6.71 meV

hwx=2.24 meVhwx=3.14 meV

hwy=6.28 meV B=0



General spin function for a 

(S=0,Sz =0) state with N=4

localized electrons

Can this spin function be properly characterized as
antiferromagnetic?

It is a multideterminantal wf!
It expresses entanglement!

(non-symmetric Dicke state!)

(in book by K. Varga)



(S=0,Sz =0)

Second lowest energy 

with these quantum

numbers

fixed

|           > - |           > - |           >+ |           >

EXD wf (          ) ~θ =120
o

Spin resolved CPDs for N=4  
(second case in previous slide: anisotropy=1/3)

ED

Dicke
state



Spin resolved CPDs for N=4  

(anisotropy=1/3)

fixed

|           > - |           > W stateEXD wf ~

(S=1,Sz =1) Lowest

energy with these 

quantum numbers

ED



Using the EXD wave function, one can determine the 
degree of entanglement of few indistinguishable electrons 

in a quantum dot 

SUMMARYSUMMARY (first part)(first part)

Few electrons in an elliptic QD can form for large anisotropies 

linear Wigner molecules

The many-body EXD wave functions in the 
linear Wigner Molecule regime are related  to 

entangled W and Dicke states



Exact-diagonalization treatment 
of the non-universal transport regime 

in few-electron quantum dots

Leslie O. Baksmaty, Constantine Yannouleas, Uzi Landman
School of Physics, Georgia Institute of Technology

Phys. Rev. Lett. 101, 136803 (2008)

Experiment:
M. Avinun-Kalish et al.,

Nature 436, 529 (2005)



Experiment:  Aharonov-Bohm interferometry:
M. Avinun-Kalish et al., Nature 436, 529 (2005)

Non-universal regime 

It is essential to have the best description for the QD electronic structure

EXD -> Full CI (superposition of single-particle configurations ~ 100,000),
see e.g. Yannouleas and Landman, Rep. Prog. Phys. 70, 2067 (2007)

Universal regime 



Transport approach

John Bardeen’s seminal paper: “Tunneling from a many-body point of view”
PRL  6, 57 (1961) -- Current

J.M. Kinaret et al.,  PRB 46, 4681 (1992) -- Current

Weak tunneling coupling:  Lowest order  in coupling – Golden rule

Non-universal regime: 
Current and transmission phase depend strongly on the details and 
electronic structure (many-body problem) of the quantum dot .
They vary slowly with the tunneling coupling in a given experimental setup.

For transmission phase:  S.A. Gurvitz, PRB 77, 201302 (2008)

(only first half of paper)



Quasiparticle in QD
Leads: non-interacting

Previous calculations: 
QD described with independent-particle model

(Hackenbroich et al, PRL 76, 110 (1996))

This study: Electronic structure of QD described through

exact diagonalization (EXD; includes e-e correlations)

Tails under a 
tall barrier



EXD quasiparticle wave function

transmission

phase

(0,0) N=2 ���� N=3 (1/2,1/2)

GS

amplitude

(modulus square)

eta=0.724

kappa=12.5

Second excited



EXD quasiparticle wave function

transmission

phase
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Second excited



Red �π (No PL)

Yellow � 0   (Yes PL)

BarBar--chart: N =1 chart: N =1 �������� N=2N=2

Anisotropy:

Strength of e-e interaction:

Dielectric constant κ

Doorway excited states = 5 meV
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Yuesong Li et al, PRB 76, 245310 (2007)

Spin configurations for a 3e QD treated with EXD

(S, S  )z



Red �π (No PL)

Yellow � 0   (Yes PL)

BarBar--chart: N =2 chart: N =2 �������� N=3    N=3    [(0,0) [(0,0) �������� (1/2,1/2)](1/2,1/2)]

Anisotropy:

Strength of e-e interaction:

Dielectric constant κ

Doorway excited states



Conclusions (second part)

Non-universal regime of electron interferometry can be described using
Bardeen’s weak-coupling theory and exact diagonalization for QD

We find (in agreement with experiment): 
a) for N=1 � N=2:  no phase lapse

b) for N=2 � N=3:  phase lapse of  π

Agreement for QDs with anisotropy and strong e-e repulsion,
favoring regime of Wigner molecule formation

Importance of doorway excited states and many-body spin configurations


