Few-electron anisotropic QDs in low magnetic fields: exact-diagonalization results for excitations, spin configurations, and entanglement

Constantine Yannouleas and Uzi Landman School of Physics, Georgia Institute of Technology

N=2e: C. Ellenberger et al, PRL **96**, 126806 (2006)

N=3e: Yuesong Li et al., PRB **76**, 245310 (2007)

N= 4e: (double dots) Ying Li et al., PRB **80**, 045326 (2009)

TWO-STEP METHOD

A HIERARCHY OF APPROXIMATIONS

Restricted Hartree-Fock (RHF)

All spin and space symmetries are preserved

Double occupancy / e-densities: circularly symmetric

Single Slater determinant (central mean field)

Unrestricted Hartree-Fock (UHF)

Total-spin and space symmetries (rotational or parity) are broken / Different orbitals for different spins Solutions with lower symmetry (point-group symmetry) Lower symmetry explicit in electron densities Single Slater determinant (non-central mean field)

Implementation of UHF: Pople-Nesbet Eqs.
2D harmonic-oscillator basis set
Two coupled matrix Eqs. (for up and down spins)

Restoration of symmetry via projection techniques

Superposition of UHF Slater det.'s (beyond mean field)
e-densities: circularly symmetric
Good total spin and angular momenta
Lower symmetry is INTRINSIC (or HIDDEN)
Detection of broken symmetry:
CPDs and rovibrational excitations of quantum dots

CPDs and dissociation of quantum dot molecules

Non-linear equations Bifurcations

Correlations

EMERGENT PHENOMENA

Restoration of linearity of many-body equations

EXACT DIAGONALIZATION

When possible (small N):
High numerical accuracy

Physics less
transparent
compared to
"THE TWO-STEP"

Pair correlation functions, CPDs

Yannouleas and Landman, Rep. Prog. Phys. 70, 2067 (2007)

Applications of EXD approach (to strongly-correlated systems like 2D electrostatic QDs)

- 1) Detailed description of <u>excitation spectra</u> (advantage over DFT, etc...) [first part]
- 2) Description of many-body <u>entanglement</u> (advantage over DFT, etc...) [first part]
- 3) <u>Transport properties</u> in QDs (current intensity, <u>phase lapses</u> in Aharonov-Bohm interferometry) [second part]

CONTROLLING PARAMETERS

IN SINGLE QD'S: WIGNER CRYSTALLIZATION

Essential Parameter at B=0: (parabolic confinement)

$$R_{W} = (e^{2}/\kappa I_{0})/\hbar \omega_{0} \sim 1/(\hbar^{3}\omega_{0})^{1/2}$$

e-e Coulomb repulsion

kinetic energy

$$I_0 = (\hbar / m^* \omega_0)^{1/2}$$
 } Spatial Extent of 1s s.p. state

κ: dielectric const. (12.9)

m*: e effective mass (0.067 m_e)
$$^{\text{GaAS}}$$

 $^{\text{Hu}}_{0}$ (5 - 1 meV) => $^{\text{R}}_{\text{W}}$ (1.48 - 3.31)

In a magnetic field, essential parameter is B itself

IN QDM'S: DISSOCIATION (Electron puddles, Mott transition)

Essential parameters: Separation (d)

Potential barrier (V_b) Magnetic field (B) $R_{\delta} = gm/(2\pi\hbar^2)$

Neutral bosons

$$\mathcal{H} = \sum_{i=1}^{N} [\mathbf{p}_{i}^{2}/(2m^{*}) + V(x_{i}, y_{i})] + \sum_{i < j} e^{2}/(\kappa r_{ij})$$

$$V(x,y) = m^*(\omega_x^2 x^2 + \omega_y^2 y^2)/2$$

$$|\Psi_N^{\mathrm{EXD}}(S, S_z; k)\rangle = \sum_I C_I^N(S, S_z; k) |SD(I; N, S_z)\rangle$$

I ~ 100,000

Slater determinant

How does one describe entanglement in EXD wfs?

(a) Measure of entanglement: Von Neumann entropy

$$S_{vN} = -\operatorname{Tr}(\rho \log_2 \rho) + C$$

$$C = -\log_2 N$$

Measure of how many determinants

$$\rho_{\nu\mu} = \frac{\langle \Psi^{\text{EXD}} | a_{\mu}^{\dagger} a_{\nu} | \Psi^{\text{EXD}} \rangle}{\sum_{\mu} \langle \Psi^{\text{EXD}} | a_{\mu}^{\dagger} a_{\mu} | \Psi^{\text{EXD}} \rangle}$$

$$\langle \Psi^{\text{EXD}} | a_{\mu}^{\dagger} a_{\nu} | \Psi^{\text{EXD}} \rangle = \sum_{I,J} C_I^* C_J \langle \text{SD}(I) | a_{\mu}^{\dagger} a_{\nu} | \text{SD}(J) \rangle$$

Excitation spectrum of two correlated electrons in a lateral quantum dot with negligible Zeeman splitting

- C. Ellenberger, T. Ihn (ETH, Zurich),
- K. Ensslin (ETH, Zurich),
- C. Yannouleas, Uzi Landman,
- D. Driscoll, A.C. Gossard (Santa Barbara)

Phys. Rev. Lett. 96, 126806 (2006)

(Anisotropic Quantum Dot Helium)

EXD = Exact diagonalization

"THE WAY DOWN" TWO-STEP METHOD

SECOND STEP:
RESTORATION OF SYMMETRIES VIA PROJECTION

TOTAL SPIN:

$$P_s \equiv \prod_{s' \neq s} \frac{S^2 - s'(s'+1)\hbar^2}{[s(s+1) - s'(s'+1)]\hbar^2}$$

$$S^2\Phi_{\rm UHF} = \hbar^2 \Big[(N_\alpha - N_\beta)^2/4 + N/2 + \sum_{i < j} \varpi_{ij} \Big] \Phi_{\rm UHF}$$
interchanges spins

Two electrons in a DQD:

$$\Psi_{\text{GVB}}^{\text{s}}(1,2) = n_{\text{s}}\sqrt{2}P_{0}\Psi_{\text{UHF}}(1,2)$$
 Singlet

$$2\sqrt{2}P_{0}\Psi_{\mathrm{UHF}}(1,2) = (1-\varpi_{12})\sqrt{2}\Psi_{\mathrm{UHF}}(1,2)$$

= $|u(1)\bar{v}(2)\rangle - |\bar{u}(1)v(2)\rangle$. two def.'s

GVB, Generalized Valence Bond GHL, Generalized Heitler London

Y&L, Eur. Phys. J. D 16, 373 (2001) Int. J. Quantum Chem. 90, 699 (2002)

DQD

localized orbitals

Elongated QD

1) Symmetry breaking
2) Symmetry
restoration

2e elliptic QD

Exact

$$\Psi_{\text{EXD}}^{s,t}(\mathbf{r}_1, \mathbf{r}_2) = \sum_{i < j}^{2K} \Omega_{ij}^{s,t} |\psi(1; i)\psi(2; j)\rangle$$

Canonical form:

Exact

$$\Psi_{\text{EXD}}^{s,t}(\mathbf{r}_1, \mathbf{r}_2) = \sum_{k=1}^{M} z_k^{s,t} |\Phi(1; 2k-1)\Phi(2; 2k)\rangle$$

$$K=79; M <= K$$

GHL

$$\Psi^s_{\mathrm{GHL}} \propto |\Phi^+(1\uparrow)\Phi^+(2\downarrow)\rangle - \eta|\Phi^-(1\uparrow)\Phi^-(2\downarrow)\rangle$$

Singlet

GHL

$$\Psi^t_{\mathrm{GHL}} \propto |\Phi^+(1\uparrow)\Phi^-(2\downarrow)\rangle + |\Phi^+(1\downarrow)\Phi^-(2\uparrow)\rangle$$

Triplet

ETH single QD

Measure of Entanglement

Von Neumann Entropy (indistinguishable parties) $\mathcal{S} = -\sum_{k=1}^M |z_k|^2 \log_2(|z_k|^2)$

(Quantum Computing)

$$S = -\sum_{k=1}^{M} |z_k|^2 \log_2(|z_k|^2)$$

$$\Psi_{\text{EXD}}^{s,t}(\mathbf{r}_1, \mathbf{r}_2) = \sum_{i < j}^{2K} \Omega_{ij}^{s,t} | \psi(1; i) \psi(2; j) \rangle$$

Canonical form:

$$\Psi_{\text{EXD}}^{s,t}(\mathbf{r}_1, \mathbf{r}_2) = \sum_{k=1}^{M} z_k^{s,t} |\Phi(1; 2k-1)\Phi(2; 2k)\rangle$$

$$K=79; M <= K$$

$$\Psi^s_{\mathrm{GHL}} \propto |\Phi^+(1\uparrow)\Phi^+(2\downarrow)\rangle - \eta|\Phi^-(1\uparrow)\Phi^-(2\downarrow)\rangle$$

$$\Psi^t_{\rm GHL} \propto |\Phi^+(1\uparrow)\Phi^-(2\downarrow)\rangle + |\Phi^+(1\downarrow)\Phi^-(2\uparrow)\rangle$$

ETH single QD

Measure of Entanglement

Von Neumann Entropy (indistinguishable parties) $\mathcal{S} = -\sum_{k=1}^M |z_k|^2 \log_2(|z_k|^2)$

(Quantum Computing)

$$S = -\sum_{k=1}^{M} |z_k|^2 \log_2(|z_k|^2)$$

How does one describe entanglement in EXD wfs?

(b) In EXD total spin and its spin projection are good quantum numbers (N, S, S_z)

Spin degeneracies **Branching diagram**

Figure 2.3. Branching diagram.

N-qubit Dicke states

$$|\Psi_{N,k}\rangle = {N \choose k}^{-\frac{1}{2}} (|\underbrace{11\dots 1}_{k}000\dots 0\rangle + \text{perm})$$

N-qubit W states

$$|W_N\rangle = |\Psi_{N,1}\rangle$$

Control and measurement of three-qubit entangled states

C. F. Roos¹, Mark Riebe¹, H. Häffner¹, W. Hänsel¹, J. Benhelm¹, G. P. T. Lancaster¹, C. Becher¹, F. Schmidt-Kaler¹ & R. Blatt^{1,2}

¹Institut f\(\ti\)r Experimentalphysik, Universit\(\ti\)t Innsbruck, Technikerstra\(\theta\)e 25, A-6020 Innsbruck, Austria
²Institut f\(\ti\)r Ouantenoptik und Ouanteninformation, Östereichische Akademie der Wissenschaften

- · Basics of ion trap quantum computers
- Entangling operations (Bell states, CNOT)
- Generation of W- and GHZ-states
- Selective read-out of a quantum register
- Entanglement transformation by condional operations

Qubits with trapped ions

S – D transitions in alkaline earths: Ca⁺, Sr⁺, Ba⁺, Ra⁺, (Yb⁺, Hg⁺) etc.

EXD: N=3e in elliptic QD (hwx/hwy=1/2)

Formation of three-electron Wigner molecule

Elliptic QD

Entangled three-qubit W-states

1)
$$\alpha = 2$$
, $\beta = -1$, $\gamma = -1 = > (1/2, 1/2; 1)$

2)
$$\alpha = 0$$
, $\beta = 1$, $\gamma = -1 = > (1/2, 1/2; 2)$

3)
$$\alpha = \beta = \gamma = 1 = > (3/2, 1/2)$$

(b)

Electron density

Study entanglement by using

Spin resolved CPDs for EXD wfs

Ground-state (1/2,1/2); hwx=3.137 meV; hwx/hwy=1/2; $m^*=0.067m_e$; B=0; K=1

EXD wf $\sim 2| \phi \phi \phi \rangle - | \phi \phi \phi \rangle - | \phi \phi \phi \rangle$

N=3e; EXD CPDs for Circular dot [S.A. Mikhailov, PRB 65, 115312 (2002)]

L=1;
$$S=1/2$$
, $S_Z=1/2$; $R_W=8$

$$\Phi_{\text{intr}}^{E'}(\gamma_0) = |\downarrow\uparrow\uparrow\rangle + e^{2\pi i/3}|\uparrow\downarrow\uparrow\rangle + e^{-2\pi i/3}|\uparrow\uparrow\downarrow\rangle$$

$$\Phi_{\text{intr}}^{E''}(\gamma_0) = |\downarrow\uparrow\uparrow\rangle + e^{-2\pi i/3}|\uparrow\downarrow\uparrow\rangle + e^{2\pi i/3}|\uparrow\uparrow\downarrow\rangle$$

Intrinsic wave function; rotating WM; not pinned; Cyclic group symmetry

Formation of 4-electron Wigner molecule **Elliptic QD**

(S=1,Sz=1) Lowest energy

hwx/hwy = 1/2

hwx/hwy = 1/3

hwx=3.14 meV hwy=6.28 meV **K**=0.60 *B*=0

hwx=2.24 meV hwy=6.71 meV

General spin function for a (S=0,Sz=0) state with N=4 localized electrons

$$\chi_{00}(\theta) = \sqrt{\frac{1}{3}} \sin \theta |\uparrow\uparrow\downarrow\downarrow\rangle + \left(\frac{1}{2} \cos \theta - \sqrt{\frac{1}{12}} \sin \theta\right) |\uparrow\downarrow\uparrow\downarrow\rangle - \left(\frac{1}{2} \cos \theta + \sqrt{\frac{1}{12}} \sin \theta\right) |\uparrow\downarrow\downarrow\uparrow\rangle$$
$$-\left(\frac{1}{2} \cos \theta + \sqrt{\frac{1}{12}} \sin \theta\right) |\downarrow\uparrow\uparrow\downarrow\rangle + \left(\frac{1}{2} \cos \theta - \sqrt{\frac{1}{12}} \sin \theta\right) |\downarrow\uparrow\downarrow\uparrow\rangle + \sqrt{\frac{1}{3}} \sin \theta |\downarrow\downarrow\uparrow\uparrow\rangle$$

(in book by K. Varga)

Can this spin function be properly characterized as antiferromagnetic?

It is a multideterminantal wf!
It expresses entanglement!
(non-symmetric Dicke state!)

Spin resolved CPDs for N=4 (second case in previous slide: anisotropy=1/3)

(S=0,Sz=0) Second lowest energy with these quantum numbers

EXD wf $(\theta=120^{\circ})$ ~

Spin resolved CPDs for N=4 (anisotropy=1/3)

(S=1,Sz=1) Lowest energy with these quantum numbers

EXD wf $\sim | \phi \phi \phi \phi \rangle - | \phi \phi \phi \phi \rangle$

W state

SUMMARY (first part)

Few electrons in an elliptic QD can form for large anisotropies linear Wigner molecules

The many-body EXD wave functions in the linear Wigner Molecule regime are related to entangled W and Dicke states

Using the EXD wave function, one can determine the degree of entanglement of few indistinguishable electrons in a quantum dot

Exact-diagonalization treatment of the non-universal transport regime in few-electron quantum dots

Leslie O. Baksmaty, Constantine Yannouleas, Uzi Landman School of Physics, Georgia Institute of Technology

Phys. Rev. Lett. 101, 136803 (2008)

Experiment: M. Avinun-Kalish et al., Nature **43**6, 529 (2005)

Experiment: Aharonov-Bohm interferometry: M. Avinun-Kalish et al., Nature **43**6, 529 (2005)

Non-universal regime

It is essential to have the best description for the QD electronic structure

EXD -> Full CI (superposition of single-particle configurations ~ 100,000), see e.g. Yannouleas and Landman, Rep. Prog. Phys. **70**, 2067 (2007)

Non-universal regime:

<u>Current and transmission phase</u> depend strongly on the <u>details</u> and electronic structure (<u>many-body problem</u>) of the quantum dot. They <u>vary slowly</u> with the tunneling coupling in a given experimental setup.

Transport approach

Weak tunneling coupling: Lowest order in coupling - Golden rule

- John Bardeen's seminal paper: "Tunneling from a many-body point of view"
 PRL 6, 57 (1961) -- Current
- J.M. Kinaret et al., PRB 46, 4681 (1992) -- Current
- For transmission phase: S.A. Gurvitz, PRB 77, 201302 (2008)
 (only first half of paper)

$$H = H_L + H_R + H_D + H_T$$

$$H_T = \left(\sum_{l,k} \Omega_l^{(k)} d_k^{\dagger} a_l + l \leftrightarrow r\right) + H.c.$$

$$\Omega_{l(r)}^{(k)} = -\frac{\hbar^2}{2m} \int_{\boldsymbol{x} \in \Sigma_{l(r)}} \phi_k(\boldsymbol{x}) \stackrel{\leftrightarrow}{\nabla} \boldsymbol{n} \chi_{l(r)}(\boldsymbol{x}) d\sigma$$

Tails under a tall barrier

Quasiparticle in QD

Leads: non-interacting

Previous calculations:

QD described with independent-particle model (Hackenbroich et al, PRL 76, 110 (1996))

This study: Electronic structure of QD described through exact diagonalization (EXD; includes e-e correlations)

EXD quasiparticle wave function

$$\Phi_N^{\text{EXD}}(S, S_z; k) = \sum_I C_I^N(S, S_z; k) D^N(I; S_z)$$

$$\mathcal{H} = \sum_{i=1}^{N} [\mathbf{p}_{i}^{2}/(2m^{*}) + V(x_{i}, y_{i})] + \sum_{i < j} e^{2}/(\kappa r_{ij})$$

$$V(x,y) = m^*(\omega_x^2 x^2 + \omega_y^2 y^2)/2$$

$$\varphi_{\mathrm{QP}}(\mathbf{r}) = \langle \Phi_{N-1}^{\mathrm{EXD}} | \psi(\mathbf{r}; \sigma) | \Phi_{N}^{\mathrm{EXD}} \rangle$$

$$\psi(\mathbf{r};\sigma) = \sum_{i=1}^{K} \phi_i(\mathbf{r}) a_i(\sigma)$$

eta=0.724 kappa=12.5

amplitude (modulus square)

transmission phase

 $(0,0) N=2 \rightarrow N=3 (1/2,1/2)$

EXD quasiparticle wave function

$$\varphi_{\mathrm{QP}}(\mathbf{r}) = \langle \Phi_{N-1}^{\mathrm{EXD}} | \psi(\mathbf{r}; \sigma) | \Phi_{N}^{\mathrm{EXD}} \rangle$$

$$\psi(\mathbf{r};\sigma) = \sum_{i=1}^{K} \phi_i(\mathbf{r}) a_i(\sigma)$$

 $(0,0) N=2 \rightarrow N=3 (1/2,1/2)$

Bar-chart: $N = 1 \rightarrow N = 2$

$$\mathcal{W} = \int |\varphi_{\mathrm{QP}}(\mathbf{r})|^2 d\mathbf{r}$$

$$\theta_{\mathrm{QP}}$$

$$\theta = \theta_{\mathrm{QP}} - \pi$$

Red $\rightarrow \pi$ (No PL) \vee

Yellow $\rightarrow 0$ (Yes PL)

Strength of e-e interaction: Dielectric constant K

Anisotropy:
$$\eta = \omega_x/\omega_y$$

$$\omega_0 = \sqrt{(\omega_x^2 + \omega_y^2)/2}$$

 $\hbar\omega_0$ = 5 meV

Doorway excited states

Bar-chart: $N = 1 \rightarrow N = 2$

$$\mathcal{W} = \int |\varphi_{\mathrm{QP}}(\mathbf{r})|^2 d\mathbf{r}$$

$$\theta = \theta_{\mathrm{QP}} - \pi$$

Strength of e-e interaction:

Dielectric constant K

Anisotropy:
$$\eta = \omega_x/\omega_y$$

$$\omega_0 = \sqrt{(\omega_x^2 + \omega_y^2)/2}$$

 $\hbar\omega_0$ = 5 meV

Doorway excited states

Spin configurations for a 3e QD treated with EXD

Yuesong Li et al, PRB **76**, 245310 (2007)

 (S, S_z)

$$\Phi\left(\frac{3}{2},\frac{3}{2}\right) = |\uparrow\uparrow\uparrow\rangle$$

$$\sqrt{3}\Phi\left(\frac{3}{2},\frac{1}{2}\right) = |\uparrow\downarrow\uparrow\rangle + |\uparrow\uparrow\downarrow\rangle + |\downarrow\uparrow\uparrow\rangle$$

$$\sqrt{6}\Phi\left(\frac{1}{2},\frac{1}{2};1\right) = 2|\uparrow\downarrow\uparrow\rangle - |\uparrow\uparrow\downarrow\rangle - |\downarrow\uparrow\uparrow\rangle$$

$$\sqrt{2}\Phi\left(\frac{1}{2},\frac{1}{2};2\right) = |\uparrow\uparrow\downarrow\rangle - |\downarrow\uparrow\uparrow\rangle$$

Bar-chart: $N = 2 \rightarrow N = 3$ [(0,0) \rightarrow (1/2,1/2)]

$$\mathcal{W} = \int |\varphi_{\mathrm{QP}}(\mathbf{r})|^2 d\mathbf{r}$$

$$\theta_{\mathrm{QP}}$$
 $\theta = \theta_{\mathrm{QP}} - \pi$

Red $\rightarrow \pi$ (No PL)

Yellow $\rightarrow 0$ (Yes PL)

Strength of e-e interaction:

Dielectric constant K

Anisotropy: $\eta = \omega_x/\omega_y$

Doorway excited states

Conclusions (second part)

 Non-universal regime of electron interferometry can be described using Bardeen's weak-coupling theory and <u>exact diagonalization</u> for QD

We find (in agreement with experiment): —

a) for $N=1 \rightarrow N=2$: no phase lapse

b) for N=2 \rightarrow N=3: phase lapse of π

Agreement for QDs with anisotropy and strong e-e repulsion, favoring regime of Wigner molecule formation

Importance of <u>doorway excited states</u> and many-body <u>spin configurations</u>