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1 Introduction 

One of the principle themes in research on finite systems ( e.g., nuclei, atomic 
and molecular clusters, and nano-structured materials) is the search for size­
evolutionary patterns (SEPs) of properties of such systems and elucidation 
of the physical principles underlying such patterns [l]. 

Various physical and chemical properties of finite systems exhibit SEPs, 
including: 

1. Structural characteristics pertaining to atomic arrangements and par­
ticle morphologies and shapes; 

2. Excitation spectra involving bound-bound transitions, ionization po-
tentials (IPs), and electron affinities (EAs); 

3. Collective excitations (electronic and vibrational); 
4. Magnetic properties; 
5. Abundance spectra and stability patterns, and their relation to bind­

ing and cohesion energetics, and to the pathways and rates of disso­
ciation, fragmentation, and fission of charged clusters; 

6. Thermodynamic stability and phase changes; 
7. Chemical reactivity. 

The variations with size of certain properties of materials aggregates 
are commonly found to scale with the surface to volume ratio of the clus­
ter, i.e., S/!! ~ R-1 ~ N 113 , where S, !!, R, and N are the surface area, 
volume, average radius, and number of particles, respectively ( even when 
applicable, the physical origins of such scaling may vary for different prop­
erties). However, characterization of SEPs in finite systems in terms of such 
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scaling is non-universal, in the sense of properties whose SEPs are of differ­
ent physical origins; e.g., magic-number patterns and odd-even oscillations 
characteristic to metal clusters (portrayed in non-monotonic abundance 
distributions and ionization potential spectra, and in energetics and bar­
rier profiles and heights for fission of charged metal clusters) whose origins 
are related to electronic shell structure rather than to surface-to-volume 
considerations. 

Nevertheless, in many occasions, even for the aforementioned ones, it is 
convenient to analyze the energetics of finite systems in terms of two con­
tributions, namely, (i) a term which describes the energetics as a function 
of the system size in an average sense (not including shell-closure effects), 
referrred to usually as describing the "smooth" part of the size dependence, 
and (ii) an electronic shell-correction term. The first term is the one which 
is expected to vary smoothly and be expressible as an expansion in S /f!, 
while the second one contains the characteristic oscillatory patterns as the 
size of the finite system is varied. Such a strategy has been introduced [2] 
and often used in studies of nuclei [3], and has been adopted recently for 
investigations of metal clusters ([4]-[13]) and fullerenes [14]. As a motivat­
ing example we show in Fig. 1 the SEP of the IPs of NaN clusters, which 
illustrates odd-even oscillations in the observed spectrum, a smooth descrip­
tion of the pattern [Fig. l(a)], and two levels of shell-corrected descriptions 
- one assuming spherical symmetry [Fig. l(b )], and the other allowing for 
triaxial shape deformations [Fig. l(c)]. The progressive improvement of 
the level of agreement between the experimental and theoretical patterns 
is evident. 

In these lectures, we review the development of shell-correction methods 
(SCM), and illustrate their applications to atomic and molecular cluster­
systems. The text is organized as folllows. In section 2, the methodology 
of shell-correction methods is described, and a microscopic local-density­
functional-approximation SCM (LDA-SCM) is derived and applied to in­
vestigations of the stability and decay channels of multiply charged metal 
clusters and fullerenes. In section 3, semi-empirical SCM (SE-SCM) meth­
ods are described and anisotropic oscillator models are developed and used 
in investigations of SEPs of the properties of neutral and charged metal 
clusters ( such as IPs, EAs, fission energetics, and monomer and dimer sep­
aration energies) including analysis of triaxial shape deformations which 
are found to underlie the appearance of odd-even alternations of certain 
properties as a function of cluster size. Additionally, the influence of elec­
tronic shell effects on barriers and channels of cluster fission are discussed 
using a shell correction method in conjunction with an asymmetric two-
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Fig. 1. IPs of NaN clusters. Open squares: Experimental measurements of Ref. [106]. 

The solid line at the top panel ( a) represents the smooth contribution to the theoretical 

total !Ps. The solid circles in the middle (b) and bottom (c) panels are the total SCM 

IPs. The shapes of sodium clusters have been assumed spherical in the middle panel, 

while triaxial deformations have been considered at the bottom one. 
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center-oscillator potential model. 

2 Shell-correction methodology and microscopic 
LDA-SCM 

2.1 Methodology and derivation of LDA-SCM 

2.1.1 Historical review of SCM 

It has long been recognized in nuclear physics that the dependence of 
ground-state properties of nuclei on the number of particles can be viewed 
as the sum of two contributions: the first contribution varies smoothly with 
the particle number (number of protons Np and neutrons Nn) and is re­
ferred to as the smooth part; the second contribution gives a superimposed 
structure on the smooth curve and exhibits an oscillatory behavior, with 
extrema at the nuclear magic numbers (15, 3]. 

Nuclear masses have provided a prototype for this behavior (15]. Indeed, 
the main contributions to the experimental nuclear binding energies are 
smooth functions of the number of protons and neutrons, and are described 
by the semi-empirical mass formula (16, 17]. The presence of these smooth 
terms led to the introduction of the liquid-drop model (LDM), according 
to which the nucleus is viewed as a drop of a nonviscous fluid whose total 
energy is specified by volume, surface, and curvature contributions [15, 3, 
18]. 

The deviations of the binding energies from the smooth variation im­
plied by the LDM have been shown [18, 2] to arise from the shell structure 
associated with the bunching of the discrete single-particle spectra of the 
nucleons, and are commonly referred to as the shell correction. Substan­
tial progress in our understanding of the stability of strongly deformed 
open-shell nuclei and of the dynamics of nuclear fission was achieved when 
Strutinsky proposed [2] a physically motivated efficient way of calculat­
ing the shell corrections. The method consists of averaging ( see below) the 
single-particle spectra of phenomenological deformed potentials and of sub­
tracting the ensuing average from the total sum of single-particle energies. 

·while certain analogies, portrayed in experimental data, between prop­
erties of nuclei and elemental clusters have been recognized, the nuclear­
physics approach of separating the various quantities as a function of size 
into a smooth part and a shell correction part has only partially been ex­
plored in the case of metal clusters. In particular, several investigations 
([19]-[22]) had used the ETF method in conjunction with the jellium ap-
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proximation to determine the average ( smooth, in the sense defined above) 
behavior of metal clusters, but had not pursued a method for calculating 
the shell corrections. 

In the absence of a method for appropriately calculating shell-corrections 
for metal clusters in the context of the semiclassical ETF method, it had 
been presumed that the ETF method was most useful for larger clusters, 
since the shell effects diminish with increasing size. Indeed, several studies 
had been carried out with this method addressing the asymptotic behav­
ior of ground-state properties towards the behavior of a jellium sphere of 
infinite size [23, 24]. 

It has been observed ([25]-[28]), however, that the single-particle poten­
tials resulting from the semiclassical method are very close, even for small 
cluster sizes, to those obtained via self-consistent solution of the local den­
sity functional approximation (LDA) using the Kohn-Sham (KS) equations 
[29]. These semiclassical potentials were used extensively to describe the 
optical (linear) response of spherical metal clusters, for small ([25]-[27]), as 
well as larger sizes [28] (for an experimental review on optical properties, 
cf. Refs. [30, 31]). The results of this approach are consistent with time­
dependent local density functional approximation (TDLDA) calculations 
which use the KS solutions [32, 33]. 

It is natural to explore the use of these semiclassical potentials, in the 
spirit of Strutinsky's approach, for evaluation of shell corrections in metal 
clusters of arbitrary size. Below we describe a microscopic derivation of 
an SCM in conjunction with the local-density functional method ([4]-[6]), 
and its applications in investigations of the properties of metal clusters 
and fullerenes. Particularly interesting and promising is the manner by 
which the shell corrections are introduced by us through the kinetic energy 
term ([4]-[6]), instead of the traditional Strutinsky averaging procedure of 
the single-particle spectrum [2]. This is especially desirable, since - unlike 
the case of atomic nuclei - shell corrections for metal clusters determined 
by the traditional Strutinsky procedure result in total energies exhibiting 
substantial systematic deviations from the corresponding KS-LDA energies. 

2.1.2 LDA-SCM 

Underlying the development of the shell-correction method is the idea of 
approximating the total energy Etota1(N) of a finite interacting fermion 
system as 

Etota1(N) = E(N) + t:,.E,h(N) , 
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where Eis the part that varies smoothly as a function of system size, and 
6.E,h is an oscillatory term. Various implementations of such a separation 
consist of different choices and methods for evaluating the two terms in Eq. 
(1). Before discussing such methods, we outline a microscopic derivation 
of Eq. (1). 

Motivated by the behavior of the empirical nuclear binding energies, 
Strutinsky conjectured that the self-consistent Hartree-Fock density PHF 
can be decomposed into a smooth density p and a fluctuating contribution 
op, namely PHF = p+op. Then, he proceeded to show that, to second-order 
in op, the Hartree-Fock energy is equal to the result that the same Hartree­
Fock expression yields when PHF is replaced by the smooth density p and 
the Hartree-Fock single-particle energies cflF are replaced by the single­
particle energies corresponding to the smooth potential constructed with 
the smooth density p. Namely, he showed that 

EHF = Estr + 0(op2) , (2) 

where the Hartree-Fock electronic energy is given by the expression 

occ l 
EHF = ?;cflF - 2f drdr'V(r-r')[PHF(r,r)pnp(r',r')-PHF(r,r')2], 

(3) 
with cfl F being the eigenvalues obtained through a self-consistent solution 
of the HF equation, 

(4) 

where 

UHF( r )¢,( r) = j dr'V( r - r')[PH F( r', r')¢,( r) - PHF( r', r )¢,(r')] . (5) 

The Strutinsky approximate energy is written as follows, 

occ l J 
Estr = ~€; - 2 drdr'V(r- r')(p(r,r)p(r',r')- p(r,r')2

], 

1=1 

(6) 

where the index i in Eqs. (3) and (6) runs only over the occupied states (spin 
degeneracy is naturally implied). The single-particle energies l; correspond 
to a smooth potential U. Namely, they are eigenvalues of a Schriidinger 
equation, 

(7) 
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where the smooth potential ff depends on the smooth density p, i.e., 

U(r)cp;(r) = j dr'V(r - r')[p(r', r')cp;(r) - p(r', r)cp;(r')] , (8) 

and V is the nuclear two-body interaction potential. 
It should be noted that while Eqs. (6-8) look formally similar to the 

Hartree-Fock equations (3-5), their content is different. Specifically, while 
in the HF equations, the density PHF is self-consistent with the wavefunc­
tion solutions of Eq. (4), the density pin Eqs. (6-8) is not self-consistent 
with the wavefunction solutions of the corresponding single-particle equa­
tion (7), i.e., pi- Lf;c1 l'P;l 2 . We return to this issue below. 

Since the second term in equation (6) is a smooth quantity, Eq. (2) 
states that all shell corrections are, to first order in op, contained in the 
sum of the single-particle energies Lf;\ f,. Consequently, equation (6) can 
be used as a basis for a separation of the total energy into smooth and 
shell-correction terms as in Eq. (1). Indeed Strutinsky suggested a semi­
empirical method of such separation through an averaging procedure of the 
single-particle energies f; in conjunction with a phenomenological ( or semi­
empirical) model [the liquid drop model (LDM)] for the smooth part (see 
section 3). 

Motivated by the above considerations, we have extended them ([4]­
[6]) in the context of local-density functional theory for electronic structure 
calculations. First we review pertinent aspects of the LDA theory. In LDA, 
the total energy is given by 

E[p]=T[p]+ j {[~vH[p(r)]+V1(r)]p(r)}dr+ j fxc[p(r)]dr+E1, (9) 

where VH is the Hartree repulsive potential among the electrons, V1 is the 
interaction potential between the electrons and ions, Exe is the exchange­
correlation functional [the corresponding xc potential is given as V~c( r) = 
6fxcP(r)/6p(r)] and T[p] is given in terms of a yet unknown functional 
t[p(r)] as T[p] = Jt[p(r)]dr. E1 is the interaction energy of the ions. 

In the Kohn-Sham (KS)-LDA theory, the electron density is evaluated 
from the single-particle wave functions <PKs,;(r) as 

occ 
PKs(r) = I: 14'Ks,;(r)l2 , (10) 

i=l 

where <PKs,;(r) are obtained from a self-consistent solution of the KS equa­
tions, 

(11) 
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where 
VKs[PKs(r)] = VH[PKs(r)J+ Vxc[PKs(r)J + Vr(r) · (12) 

The kinetic energy term in Eq. ( 9) is given by 

ace n2 
T[PKs] = L < <PKs,,I - 2m v'

2
i¢>Ks,, > , 

t=l 

(13) 

which can also be written as 

T[pKs] = f EKS,i - j PKs(r)VKs[PKs(r)Jdr. (14) 
i=l 

According to the Hohenberg-Kohn theorem, the energy functional (9) is 
a minimum at the true ground density p9 ,, which in the context of the KS­
LDA theory corresponds the the density, PKS, obtained from an iterative 
self-consistent solution of Eq. (11). In other words, combining Eqs. (9) and 
(14), and denoting by "in" and "out" the trial and output densities of an 
iteration cycle in the solution of the KS equations (11), one obtains, 

occ 
EKs[PK}l = Er+ LEK},;+ 

i=1 

j { ~ VH[PK}(r)J + l'xc[PK}(r)J + Vr(r)} PK}(r)dr-

J PKMr)VKs[P¼!s(r)Jdr. (15) 

Note that the expression on the right involves both PK} and P¼!s· Self­
consistency is achieved when bpKdin(r) = PK}(r) - P¼!s(r) becomes arbi­
trarily small (i.e., when PK} converges to PKs). 

On the other hand, it is desirable to introduce approximate energy func­
tionals for the calculations of ground-state electronic properties, providing 
simplified, yet accurate, computational schemes. It is indeed possible to 
construct such functionals ([34)-(38]), an example of which was derived by 
Harris (34], where self-consistency is circumvented and the result is accurate 
to second order in the difference between the trial and the self-consistent 
KS density (see in particular Eq. (24a) of Ref. (38]; the same also holds true 
for the difference between the trial and the output densities of the Harris 
functional). 

The expression of the Harris functional is obtained from Eq. (15) by 
dropping the label J( S and by replacing everywhere pout by pin, yielding 
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[note cancellations between the third and fourth terms on the right-hand­
side of Eq. (15)]. 

Eharris[p'n] = E1+~ciut_ J{½vH[p'n(r)]+Vxc[Pm(r)J}p'n(r)dr+ 

J &xc[p'n(r)]dr. (16) 

Et' are the single-particle solutions (non-self-consistent) of Eq. (11), with 
VKs[p'n(r) [see Eq. (12)]. 

As stated above this result is accurate to second order in p•n - PKS 
(alternatively in p•n - p0u1

), thus approximating the self-consistent total 
energy EKs[PKs]-

Obviously the accuracy of the results obtained via Eq. ( 16) depend on 
the choice of the input density p•n. In electronic structure calculations 
where the corpuscular nature of the ions is included (i.e., all-electron or 
pseudo-potential calculations), a natural choice for p•n consists of a su­
perposition of atomic site densities, as suggested originally by Harris. In 
the case of jellium calculations, we have shown [4] that an accurate ap­
proximation to the KS-LDA total energy is obtained by using the Har­
ris functional with the input density, p•n, in Eq. (16) evaluated from an 
Extended-Thomas-Fermi (ETF)-LDA calculation. 

The ETF-LDA energy functional, EETF[p], is obtained by replacing 
the kinetic energy term in Eq. (9) by a kinetic energy density-functional 
in the spirit of the Thomas-Fermi approach [39], but comprising terms up 
to fourth-order in the density gradients [40]. The optimal ETF-LDA total 
energy is then obtained by minimization of EETF[P] with respect to the 
density. In our calculations, we use for the trial densities parametrized pro­
files p(r; {'-y;}) with {'-y;}·as variational parameters (the ETF-LDA optimal 
density is denoted as PETF)- The single-particle eigenvalues, {ct'}, in Eq. 
(16) are obtained then as the solutions to a single-particle Hamiltonian, 

- /i,2 2 
HETF = - 2m v' + VETF , (17) 

where VETF is given by Eq. (12) with PKs(r) replaced by PETF(r). These 
single-particle eigenvalues will be denoted by {?;} 

As is well known, the ETF-LDA does not contain shell effects ([20]­
[22]). Consequently, the corresponding density PETF can be taken a la 
Strutinsky as the smooth part, p, of the KS density, PKS· Accordingly, 
EETF is identified with the smooth part E in Eq. (1) (in the following, 
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the "ETF" subscript and " ~" can be used interchangeably). Since, as 
aforementioned, Eharns[PETF) approximates well [i.e., to second order in 
(PETF - PKs)) the self-consistent total energy EKs[PKs], it follows from 
Eq. (1), with Eharri,[PETF) taken as the expression for Etotal, that the 
shell-correction, t,.E,h, is given by 

Defining, 
occ J 

T,h = LEi - PETF(r)VETF(r)dr, 
i=l 

(19) 

and denoting the total energy Eharns by E,h, we obtain, 

E,h[p] = {T,h - T[,o]} + .E[,o] ' (20) 

where T[,o] is the ETF kinetic energy, given to fourth-order gradients by 
the expression [40), 

which as noted before does not contain shell effects. Therefore, the shell 
correction term in Eq. (1) [or Eq. (18)) is given by a difference between 
kinetic energy terms, 

t,.E,h = T,h - T[p] . (22) 

One should note that the above derivation of the shell correction does 
not involve a Strutinsky averaging procedure of the kinetic energy operator. 
Rather it is based on using ETF quantities as the smooth part for the 
density, p, and energy, E. Other descriptions of the smooth part may 
result in different shell-correction terms. 

To check the accuracy of this procedure, we have compared results of 
calculations using the functional E,h [Eq. (20)) with available Kohn-Sham 
calculations. In these SCM calculations, the trial density profile in the ETF 
variation was chosen as, 

(23) 
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Fig. 2. Total energy per atom of neutral sodium clusters (in units of the absolute 

value of the energy per atom in the bulk, le00 I = 2.252 eV). Solid circles: SCM results 

(see text for details). The solid line is the ETF result (smooth contribution). In both 

cases, a spherical jellium background was used. Open squares: LDA Kohn-Sham results 

from Ref. [41). The excellent agreement (a discrepancy of only 1%) between the SCM 

and the LDA Kohn-Sham approach is to be stressed. 

with r0 , a, and"'/ as variational parameters (for other closely related parame­
trizations cf. Refs. [21, 22]). 

Fig. 2 displays results of the present shell correction approach for the 
total energies of neutral sodium clusters. The results of the shell correction 
method for ionization potentials of sodium clusters are displayed in Fig. 
3. The excellent agreement between the oscillating results obtained via our 
theory and the Kohn-Sham results ( cf. e.g., Ref. [41]) is evident. To further 
illustrate the two components ( smooth contribution and shell correction) 
entering into our approach, we also display the smooth parts resulting from 
the ETF method. 

2.2 Applications of LDA-SCM 

2.2.1 Charging of metal clusters 

Investigations of metal clusters based on LDA methods and self-consistent 
solutions of the Kohn-Sham equations ( employing either a positive jellium 
background or maintaining the discrete ionic cores) have contributed signif­
icantly to our understanding of these systems ([41]-[44]). However, even for 
singly negatively charged metal clusters (Miv), difficulties may arise due to 
the failure of the solutions of the KS equations to converge, since the eigen­
value of the excess electron may iterate to a positive energy [45]. While such 
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Fig. 3. Ionization potentials for sodium clusters. Solid circles: IPs calculated with 

the SCM (see text for details). The solid line corresponds to the ETF results (smooth 

contribution). In both cases, a spherical jellium background was used. Open aqua.res: 

LDA Kohn-Sham results from Ref. [41]. The excellent agreement (a discrepancy of only 

1-2%) between the shell correction method and the full Kohn-Sham approach should be 

noted. 

difficulties are alleviated for Mi; clusters via self-interaction corrections 
(SIC) (46, 47), the treatment of multiply charged clusters (Mt-, Z > 1) 
would face similar difficulties in the metastability region against electronic 
autodetachment through a Coulombic barrier. In the following we are ap­
plying our SCM approach, described in the previous section, to these sys­
tems ([4)-(6)) (for the jellium background, we assume spherical symmetry, 
unless otherwise stated; for a discussion of cluster deformations, see section 
3.2). 

Electron affinities and borders of stability 

The smooth multiple electron affinities Az prior to shell corrections are 
defined as the difference in the total energies of the clusters 

Az = E(vN,vN + Z-1)-E(vN,vN + Z), (24) 

where N is the number of atoms, v is the valency and Z is the number of 
excess electrons in the cluster ( e.g., first and second affinities correspond 
to Z = 1 and Z = 2, respectively). vN is the total charge of the posi­
tive background. Applying the shell correction (22), we calculate the full 
electron affinity as 

h -A} - Az = t.E,h( vN, vN + Z - 1) - t.E,h( vN, vN + Z) . (25) 
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Fig. 4. Calculated first {A1) and second (A2) electron affinities of sodium clusters 

as a function of the number of atoms N. Both their smooth pa.rt ( dashed lines) and the 

shell-corrected affinities (solid circles) are shown. A spherical jellium background was 

used. 

A positive value of the electron affinity indicates stability upon attach­
ment of an extra electron. Fig. 4 displays the smooth, as well as the 
shell corrected, first and second electron affinities for sodium clusters with 
N < 100. Note that ,42 becomes positive above a certain critical size, im­
plying that the second electron in doubly negatively charged sodium clus­
ters with N < NJ;) = 43 might not be stably attached. The shell effects, 
however, create two islands of stability about the magic clusters Na;2 and 

Na~8 (see Aih in Fig. 4). To predict the critical cluster size NJ;>, which 
allows stable attachment of Z excess electrons, we calculated the smooth 
electron affinities of sodium clusters up to N = 255 for 1 $ Z $ 4, and 
display the results in Fig. 5. We observe that NJ;> = 205, while NJ;> > 255. 

The similarity of the shapes of the curves in Fig. 5, and the regularity 
of distances between them, suggest that the smooth electron affinities can 
be fitted by a general expression of the form: 
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Fig. 5. Calculated smooth electron affinities Az, Z = l-4, for sodium clusters as a 

function of the number of atoms N (Z is the number of excess electrons). A spherical 

jellium background was used. Inset: The electron drip line for sodium clusters. Clusters 

stable against spontaneous electron emission are. located above this line. While, as seen 

from Fig. 4 for spherical geometry, shell effects influence the border of stability, shell­

corrected calculations including deformations [7] yield values close to the drip line (shown 

in the inset) which was obtained from the smooth contributions. 

where the radius of the positive background is R = r8 N 1l 3 • From our fit, 
we find that the constant W corresponds to the bulk work function. In all 
cases, we find /3 = 5/8, which suggests a close analogy with the classical 
model of the image charge (48, 49]. For the spill-out parameter, we find 
a weak size dependence as 6 = 60 + 6if R 2• The contribution of 62 / R 2

, 

which depends on Z, is of importance only for smaller sizes and does not 
affect substantially the critical sizes (where the curve crosses the zero line), 
and consequently 62 can be neglected in such estimations. Using the values 
obtained by us for A1 of sodium clusters (namely, W = 2.9 e V which is also 
the value obtained by KS-LDA calculations for an infinite planar surface 
[50], 60 = 1.16 a.u.; with R = r8 N 1l3, and r8 = 4.00 a.u.), we find for the 

critical sizes when the l.h.s. of eq. (26) is set equal to zero, NJ;) = 44, 
NJt) = 202, NJ;) = 554, and NJ;) = 1177, in very good agreement with 
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the values obtained directly from Fig. 5. 

The curve that specifies Nff) in the ( Z, N) plane defines the border of 
stability for spontaneous electron decay. In nuclei, such borders of stability 
against spontaneous proton or neutron emission are known as nucleon drip 
lines [51]. For the case of sodium clusters, the electron drip line is displayed 
in the inset of Fig. 5. 

Critical sizes for potassium and aluminum 

While in this investigation we have used sodium clusters as a test sys­
tem, the methodology and conclusions extend to other materials as well. 
Thus given a calculated or measured bulk work function W, and a spill-out 
parameter (60 typically of the order of 1-2 a.u., and neglecting 62), one can 
use eq. (26), with Az = 0, to predict critical sizes for other materials. For 
example, our calculations for potassium (r, = 4.86 a.u.) give fitted values 
W = 2.6 eV ( compared to a KS-LDA value of 2.54 eV for a semi-infinite 
planar surface with r, = 5.0 a.u. (501) and 60 = 1.51 a.u. for 62 = 0, yielding 
N (2) N(3) d (4) 

er = 33, er = 152, an Ner = 421. 
As a further example, we give our results for a trivalent metal, i.e. 

aluminum (r, = 2.07 a.u.), for which our fitted values are W = 3.65 eV 
(compared to a KS-LDA value of 3.78 eV for a semi-infinite plane surface, 

with r, = 2.0 a.u. [50]) and 60 = 1.86 a.u. for 62 = 0, yielding NJ;l = 
40 (121 electrons), N[:) = 208 (626 electrons), and NJi) = 599 (1796 
electrons). 

Metastability against electron autodetachment 

The multiply charged anions with negative affinities do not necessarily 
exhibit a positive total energy. To illustrate this point, we display in Fig. 6 
the calculated total energies per atom (E(N, Z)/ N) as a function of excess 
charge ( Z) for clusters containing 30, 80, and 240 sodium atoms. These 
sizes allow for exothermic attachment of maximum one, two, or three excess 
electrons, respectively. 

As was the case with the electron affinities, the total-energy curves in 
Fig. 6 show a remarkable regularity, suggesting a parabolic dependence 
on the excess charge. To test this conjecture, we have extracted from 
the calculated total energies the quantity g(N, Z) = G(N, Z)/ N where 
G(N, Z) = [E(N, Z)- E(N, 0)]/Z + A1 (N), and have plotted it in the inset 
of Fig. 6 as a function of the excess negative charge Z. The dependence is 
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Fig. 6. Calculated smooth total energy per atom as a function of the excess negative 

charge Z for the three families of sodium clusters with N = 30, N = 80, and N == 240 

atoms. A spherical jellium background was used. As the straight lines in the inset 

demonstrate, the curves are parabolic. We find that they can be fitted by eq. (27). See 

text for an explanation of how the function g(N, Z) was extracted from the calculations. 

linear to a remarkable extent; for Z = l all three lines cross the energy axis 
at zero. Combined with the results on the electron affinities, this indicates 
that the total energies have the following dependence on the excess number 
of electrons (Z): 

E(Z) = E(O) - A Z Z(Z - l)e
2 

1 + 2(R + o) ' 
(27) 

where the dependence on the number of atoms in the cluster is not explicitly 
indicated. 

This result is remarkable in its analogy with the classical image-charge 
result of van Staveren et al. [49]. Indeed, the only difference amounts to 
the spill-out parameter o0 and to the weak dependence on Z through Oz. 
This additional Z-dependence becomes negligible already for the case of 30 
sodium atoms. 
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Fig. 7. The LDA and the corresponding self-interaction corrected (SIC) potential 

for the metastable Na~; cluster. A spherical jellium background was used. The single­

particle levels of the SIC potential are also shown. Unlike the LDA, this latter potential 

exhibtts the correct asymptotic behavior. The 2s and Id electrons can be emitted spon­

taneously by tunneling through the Coulombic barrier of the SIC potential. Distances in 

units of the Bohr radius, ao. 

For metastable multiply-charged cluster anions, electron emission ( au­
todetachment) will occur via tunneling through a barrier (shown in Fig. 7). 
However, to reliably estimate the electron emission, it is necessary to cor­
rect the LDA effective potential for self-interaction effects. We performed 
a self-interaction correction of the Amaldi type [45] for the Hartree term 
and extended it to the exchange-correlation contribution to the total en­
ergy as follows: E~JC[p] = E):fA[p] - N,E):,DA[p/N,], where N, = vN + Z 
is the total number of electrons. This self-interaction correction is akin to 
the orbitally-averaged-potential method (45]. Minimizing the SIC energy 
functional for the parameters r0 , a, and "'/, we obtruned the effective SIC 
potential for N af8 shown in Fig. 7, which exhibits the physically correct 
asymptotic behavior (52]. 

The spontaneous electron emission through the Coulombic barrier is 
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analogous to that occurring in proton radioactivity from neutron-deficient 
nuclei [53], as well as in alpha-particle decay. The transition rate is .X = 
In 2/T1; 2 = vP, where vis the attempt frequency and Pis the transmission 
coefficient calculated in the WKB method (for details, cf. Ref. [53]). For 
the 2s electron in Nai8 (cf. Fig. 7), we find v = 0.73 1015 Hz and P = 
4.36 10-6, yielding T1; 2 = 2.18 10-10 s. For a cluster size closer to the drip 

line (see Fig. 5), e.g. Na~5, we find T112 = 1.13 s. 
Finally, exression (27) for the total energy can be naturally extended to 

the case of multiply positively charged metal clusters by setting Z = -z, 
with z > O. The ensuing equation retains the same dependence on the 
excess positive charge z, but with the negative value of the first affin­
ity, -..41 , replaced by the positive value of the first ionization potential, 
11 = W + (3/8)e2/(R + b), a result that has been suggested from earlier 
measurements on multiply charged potassium cations [54]. Naturally, the 
spill-out parameter /j assumes different values than in the case of the anionic 
clusters. 

2.2.2 Neutral and multiply charged fullerenes 

Stabilized jellium approximation - The genemlized LDA-SCM 

Fullerenes and related carbon structures have been extensively investi­
gated using ab initio local-density-functional methods and self-consistent 
solutions of the Kohn-Sham (KS) equations [55, 56]. For metal clusters, 
replacing the ionic cores with a uniform jellium background was found 
to describe well their properties within the KS-LDA method [30]. Moti­
vated by these results, several attempts to apply the jellium model in con­
junction with LDA to investigations of fullerenes have appeared recently 
[57, 58, 59, 14]. Our approach (14] differs from the earlier ones in several 
aspects and, in particular, in the adaptation to the case of finite systems 
of the stabilized-jellium ( or structureless pseudopotential) energy density 
functional (see eq. (28) below and Ref. (45]). 

An important shortcoming of the standard jellium approximation for 
fullerenes (and other systems with high density, i.e., small r,) results from 
a well-known property of the jellium at high electronic densities, namely 
that the jellium is unstable and yields negative surface-energy contribution 
to the total energy (45], as well as unreliable values for the total energy. 
These inadequacies of the standard jellium model can be rectified by pseu­
dopotential corrections. A modified-jellium approach which incorporates 
such pseudopotential corrections and is particularly suited for our pur-
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poses here, is the structureless pseudopotential model or stabilized jellium 
approximation developed in Ref. [45]. 

In the stabilized jellium, the total energy Ep,eudo, as a functional of the 
electron density p(r), is given by the expression 

Ep,eudo[P,P+l = Ejell[P,P+l + (ov)ws j p(r)U(r)dr-f j P+(r)dr, (28) 

where by definition the function U( r) equals unity inside, but vanishes, out­
side the jellium volume. P+ is the density of the positive jellium background 
( which for the case of C60 is taken as a spherical shell, of a certain width 2d, 
centered at 6.7 a.u. ). Ep,eudo in eq. (28) is the standard jellium-model to­
tal energy, E,.11, modified by two corrections. The first correction adds the 
effect of an average (i.e., averaged over the volume of a Wigner-Seitz cell) 
difference potential, (ov)wsU(r), which acts on the electrons in addition to 
the standard jellium attraction and is due to the atomic pseudopotentials 
(in this work, we use the Ashcroft empty-core pseudopotential, specified 
by a core radius re, as in Ref. [45]). The second correction subtracts from 
the jellium energy functional the spurious electrostatic self-repulsion of the 
positive background within each cell; this term makes no contribution to 
the effective electronic potential. 

Following Ref. [45], the hulk stability condition ( eq. (25) in Ref. [45]) 
determines the value of the pseudopotential core radius r c, as a function of 
the bulk Wigner-Seitz radius r ,. Consequently, the difference potential can 
be expressed solely as a function of r, as follows (energies in Ry, distances 
in a.u.): 

2 (9ir)
2

/
3 

1 (9ir) 
1

/
3 

1 de (6v)ws = -- - r- 2 + - -- r- 1 + -r,-c 
5 4 ' 2ir 4 ' 3 dr, ' 

(29) 

where Ee is the per particle electron-gas correlation energy (in our calcu­
lation, we use the Gunnarsson-Lundqvist exchange and correlation energy 
functionals (see Refs. [4, 51)). 

The electrostatic self-energy, f, per unit charge of the uniform positive 
jellium is given by 

f = 6v2l3/5r,, (30) 

where vis the valence of the atoms ( v = 4 for carbon). 

ETF electron-density profile 

To apply the ETF-LDA method to carbon fullerenes, we generalize it 
by employing potential terms according to the stabilized-jellium functional 
(28). 
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Another required generalization consists in employing a parametrized 
electron-density profile that accounts for the hollow cage-structure of the 
fullerenes. Such a density profile is provided by the following adaptation 
of a generalization of an inverse Thomas-Fermi distribution, used earlier in 
the context of nuclear physics [60], i.e., 

( 
F, o sinh[w, o/ a; o] ) 1

'·
0 

pr - p ' , ' 
( ) -

0 cosh[w,,0 /a,, 0 ] + cosh[(r - R)/a;,o] ' 
(31) 

where R = 6.7 a.u. is the radius of the fullerene cage. w, a, and -y are 
variables to be determined by the ETF-LDA minimization. For R = 0 
and large values of w/a, expression (31) approaches the more familiar 
inverse Thomas-Fermi distribution, with w the width, a the diffuseness 
and -y the asymmetry of the profile around r = w. There are a total 
of six parameters to be determined, since the indices ( i, o) stand for the 
regions inside ( r < R) and outside ( r > R) the fullerene cage. F;,0 = 
( cosh[ w,,0 / a,,0 ] + 1 )/ sinh[ w,,0 / a;, 0 ] is a constant guaranteeing that the two 
parts of the curve join smoothly at r = R. The density profile in Eq. 
(31) peaks at r = R and then falls towards smaller values both inside and 
outside the cage (see top panel of Fig, 8). 

Shell correction and icosahedral splitting 

To apply the SCM to the present case, the potential VETF in Eq. (19) 
is replaced by the stabilized-jellium LDA potential shown in Fig. 8. Af­
ter some rearrangements, the shell-corrected total energy E,h[,o] in the 
stabilized-jellium case can be written in functional form as follows [compare 
to Eq. (20), see also Eq. (16]. 

J{~vH(r)+ Yxc(r)}p(r)dr 

+ j Ex,[p(r)]dr + E1 - 'i j P+(r)dr, (32) 

Heretofore, the point-group icosahedral symmetry of C60 was not con­
sidered, since the molecule was treated as a spherically symmetric cage. 
This is a reasonable zeroth-order approximation as noticed by several au­
thors [55, 59, 61, 62]. However, considerable improvement is achieved when 
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Fig. 8. Bottom panel: The stabilized-jellium LDA potential obtained by the ETF 

method for the neutral C60 molecule. The Wigner-Seitz radius for the jellium bacground 

1s 1.23 a.u. Note the asymmetry of the potential about the minimum. The associated 

difference potential (6v}ws = -9.61 eV. 

Top panel: Solid line: Radial density of the positive jellium background. Dashed line: 

ETF electronic density. Note its asymmetry about the maximum. Thick solid line: 

The difference (multiplied by 10) of electronic ETF densities between c:o and Cao. It 

illustrates that the excess charge accumulates in the outer perimeter of the total electronic 

density. All densities are normalized to the density of the positive jellium background. 

the effects of the point-group icosahedral symmetry are considered as a 
next-order correction (mainly the lifting of the angular momentum degen­
eracies). 

The method of introducing the icosahedral splittings is that of the crys­
tal field theory [63]. Thus, we will use the fact that the bare electrostatic 
potential from the ionic cores, considered as point charges, acting upon an 
electron, obeys the well-known expansion theorem [63] 

where the angular coefficients C1 are given through the angular coordinates 
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Fig. 9. (a) The single-particle levels of the ETF-LDA potential for Ceo shown in 

Fig. 8. Because of the spherical symmetry, they are characterized by the two principle 

quantum numbers nr and I, where nr is the number of radial nodes and I the angular 

momentum. They a.re grouped in three bands labeled <T (nr = 0), 11' (nr = I), and 6 

(nr = 2). Ea.ch band starts with an I= 0 level. 

(b) The single-particle levels for Ceo after the icosahedral splittings a.re added to the 

spectra of (a). The tenfold degenerate HOMO (h,.) and the sixfold degenerate LUMOI 

(t1,.) and LUMO2 (ti 9 ) a.re denoted; they originate from the spherical I= 5 and I= 6 

(t1
9

) 11' levels displayed in panel (a). For the <T electrons, the icosahedral perturbation 

strongly splits the I = 9 level of panel (a). There result five sublevels which straddle 

the <T-electron gap as follows: two of them (the eightfold degenerate g,., and the tenfold 

degenerate h,.) move down and a.re fully occupied resulting in a shell closure (180 <T 

electrons in total). The remaining unoccupied levels, originating from the I = 9 <T level, 

a.re sharply shifted upwards and acquire positive values. 

Bi, </>i of the carbon atomic cores, namely, 

(34) 

where * denotes complex conjugation. 
We take the radial parameters Kt( r) as constants, and determine their 

value by adjusting the icosahedral single-particle spectra t!co to reproduce 
the pseudopotential calculation of Ref. [55), which are in good agreement 
with experimental data. Our spectra without and with icosahedral splitting 
are shown in Fig. 9(a) and Fig. 9(b), respectively. We find that a close 
reproduction of the results of ab initio LDA calculations [55, 64, 65) is 
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achieved when the Wigner-Seitz radius for the jellium background is 1.23 
a. u. The shell corrections, t.i.E!,t, including the icosahedral splittings are 
calculated using the icosah~dral single-particle energies dco in eq. (19) . The 
average quantities (p and V) are maintained as those specified through the 
ETF variation with the spherically symmetric profile of eq. (31). This is 
because the first-order correction to the total energy (resulting from the 
icosahedral perturbation) vanishes, since the integral over the sphere of a 
spherical harmonic Yr (l > 0) vanishes. 

Ionization potentials and electron affinities 

Having specified the appropriate Wigner-Seitz radius r ~ and the pa­
ra.meters "-1 of the icosahedral crystal field through a comparison with the 
pseudopotential LDA calculations for the neutral C6o, we calculate the to­
tal energies of the cationic and anionic species by allowing for a change in 
the total electronic charge, namely by imposing the constraint 

41r j p(r)r2dr = 240 ± x , (35) 

where p(r) is given by eq. (31). The shell-corrected and icosahedrally per­
turbed first and higher ionization potentials J!co are defined as the difference 
of the ground-state shell-corrected total energies E!,i° as follows: 

I!co = E!C,t(Ne = 240-x; Z = 240)-E!h0 (Ne = 240-x+l; Z = 240) , (36) 

where Ne is the number of electrons in the system and x is the number of 
excess charges on the fullerenes (for the excess charge, we will find conve­
nient to use two different notations x and z related as x = lzl. A negative 
value of z corresponds to positive excess charges). Z = 240 denotes the 
total positive charge of the jellium background. 

The shell-corrected and icosahedrally perturbed first and higher electron 
affinities A~0 are similarly defined as 

A~co = E!h0 (Ne = 240+x-1; Z = 240)-E!h0 {Ne = 240+x; Z = 240). (37) 

We have also calculated the corresponding average quantities ix and 
Ax, which result from the ETF variation with spherical symmetry '(that 
is without shell and icosahedral symmetry corrections). Their definition is 
the same as in Eqs. {36) and {37), but with the index sh replaced by a tilde 
and the removal of the index ico. 
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Table I. ETF (spherically averaged, denoted by a tilde) and shell-corrected (denoted 

by a superscript ico to indicate that the icosahedral splittings of energy levels have been 

included) IPs and EAs offullerenes c;{. Energies in eV. r, = 1.23 a.u. 

X Ix JicO 
X Ax Aico 

X 

1 5.00 7.40 2.05 2.75 
2 7.98 10.31 -0.86 -0.09 
3 10.99 13.28 -3.75 -2.92 
4 14.03 16.25 -6.60 -5.70 
5 17.09 19.22 -9.41 -8.41 
6 20.18 22.20 -12.19 -11.06 
7 23.29 25.24 -14.94 -14.85 
8 26.42 28.31 -17.64 -17.24 
9 29.57 31.30 -20.31 -19.49 
10 32.73 34.39 -22.94 -21.39 
11 35.92 39.36 -25.53 -22.93 
12 39.12 42.51 -28.07 -23.85 

In our calculations of the charged fullerene molecule, the r • value and 
the icosahedral splitting parameters(~,, see Eq. (33), and discussion below 
it) were taken as those which were determined by our calculations of the 
neutral molecule, discussed in the previous section. The parameters which 
specify the ETF electronic density (Eq. (31)) are optimized for the charged 
molecule, thus allowing for relaxation effects due to the excess charge. This 
procedure is motivated by results of previous electronic structure calcula­
tions for ct0 and C60 [64, 65], which showed that the icosahedral spectrum 
of the neutral C60 shifts almost rigidly upon charging of the molecule. 

Shell-corrected and ETF calculated values of ionization potentials (IPs) 
and electron affinities (EAs), for values of the excess charge up to 12 units, 
are summarized in Table I (for r6 = 1.23 a.u.) 

Charging energies and capacitance of fullerenes 

Fig. 10( a) shows that the variation of the total ETF -LDA energy difference 
(appearance energies) 6.E(z) = E(z)- E(O), as a function of excess charge 
z (lzl = x ), exhibits a parabolic behavior. The inset in Fig. lO(a) exhibiting 
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Fig. 10. (a) ETF-LDA total energy differences (a.ppea.ra.nce energies) ~E(z) = 
E(z) - .E(O) a.s a. function of the excess charge z (z < 0 corresponds to positive excess 

charge) . Inset: The ETF function g(z) (open squares), a.nd the shell-corrected function 

g:1.°(z) (filled circles). For z ~ 1 the two functions a.re almost identical. 

(b) magnification of the appearance-energy curves for the region -2 $ z $ 4. Filled 

circles: shell-corrected icosahedral values [~E!f(z) = E!f(z) - E!t0 (0)}. Open squares: 

ETF-LDA values [~.E(z) = .E(z) - .E(O)]. 

the quantity 
~( ) E(z) - E(O) A~ gz=-'---'----------+ 1, 

z 
(38) 

plotted versus z ( open squares), shows a straight line which crosses the zero 
energy line at z = 1. As a result the total ETF-LDA energy has the form, 

~ ~ z(z - l)e2 ~ 
E(z) = E(O) + 

2
C - A1z . (39) 

Equation (39) indicates that fullerenes behave on the average like a ca­
pacitor having a capacitance C (the second term on the rhs of eq. (39) 
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corresponds to the charging energy of a classical capacitor, corrected for 
the self-interaction of the excess charge [4, 5]). We remark that regarding 
the system as a classical conductor, where the excess charge accumulates 
on the outer surface, yields a value of C = 8.32 a. u. ( that is the outer 
radius of the jellium shell). Naturally, the ETF calculated value for C is 
somewhat larger because of the quantal spill-out of the electronic charge 
density. Indeed, from the slope of g(z) we determine [66] C = 8.84 a.u. 

A similar plot of the shell-corrected and icosahedrally modified energy 
differences t,.E)'i,°(z) = E;'i,°(z)-E)'i,0 (0) is shown in Fig. l0(b) (in the range 
-2 :<o z :<o 4, filled circles). The function g;'i,0 (z), defined as in eq. (38) but 
with the shell-corrected quantities ( t,.E)'i,0 ( z) and A{c0

), is included in the 
inset to Fig. l0(a) (filled circles). The shift discernible between g)'J.0 (-1) 
and g)'i,0 (1) is approximately 1.7 eV, and originates from the difference of 
shell effects on the IPs and EAs (see Table I). The segments of the curve 
g;'i,0 (z) in the inset of Fig. l0(a), corresponding to positively (z < 0) and 
negatively (z > 0) charged states, are again well approximated by straight 
lines, whose slope is close to that found for g(z). Consequently, we may 
approximate the charging energy, including shell-effects, as follows, 

E''°( ) = Eico(O) x( x - 1 )e2 sh X sh + 2C ( 40) 

for negatively charged states, and 

E''°(x) = E"o(0) +· x( X - 1 )e2 + r•co sh sh 2C 1 X , ( 41) 

for positively charged states. Note that without shell-corrections (i.e., ETF) 
/ 1 - A1 = e2 /C = 27.2/8.84 eV "' 3.1 eV, because of the symmetry of eq. 
(39) with respect to z, while the shell-corrected quantities are related as 
r;c0 -Aico "'e2/C+t,.sh, where the shell correction is [:,.sh"' 1.55 eV (from 
Table I, It0 

- A\'° "'4.65 eV). 
Expression ( 40) for the negatively charged states can be rearranged as 

follows ( energies in units of e V), 

( 42) 

in close agreement with the all-electron LDA result of Ref. [67]. 
Equations (40) and (41) can be used to provide simple analytical ap­

proximations for the higher IPs and EAs. Explicitly written, A~'0 = E;'f,°(x-
1)-E;);"(x) = A(co -(x- l)e2 /C and It'0 = I/'0 +(x- l)e2 /C. Such expres­
sions have been used previously [68] with an assumed value for C a, 6. 7 a. u. 
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(i.e., the radius of the C60 molecule, as determined by the distance of car­
bon nuclei from the center of the molecule), which is appreciably smaller 
than the value obtained by us (C = 8.84 a.u., see above) via a microscopic 
calculation. Consequently, using the above expression with our calculated 
value for Aico = 2.75 eV (see Table I), we obtain an approximate value 
of A;co = -0.35 eV ( compared to the microscopically calculated value of 
-0.09 eV given in Table I, and -0.11 eV obtained by Ref. [67)) - indi­
cating metastability of ci0 - while employing an experimental value for 
A\co = 2.74 eV, a value of Ai{0 = 0.68 eV was calculated in Ref. [68]. 

Concerning the cations, our expression ( 41) with a calculated Jjco = 
7.40 eV (see Table I) and C = 8.84 a.u. yields approximate values 18.5 
eV and 31.5 eV for the appearance energies of C~t and cJt ( compared to 
the microscopic calculated values of 17.71 eV and 30.99 eV, respectively, 
extracted from Table I, and 18.6 eV for the former obtained in Ref. [64)). 
Employing an experimental value for Jj° 0 = 7.54 eV, corresponding values 
of 19.20 eV and 34.96 eV were calculated in Ref. [68]. As discussed in Ref. 
[69], these last values are rather high, and the origin of the discrepancy may 
be traced to the small value of the capacitance which was used in obtaining 
these estimates in Ref. [68]. 

A negative value of the second affinity indicates that C~i, is unstable 
against electron autodetachment. In this context, we note that the doubly 
negatively charged molecule C~i, has been observed in the gas phase and 
is believed to be a long-lived metastable species [70, 71]. Indeed, as we 
discuss in the next section, the small LDA values of Atco found by us and 
by Ref. [67] yield lifetimes which are much longer than those estimated by 
a pseudopotential-like Hartree-Fock model calculation [70], where a value 
of ~ 1 µs was estimated. 

Lifetimes of metastable anions, C6ii-

The second and higher electron affinities of C60 were found to be nega­
tive, which implies that the anions C~0 with x ~ 2 are not stable species, 
and can lower their energy by emitting an electron. However, unless the 
number of excess electrons is large enough, the emission of an excess elec­
tron involves tunneling through a barrier. Consequently, the moderately 
charged anionic fullerenes can be described as metastable species possessing 
a decay lifetime. 

To calculate the lifetime for electron autodetachmant, it is necessary to 
determine the proper potential that the emitted electron sees as it leaves 
the molecule. The process is analogous to alpha-particle radioactivity of 
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atomic nuclei. The emitted electron will have a final kinetic energy equal 
to the negative of the corresponding higher EA. We estimate the lifetime of 
the decay process by using the WKB method, in the spirit of the theory of 
alpha-particle radioactivity, which has established that the main factor in 
estimating lifetimes is the relation of the kinetic energy of the emitted par­
ticle to the Coulombic tail, and not the details of the many-body problem 
in the immediate vicinity of the parent nucleus. 

Essential in this approach is the determination of an appropriate single­
particle potential that describes the transmission barrier. It is well known 
that the LDA potential posseses the wrong tail, since it allows for the 
electron to spuriously interact with itself. A more appropriate potential 
would be one produced by the Self-Interaction Correction (SIC) method of 
Ref. [50]. This potential has the correct Coulombic tail, but in the case 
of the fullerenes presents another drawback, namely Koopman's theorem 
is not satisfied to an extent adequate for calculating lifetimes [72]. In this 
context, we note that Koopman's theorem is known to be poorly satisfied 
for the case of fullerenes even in Hartree-Fock calculations [73]. Therefore, 
the HOMO corresponding to the emitted electron, calculated as described 
above, cannot be used in the WKB tunneling calculation. 

Since the final energy of the ejected electron equals the negative of the 
value of the electron affinity, we seek a potential that, together with the 
icosahedral perturbation, yields a HOMO level in ci0 with energy -A:,C0

• 

We construct this potential through a self-interaction correction to the LDA 
potential as follows, 

- -
VwKB = VLDA[pj- VH[:] - Vxc[(:], 

e e 
( 43) 

where the parameter ( is adjusted so that the HOMO level of C~ equals 
-A;c0

• In the above expression, the second term on the rhs is an average 
self-interaction Hartree correction which ensures a proper long-range be­
havior of the potential (i.e., correct Coulomb tail), and the third term is a 
correction to the short-range exchange-correlation. 

For the cases of C~0 and C~0 such potentials are plotted in Fig. 11. 
We observe that they have the correct Coulombic tail, namely a tail cor­
responding to one electron for C~0 and to two electrons for C~0. The 
actual barrier, however, through which the electron tunnels is the sum of 
the Coulombic barrier plus the contribution of the centrifugal barrier. As 
seen from Fig. 11, the latter is significant, since the HOMO in the fullerenes 
possesses a rather high angular momentum (I= 5), while being confined in 
a small volume. 



159 

6 

4 
c,,_ 

60 

,..---~ .. _ 

2 

~ (b) ....,.., 
0 

E 6 

(a) 
c: 4 

2 

-----

0 
5 15 25 35 

r (ao) 

Fig. 11. WKB effective barriers used to estimate lifetimes for C~Q (a) and C!O {b). 

Dashed lines correspond to barriers due solely to Coulombic repulsion and solid lines to 

total barriers after adding the centrifugal components. The thick horizontal solid lines 

correspond to the negative of the associated electron affinities A2co (a) and A3co (b). In 

th.e case of C~Q (panel (a)), the horizontal solid line at -A;c0 = 0.09 eV crosses the total 

barrier at an inside point R1 = 9.3 a.u. and again at a distance very far from the center 

of the fullerene molecule, namely at an outer point R2 = -e2 /A2co = 27.2/0.09 a.u. = 
302.2 a.u. This large value of R2 , combined with the large centrifugal barrier, yields a 

macroscopic lifetime for the metastable C~a" (see text for details). 
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Using the WKB approximation (74], we estimate for C~0 a macroscopic 
half-life of~ 4 x 107 years, while for CJ0 we estimate a very short half­
life of 2.4 x 10-12 s. Both these estimates are in correspondence with 
observations. Indeed, CJ0 has not been observed as a free molecule, while 
the free C~0 has been observed to be long lived (70, 71] and was detected 
even 5 min after its production through laser vaporization [71]. 

We note that the WKB lifetimes calculated for tunneling through Coulom­
bic barriers are very sensitive to the final energy of the emitted particle and 
can vary by many orders of magnitude as a result of small changes in this 
energy, a feature well known from the alpha radioctivity of nuclei [74]. 
Since the second electron affinity of C60 is small, effects due to geometrical 
relaxation and spin polarization can influence its value and, consequently, 
the estimated lifetime. Nevertheless, as shown in Ref. [67], inclusion of such 
corrections yields again a negative second affinity, but of somewhat smaller 
magnitude, resulting in an even longer lifetime ( the sign conventions in Ref. 
[67] are the opposite of ours). 

Furthermore, as discussed in Ref. [75], the stabilization effect of the 
Jahn-Teller relaxation for the singly-charged ion is only of the order of 0.03 
- 0.05 e V. Since this effect is expected to be largest for singly-charged 
species, Ci0 is not expected to be influenced by it [67]. 

On the other hand, generalized exchange-correlation functionals with 
gradient corrections yield slightly larger values for the second electron affin­
ity. For example, using exchange-correlation gradient corrections, Ref. [67] 
found A~'° = -0.3 eV, which is higher (in absolute magnitude) than the 
value obtained without such corrections. This value of -0.3 e V leads to 
a much smaller lifetime than the several million of years that correspond 
to the value of -0.09 e V calculated by us. Indeed, using the barrier dis­
played in Fig. ll(a), we estimate a lifetime for C~0 of approx. 0.37 s, when 
A~'0 = -0.3 eV. We stress, however, that even this lower-limit value still 
corresponds to macroscopic times and is 5 orders of magnitude larger than 
the estimate of Ref. [70], which found a lifetime of 1 µs for A~'0 = -0.3 eV, 
since it omitted the large centrifugal barrier. Indeed, when we omit the cen­
trifugal barrier, we find a lifetime estimate of 1.4 µs, when A~'0 = -0.3 eV. 
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3 Semi-empirical shell-correction methods (SE-
SCM) 

3.1 Methodology 

As mentioned above in our introductory description of Strutinsky's work 
[see section 2.1.2, in particular Eqs. (1-8)], rather than proceed with the 
microscopic route, he proposed a method for separation of the total energy 
into smooth and shell-correction terms [see Eq. (1)] based on an averag­
ing procedure. Accordingly, a smooth part, E,p, is extracted out of the 
sum of the single-particle energies L; l; [see Eq. (6), or equivalently Eq. 
(16) with pm replaced by p and £fut by l;] by averaging them through 
an appropriate procedure. Usually, but not necessarily, one replaces the 
delta functions in the single-particle density of states by gaussians or other 
appropriate weighting functions. As a result, each single-particle level is 
assigned an averaging occupation number J., and the smooth part E,p is 
formally written as 

(44) 

Consequently, the Strutinsky shell correction is given by 

occ 
A£Str .._....- - E~ 

Ll. sh = ~ Ci - sp · (45) 
i=l 

The Strutinsky prescription ( 45) has the practical advantage of using 
only the single-particle energies l;, and not the smooth density p. Taking 
advantage of this, the single-particle energies can be taken as those of an ex­
ternal potential that empirically approximates the self-consistent potential 
of a finite system. In the nuclear case, an anisotropic three-dimensional har­
monic oscillator has been used successfully to describe the shell-corrections 
in deformed nuclei. 

The single-particle smooth p~rt, E'!J', however, is only one component of 
the total smooth contribution, E[,o] (EHF in the Hartree-Fock energy con­
sidered by Strutinsky). Indeed as can be seen from Eq. (6) [or equivalently 
Eq. (16)], 

Etotal a:, b.E~t + E[p] , (46) 

Strutinsky did not address the question of how to calculate microscop­
ically the smooth part E ( which necessarily entails specifying the smooth 
density p). Instead he circumvented this question by substituting for E 
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the empirical energies, ELDM, of the nuclear liquid drop model, namely he 
suggested that 

( 47) 

In applications of Eq. (47), the single-particle energies involved in the 
averaging [see Eqs. (44) and (45)] are commonly obtained as solutions of 
a Schrodinger equation with phenomenological one-body potentials. This 
last approximation has been very successful in describing fission barriers 
and properties of strongly deformed nuclei using harmonic oscillator or 
Wood-Saxon empirical potentials. 

In the following, we describe applications of the SE-SCM approach to 
systematic investigations of the effects of triaxial shape-deformations on the 
properties of metal clusters [7] (section 3.2.1), and to studies of deforma­
tions and barriers in fission of charged metal clusters [8, 9] (section 3.2.2). 
We mention that, in addition, Strutinsky calculations using phenomenolog­
ical potentials have been reported for the case of neutral sodium clusters 
assuming axial symmetry in Refs. ([11]-[13]), and for the case of fission in 
Ref. [10]. 

3.2 Applications of the SE-SCM 

3.2.1 Electronic shell effects in triaxially deformed metal clus-
ters 

Early in the study of alkali-metal clusters, it was recognized that their 
ground-state properties portray manifestations of electronic shell effects 
[76, 77, 30, 42]. An important step toward understanding these effects 
has been achieved by modelling the clusters as spherical jellium droplets, 
where the ionic structure of the cluster was modeled by a continuous posi­
tive charge distribution having a sharp-step spherical profile, and the elec­
trons were treated using density functional theory in the local density ap­
proximation [77, 42, 78, 79] (LDA). However, while analyses restricted to 
consideration of spherical shapes have been able to account for the main 
discontinuities observed at cluster magic-number sizes ( associated with the 
filling of degenerate levels of valence electronic states which are grouped into 
a major shell), the results obtained by such spherical models, pertaining to 
the overall behavior of cluster properties versus size, are not in satisfactory 
agreement with the experimental data [30]. For example, for ionization po­
tentials, the spherical jellium yields typical saw-toothed curves, which lack 
fine structure between major shells, a feature that is prominent in the data. 
In addition, each arc of the saw-tooth rises steeply above the data before 
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falling sharply at the next discontinuity associated with a major-shell clo­
sure. This behavior contrasts with the observed ionization-potential (IP) 
curves, which remain rather flat between magic species, exhibiting a stair­
case profile. 

The merit of the early spherical jellium model of clusters derives from 
the recognition of the importance of level bunching in the single-particle 
spectra of finite systems. The degree of level bunching is related to the 
degeneracies imposed by the symmetry of the systems. As is well known in 
various branches of physics (i.e., atomic, molecular, and nuclear physics), 
the high degree of degeneracy pertaining to spherical symmetry is asso­
ciated with closed-shell systems. Open-shell systems, on the other hand, 
lower their energy via various symmetry breaking mechanisms which result 
in diminished degeneracies. In atomic systems, the spherical symmetry of 
the nuclear central-field potential felt by the electrons is broken by the re­
pulsive inter-electron Coulomb interaction leading to a level-filling scheme 
favoring high-spin multiplicity according to Hund's rule [80]. In molecules 
( and solids), the lifting of orbital degeneracies occuring through structural 
distortions is known as the Jahn-Teller effect [81]. In open-shell nuclei, 
energy stabilization occurs via shape deformations [82, 83, 15, 3, 51] (a 
mechanism that may be thought of as akin to the Jahn-Teller effect). 

For open-shell clusters, in analogy with atomic nuclei, it has been sug­
gested that consideration of quadrupole shape deformations could lead to 
lifting of the spherical degeneracy and to an improvement in the agreement 
between theory and experiment. A first implementation of this idea was 
carried out by Clemenger [84, 85] and Saunders [86] [the Clemenger-Nilsson 
(CN) model], who applied to metal clusters the anisotropic, harmonic- os­
cillator model introduced by Nilsson [83] in nuclear physics. Unfortunately, 
this model does not provi'de a full expression for the total energy of an in­
teracting system, and therefore cannot describe either binding energies for 
neutral clusters or charging energies for ionic ones. Nevertheless, in spite 
of such shortcomings, the CN model is still widely used to interpret the 
data [30, 87]. Naturally, such an interpretation is restricted to a hand­
ful of experimentally observable ground-state properties, i.e., abundances, 
!Ps and electron affinities (EAs ). Moreover, for IPs and EAs the anal­
ysis is carried out at a qualitative level by following the relative shifts 
of the highest-occupied-molecular-orbital (HOMO) or lowest-unoccupied­
molecular-orbital (LUMO) levels. 

Several Kohn-Sham-local-density-approximation (KS-LDA) studies with 
spheroidal jellium backgrounds [47, 88] have also been reported. Such KS 
calculations are rather time consuming and have been carried out only for 
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a small number of sodium [47, 88] and copper clusters [88] comprising less 
than 40 atoms and have addressed only a limited number of ground-state 
properties [IPs and monomer separation energies (MSEs) for NaN, and 
electron affinities (EAs) for CuN]- Systematic theoretical results for tri­
axial shapes were performed only most recently [7, 89] even though there 
exists a wealth of experimental observations for IPs, EAs, fission disso­
ciation energies (FDEs), as well as MSEs and dimer separation energies 
(DSEs), which all exhibit characteristic shell effects. 

In addition to the steps at shell and subshell closures, the experimental 
IPs, EAs, FDEs, and MSEs exhibit a characteristic odd-even alternation, 
which has attracted substantial interest ([90]-[92]). One mechanism, which 
has been proposed [91, 92] as an explanation, involves phenomenological 
Cooper-pa.iring of electrons in analogy with the nuclear case, where nucleons 
form a BCS-type ground state [15, 3, 51]. However, it is difficult to justify 
[92] such a pa.iring in the case of clusters. Alternatively, for the IPs of 
simple metal clusters, MN, with N $ 9, such odd-even alternation has 
been obtained in both spheroidal jellium calculations [88] and ab initio 
quantum chemical calculations [93], suggesting that these oscillations are 
of a geometric (i.e., cluster-shape) origin. 

The aforementioned considerations motivate investigations aiming at a 
systematic assessment of relationships between observed patterns and the 
size-evolution and dimensionality (i.e., the character and number of mul­
tipolar components) of the relevant cluster deformation spaces pertaining 
to the ground-state properties mentioned above. While in this study, we 
focus on the systematics of the influence of cluster shapes on ground-state 
patterns, we remark that cluster deformations have also been discussed 
previously in the context of optical absorption via plasmon excitations 
([116] ,[94]-[97]). 

In this subsection, we study the influence of triaxial quadrupole shapes 
(ellipsoids) on the ground-state properties mentioned above and provide a 
systematic comparison with the available experimental data (for additional 
comparisons, see Ref. [7]). 

A SEMIEMPIRICAL SHELL-CORRECTION METHOD FOR TRIAXI­
ALLY DEFORMED CLUSTERS 

Liquid-drop model for neutral and charged deformed clusters 

For neutral clusters, the liquid-drop model [98, 10, 20] (LDM) expresses 
the smooth part, E, of the total energy as the sum of three contributions, 



namely a volume, a surface, and a curvature term, i.e., 

E = Evol + E,urf + Ecurn = 

Av j dr + a j dS + Ac j dS" , 
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( 48) 

where dr is the volume element and dS is the surface differential element. 
The local curvature " is defined by the expression " = 0.5( R;;,~x + R;;;;n), 
where Rmax and Rmin are the two principal radii of curvature at a lo­
cal point on the surface of the jellium droplet which models the cluster. 
The corresponding coefficients can be determined by fitting the extended 
Thomas-Fermi (ETF)-LDA total energy for spherical shapes (see section 
2.1.2) to the following parametrized expression as a function of the num­
ber, N, of atoms in the cluster [99, 100], 

E sph N N2f3 Nt/3 
ETF = °'v + <>s + a, , (49) 

The following expressions relate the coefficients Av, a, and Ac to the cor­
responding coefficients, (a's), in Eq. (49), 

3 
Av= -4 30'.v; 

,rr s 

1 1 
a= 41I"r;O'.s; Ac= 47rTs ac. (50) 

In the case of ellipsoidal shapes the areal integral and the integrated 
curvature can be expressed in closed analytical form with the help of the 
incomplete elliptic integrals F( ,p, k) and £( ,P, k) of the first and second kind 
[101], respectively. Before writing the formulas, we need to introduce some 
notations. Volume conservation must be employed, namely 

a'b'c'/RJ = abc = 1, (51) 

where Ro is the radius of a sphere with the same volume (Ro= r,N 1!3 is 
taken to be the radius of the positivejellium assuming spherical symmetry), 
and a = a'/ Ro, etc ... , are the dimensionless semi-axes. The eccentricities 
are defined through the dimensionless semi-axes as follows 

ef 1 - (c/a)2 

e~ = 1 - (b/a)2 

e1 = 1 - (c/b)2 
• 

The semi-axes are chosen so that 

(52) 

(53) 
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With the notation sin,/; = e1, k2 = eif e1, and k3 = e3/ e1, the relative 
( with respect to the spherical shape) surface and curvature energies are 
given [102] by 

(54) 

and 

(55) 

The change in the smooth part of the cluster total energy due to the 
excess charge ±Z was already discussed by us for spherical clusters in the 
previous section. The result may be summarized as 

where the upper and lower signs correspond to negatively and positively 
charged states, respectively, W is the work function of the metal, Ro is 
the radius of the positive jellium assuming spherical symmetry, and 6 is a 
spillout-type parameter. 

To generalize the above results to an ellipsoidal shape, ¢,( Ro + 6) = 
e2 /(Ro+ 6), which is the value of the potential on the surface of a spherical 
conductor, needs to be replaced by the corresponding expression for the po­
tential on the surface of a conducting ellipsoid. The final result, normalized 
to the spherical shape, is given by the expression 

(57) 

where the ± sign in front of W Z corresponds to negatively and positively 
charged clusters, respectively. 

The modified Nilsson potential 

A natural choice for an external potential to be used for calculating shell 
corrections with the Strutinsky method is an anisotropic, three-dimensional 
oscillator with an 12 term for lifting the harmonic oscillator degeneracies 
[83]. Such an oscillator model for approximating the total energies of metal 
clusters, but without separating them into a smooth and a shell-correction 
part in the spirit of Strutinsky' s approach, has been used [30] with some 
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success for calculating relative energy surfaces and deformation shapes of 
metal clusters. However, this simple harmonic oscillator model has seri­
ous limitations, since i) the total energies are calculated by the expression 
i L, £;, and thus do not compare with the total energies obtained from the 
KS-LDA approach, ii) the model cannot be extended to the case of charged 
( cationic or anionic) clusters. Thus absolute ionization potentials, electron 
affinities, and fission energetics cannot be calculated in this model. Alter­
natively, in our approach, we are making only a limited use of the external 
oscillator potential in calculating a modified Strutinsky shell correction. 
Total energies are evaluated by adding this shell correction to the smooth 
LDM energies. 

In particular, a modified Nilsson Hamiltonian appropriate for metal 
clusters [84, 86] is given by 

(58) 

where HO is the hamiltonian for a three-dimensional anisotropic oscillator, 
namely 

r,2 m 
___ .6 +-e (w2x2 + w2y2 + w2z2) = 

2me 2 1 2 3 
Ho 

3 1 I) a!ak + - )hwk . 
k=l 

2 
(59) 

Uo in Eq. (58) is a dimensionless parameter, which for occupied states 
may depend on the principal quantum number n = n1 + n2 + n3 of the 
spherical-oscillator major shell associated with a given level ( n,, n2, n3) of 
the hamiltonian Ho (for clusters comprising up to 100 valence electrons, 
only a weak dependence on n is found, see Table I in Ref. [7]). Uo vanishes 
for values of n higher than the corresponding value of the last partially ( or 
fully) filled major shell in the spherical limit. 

12 = I:i=l zi is a "stretched" angular momentum which scales to the 
ellipsoidal shape and is defined as follows, 

(60) 

(with similarly obtained expressions for 11 and 12 via a cyclic permutation 
of indices) where the stretched position and momentum coordinates are 
defined via the corresponding natural coordinates, qi:"' and p'/::', as follows, 
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t 
- nat( /~ )1/2 - . ak - Uk (k - 1 2 3) Pk = Pk 1 nm,wk - z ,/2 , _ , , . (62) 

The stretched 12 is not a properly defined angular-momentum operator, 
but has the advantageous property that it does not mix deformed states 
which correspond to sherical major shells with different principal quantum 
number n = n1 + n2 + n3 (see, the Appendix in Ref. [7] for the expression 
of the matrix elements of 12). 

The subtraction of the term < 12 >n= n( n + 3)/2, where < >n denotes 
the expectation value taken over the nth-major shell in spherical symmetry, 
guaranties that the average separation between major oscillator shells is not 
affected as a result of the lifting of the degeneracy. 

The oscillator frequencies can be related to the principal semi-axes a', 
b', and c' [see, Eq. (51)] via the volume-conservation constraint and the 
requirement that the surface of the cluster is an equipotential one, namely 

I b' I R W1a =W2 :=W3C =Woo, (63) 

where the frequency w0 for the spherical shape (with radius Ro) was taken 
according to Ref. [85] to be 

49 e V bohr
2 

[ t ]-2 

hwo(N) = r;Nl/3 1 + r,Nl/3 . (64) 

Since in this paper we consider solely monovalent elements, Nin Eq. (64) is 
the number of atoms for the family of clusters M%±, r, is the Wigner-Seitz 
radius expressed in atomic units, and t denotes the electronic spillout for 
the neutral cluster according to Ref. [85]. 

Shell correction and averaging of single-particle spectra 

Usually E,p [see Eqs. (44) and (45)] is calculated numerically [103]. 
However, a variation of the numerical Strutinsky averaging method consists 
in using the semiclassical partition function and in expanding it in powers of 
h2

• With this method, for the case of an anisotropic, fully triaxial oscillator, 
one finds [15, 104] an analytical result, namely [105] 

I;;;c = h(w1w2w3)113 

X (~(3N,)4/3 + 1 Wf + wJ + w5 (3N,)2f3) , (65) 
4 24 (w1W2W3)2f3 

where N, denotes the number of delocalized valence electrons in the cluster. 
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In the present work, exp~ession (65) (as modified below) will be substi­
tuted for the average part Esp in Eq. ( 45), while the sum Lice€, will be 
calculated numerically by specifying the occupied single-particle states of 
the modified Nilsson oscillator represented by the hamiltonian (58). 

In the case of an isotropic oscillator, not only the smooth contribu­
tion, f::;c, but also the Strutinsky shell correction ( 45) can be specified 
analytically, [15] with the result 

where x is the fractional filling of the highest partially filled harmonic oscil­
lator shell. For a filled shell (x = 0), t.Eft0(0) = -J4 nw0 (3N,)2l3, instead 
of the essentially vanishing value as in the case of the ETF-LDA defined 
shell correction ( cf. Fig. 1 of Ref. [7]). To adjust for this discrepancy, 
we add -t.Eflo(O) to t.Eft calculated through Eq. ( 45) for the case of 
open-shell, as ~ell as closed-shell clusters. 

Overall procedure 

We are now in a position to summarize the calculational procedure, 
which consists of the following steps: 

1. Parametrize results of ETF-LDA calculations for spherical neutral 
jellia according to Eq. ( 49). 

2. Use above parametrization ( assuming that parameters per differen­
tial element of volume, surface, and integrated curvature are shape 
independent) in Eq. ( 48) to calculate the liquid-drop energy associ­
ated with neutral clu~ters, and then add to it the chargi~g energy 
according to Eq. (57) to determine the total LDM energy E. 

3. Use Equations (58) and (59) for a given deformation [i.e., a', b', c', or 
equivalently w1 , w2 , w3 , see Eq. (63)] to solve for the single-particle 
spectrum(€;). 

4. Evaluate the average, Esp, of the single-particle spectrum according 
to Eq. ( 65) and subsequent remarks. 

5. Use the results of steps 3 and 4 above to calculate the shell correction 
t.Efr according to Eq. ( 45). 
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6. Finally, calculate the total energy Eah as the sum of the liquid-drop 
contribution (step 2) and the shell correction (step 5), namely Eah = 
E + AE;t. 

The optimal ellipsoidal geometries for a given cluster Mi±, neutral or 
charged, are determined by systematically varying the distortion (namely, 
the parameters a and b) in order to locate the global minimum of the total 
energy Eah(N, Z). 

SAMPLE RESULTS 

Ionization potentials 

We have calculated ionization potentials by subtracting two ground­
state energies, namely the ground-state energy of the neutral clusters from 
the ground-state energy of the singly charged cations, 

(67) 

Note that the lower case z in Eq. (67) denotes the algebraic value of the 
excess charge, namely z < 0 for anions, z > 0 for cations, and lzl = Z. 

Most recently, systematic measurements of the IPs of cold sodium clus­
ters, NaN, were performed° [106]. The SE-SCM results (for N up to 105 
atoms), as well as the experimental data are displayed in Fig. 12. In our 
introductory section, we have already shown these results for N < 45 [Fig. 
1( c)], including SE-SCM results obtained by constraining the clusters to 
spherical symmetry [Fig. l(b )] and the smooth contribution in the latter 
symmetry [Fig. l(a)]. 

The overall agreement between theory and experiment is very satisfac­
tory (note the close quantitative agreement of the absolute IP values). The 
steps at major-shell closings (N = 8, 20, 40, 58, 92), as well as those at 
subshell closings (N = 14, 26, 30, 34, 44, 50, 54, 68) are comparable to the 
experimental ones. Additionally the theoretical results reproduce well the 
staircase profile of the experimental curve. The overall weakening of the os­
cillations of the fine structure with increasing size seen in the experimental 
data is also portrayed by the calculations. 

The odd-even oscillations are accurately reproduced for 3 ~ N ~ 21. 
Above N = 21, however, the theory provides only a partial account for 
the odd-even alternations (i.e., for N = 35 - 40, N = 59 - 65, and N = 
95 - 101). Here, experimentally observed odd-even oscillations are present 
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Fig. 12. IPs for Na.N clusters in the ra.nge 3 $ N $ 107. Solid dots: Theoretical 

results derived from the SE-SCM method in conjuction with the ellipsoidal model. Open 

squares: Experimental measurements from Ref. [106). 

throughout the N = 21 - 40 region and in the beginnings of the major 
shells immediately after N = 40 and N = 58. 

Electron affinities 

Electron affinities have been determined by us as the difference between 
two ground-state energies, namely by subtracting the ground-state energy 
of the singly charged anions from the ground-state energy of the neutral 
clusters, 

(68) 
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Fig. 13. EAs for CuN clusters in the range 5 $ N $ 43. Solid dots: Theoretical results 

derived from the SE-SCM method. Open squares: Experimental measurements from Ref. 
(107}. Top panel: The spherical model compared to experimental data. Middle panel: 

The spheroidal model compared to experimental data. Lower panel: The ellipsoidal 

model compared to experimental data. 

The theoretical results for CuN are displayed in Fig. 13, and are com­
pared to the experimental measurements [107] . The saw-toothed profile as­
sociated with spherical jellia compares rather poorly with the experimental 
data. We note that the magic numbers (8, 18, 20, 34, 40) are associated 
with the minima of the EA curve. Noticeable improvement in the agreement 
between theory and experiment is achieved when spheroidal shapes are con­
sidered (middle panel). Consideration of ellipsoidal shapes (bottom panel) 
results in a detailed agreement between theory and experiment, mainly due 
to the enhancement of odd-even oscillations. In particular, the feature of 
strong odd-even oscillations in the range N = 10 - 13 together with the 
preservation of the quartet structure for N = 14 - 17 is evident, and is 
accounted for only by the triaxial calculations. The presence of another 
well-defined quartet at N = 34 - 37 is also accurately reproduced by the 
triaxial calculations. We note that triaxiality offers a detailed agreement 
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Fig. 14. Monomer separation energies, D!,N [see Eq. (69)], from singly cationic 

Nat clusters in the range 5 $ N $ 39. Open squares: Experimental measurements 

from Ref. [108). Solid dots (Bottom panel): Theoretical results derived from the SE­

SCM method. Solid squares (Top panel): Theoretical results according to the KS-LOA 

spheroidal calculations of Ref. [47]. 

for the odd-even alternations in the EA curve of CuN up to N = 41. 

Monomer separation energies 

Monomer separation energies associated with the unimolecula.r reaction 
Na. t -+ Na. f{ _ 1 +Na. have been calculated a.s follows 

Di,N = Eah(z = +1, N - 1) + Eah(z = 0, N = 1) 
-E8 h(z = +1, N) . (69) 

The theoretical and experimental [108] results for Dt,N for sodium a.re 
displayed at the bottom panel of Fig. 14. From our calculations, we find, a.s 
for the case of IPs and EAs, that results obtained via. calculations restricted 
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to spherical shapes compare rather poorly with the experiment, that im­
provement is achieved when spheroidal deformations a.re considered, and 
that the agreement between theory and experiment becomes detailed when 
triaxiality is taken into consideration. The feature of the appearance of 
strong odd-even alternations for N = 12 - 15 (note the one-unit shift due 
to the single positive excess charge) together with a well-defined quartet in 
the range N = 16 - 19 is present in the monomer separation energies. 

We also include for comparison results obtained by KS-LDA calculations 
[ 4 7] for deformed NaN clusters restricted to axial (spheroidal) symmetry 
(Fig. 14, top panel). As expected, except for very small clusters (N < 9), 
these results do not exhibit odd-even oscillations. In addition, significant 
discrepancies between the calculated and experimental results a.re evident, 
particularly pertaining to the amplitude of oscillations at shell and subshell 
closures. 

Fission energetics 

Fission of doubly charged metal clusters, M~, has attracted consider­
able attention in the last few years. Nevertheless, LDA calculations have 
been restricted to spherical jellia for both parent and daughters, [109, 110] 
with the exception of molecular-dynamical calculations for sodium [43] 
and potassium [111] clusters with N ~ 12. We present here system­
atic calculations for the dissociation energies ~N,P of the fission processes 
K'j,t --+ Kp + Kt,_p, as a function of the fission channels P. 

We have calculated the dissociation energies 

~N,P = Eah(z = +1,P) + E11h(z = +1,N - P) 

-E11h(z = +2,N), (70) 

for the case of a parent cluster having N = 26 potassium atoms, for which 
corresponding experimental results [112] are available. The theoretical cal­
culations compared to the experimental results are displayed in Fig. 15. 
Again, while consideration of spheroidal shapes improves greatly the agree­
ment between theory and experiment over the spherical model, fully de­
tailed correspondence is achieved only upon allowing for triaxial-shape de­
formations (notice the improvement in the range P = 12 - 14). We note 
that the magic fragments Kf and Kt correspond to strong minima. 

Cluster shapes 
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Fig. 15. Fission dissociation energies, 6.26 ,p [see Eq. {70)), for the doubly cationic 

K~; cluster as a function of the fission channels P. Solid dots: Theoretical results derived 

from the SE-SCM method. Open squares: Experimental measurements from Ref. [112). 

Top panel: T he spherical model compared to experimental data. Middle panel: The 

spheroidal model compared to experimental data. Lower panel: T he ellipsoidal model 

compared to experimental data. 

In this subsection, we present systematics of the NaN equilibrium tri­
ax.ial shapes in the range 3 ~ N ~ 60. A most economical way for such a 
presentation. is through the use of the Hill-Wheeler parameters [113] {3 and 
7, which are related to the dimensionless semi-axes a, b, and c [see, Eq. 
(51)] as follows, 

a = exp [✓s/(41r)/3 cos(-r- 2
;)] 

b exp [✓5/(41r) /3cos(-r+ 2;)] 

c = exp [ ✓5/( 41r) /3 cos-y] , (71) 

where {3 is unrestricted and O ~ -y ~ 1r /3. A value -y ::/= 0 indicates a triaxial 
shape, while -y = 0 corresponds to a prolate shape, and -y = 1r /3 denotes 
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an oblate deformation. The origin corresponds to spherical shapes. 
Using the above definitions, the cluster potential energy surfaces (PESs) 

in deformation space may be easily mapped and studied. In this manner, 
one can analyze the topography of the PESs, identify global as well as lo­
cal minima (i.e., shape isomers), barriers separating them, and paths in 
deformation space by which they may transform to each other. Since the 
values of ground-state properties of clusters depend on the shape of the 
cluster, the existence of shape isomers may be manifested in experimen­
tal measurements. For example, in the case of measurements of ionization 
potentials, vertical ionization of a cluster MN ( e.g., starting from its opti­
mal ground-state configuration, or close to it) results in a Mt cluster in 
the configuration of the parent neutral. If the Mt cluster possesses shape 
isomers, it may relax either to the optimal configuration (global minimum) 
or to a local minimum (shape isomer), depending on the relationship be­
tween the topology of the PES for the Mt cluster and that of the MN 
parent. These two channels will lead to different values for the adiabatic 
IP. Moreover, the measured IP value may depend on the internal energy of 
the cluster (i.e., internal kinetic energy, or temperature), since the rate of 
shape transformations is expected to be enhanced at higher temperatures 
(i.e., at low temperature the cluster may be trapped at local minima in 
"shape-space"). We suggest that measurements of cluster properties, and 
their temperature dependence, may provide information about the topology 
of the PESs of clusters in shape-space. Indeed, evidence for the occurence 
of structural isomers has been inferred from photoionization studies [114] 
of Niobium clusters, where multiple ionization energies were measured for 
Nbg and Nb12, and from kinetic studies [114, 115] of the reactivity behavior 
of Niobium clusters reacting with D2 • 

The PESs for Na12, Na13, and Na14 are shown in Fig. 16 using the Hill­
Wheeler parametrization. First we note that all three clusters possess at 
least one shape isomer. For Na12 , the optimal shape is triaxially deformed 
and is separated by a potential barrier of approximately 0.5 eV from a 
shallow oblate isomer. On the other hand for Na13, while the optimal 
shape is triaxial close to the prolate axis, there exists a triaxial shape 
isomer close to the oblate axis. We note that the energy difference between 
the two minima is very small, reflecting the fact that the topology of the 
PES of N a13 is characterized by a very flat valley in the I coordinate. 
This is correlated with the insensitivity of the total energy of this cluster 
calculated via the spheroidal and ellipsoidal models. In this context, we 
remark that the above observation concerning the flat nature of the Na13 

PES is in agreement with conclusions drawn from LDA molecular-dynamics 
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calculations [44]. Finally, the PES for Na14 exhibits two axially symmetric 
minima, with the global one being the oblate shape. 

In Fig. 17, we present the Hill-Wheeler parameters which correspond to 
the global minima of the total energy of the clusters within our SE-SCM 
approach. We note that, as a result of allowing for ellipsoidal deforma­
tions, many clusters assume well developed tria.xial shapes, most notably 
Nas, Nan, Na12, Na13, Na16, etc. Overall the extent of deformation de­
creases with increasing size, as reflected in the diminishing values of the /3 
parameter. As expected, clusters associated with major-shell closures lie at 
the origin (i.e., they are spherical), except Na1s which has an oblate shape. 

Unlike the present work, where deformed shapes are inferred through 
ground-state properties, earlier this was usually done through photoabsorp­
tion measurements [30, 116, 95]. Indeed, phenomenological models assign a. 
different absorption energy for each a.xis and divide the oscillator strength 
equally among them (1/3 each in the case of the three axes of an ellipsoid 
and 2/3 and 1/3 in the case of a spheroid). These phenomenological models 
relate directly the resulting splitting of the plasmon line to the semi-axes 
[and through equations (71) to the Hill-Wheeler para.meters /3 and -y] and 
do not require prior knowledge, or make explicit use, of the quanta! struc-
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ture of the clusters, as is the case with calculations based on evaluation of 
the total energies. 

Recently, a systematic inference of shapes of Nat, clusters has been 
carried out [95] through an attempt to draw a direct connection between 
shape deformations, which were presumed spheroidal, and measured pho­
toabsorption cross sections (which were accordingly fitted with at most 
two Lorentz functions). Focusing on the cluster range N = 11 - 21 - where 
our results for ground-state properties for all metal clusters studied here 
( especially, sodium clusters) provide a detailed description of available ex­
perimental data - we find discrepancies between the shapes predicted from 
our approach and those suggested in Ref. [95]. For example, while in Ref. 
[95] prolate shapes were assigned to Nat4 and Nat5 , and a spherical shape 
to N at6 , our results yield a triaxial, an oblate, and again a triaxial shape, 
respectively (note the shift by one unit in N with respect to the neutral 
clusters of Fig. 17). This suggests that utmost caution must be applied 
when shapes are inferred from experimental fits of optical absorption cross 
sections in conjunction with certain phenomenological models. Indeed, the 
difficulty in interpreting the optical cross sections is due to a strong broad­
ening [117] of each absorption li-ne, which can mask the plasmon splitting 
due to the deformation. In this context, we remark that our SE-SCM 
yielded results in overall agreement with the triaxial shapes inferred from 
the simple Clemenger-Nilsson model [86, 30], which has been used previ­
ously in the analysis of photoabsorption cross sections [116], for clusters 
with N $ 40. 

3.2.2 Electronic shell effects in fission barriers and fission dy-
namics of metal clusters 

Fragmentation and fission processes underly physical and chemical phe­
nomena in a variety of systems, characterized by a wide spectrum of en­
ergy scales, nature of interactions, and characteristic spatial and temporal 
scales. These include nuclear fission [15, 3], fragmentation, unimolecular de­
cay and reactions in atomic and molecular systems [118], and more recently 
fission of atomic and molecular clusters ([10, 43, 98, 110, 111],[119]-[121]) 
Investigations of energetics, mechanisms, pathways, and dynamics of fission 
processes provide ways and means for explorations of structure, stability, 
excitations, and dynamics in multi-body (finite) systems, as well as allow 
for comprehensive tests of theoretical methodologies and conceptual de­
velopments, and have formed active areas of fruitful research endeavors in 
nuclear physics, and more recently in cluster science. Therefore, we focus 
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our discussion on recent trends in studies of fission processes in metal clus­
ters, and comment on issues pertaining to analogies and differences between 
such processes and those encountered in nuclear systems. 

Multiply charged metallic clusters (M;+) a.re observable in mass spectra. 
if they exceed a. critical size of stability n~+ ( e.g. for x = 2, n~+ = 27 for 
Na and n~+ = 19 for K [119]). For clusters with n > n~+, evaporation of 
neutral species is the preferred dissociation channel, while, below the critical 
size, fission into two charged fragments dominates (for x = 2, two singly 
charged fragments emerge). Nevertheless, at low enough temperature, such 
M;+ ( n < n~+) clusters can be meta.stable above a certain size nb+, because 
of the existence ofa. fission barrier Ei, ( for N ~+ and K~+, n~+ = 7 [43, 111 ]). 

These observations indicate that fission of metal clusters occurs when 
the repulsive Coulomb forces due to the accumulation of the excess charges 
overcome the electronic binding (cohesion) of the cluster. This reminds us 
immediately of the well-studied nuclear fission phenomenon and the cele­
brated Liquid Drop Model (LDM) according to which the binding nuclear 
forces are expressed as a. sum of volume and surface terms, and the bal­
ance between the Coulomb repulsion and the increase in surface area. upon 
volume conserving deformations allows for an estimate of the stability and 
fissility of the nucleus [122, 123]. 

Before discussing the LDM ( and variants thereof) , and its adaptability 
to the description of cluster fission, we note that for atomic and molecu­
lar clusters microscopic descriptions of energetics and dynamics of fission 
processes, based on modern electronic structure calculations in conjunction 
with molecular dynamics (MD) simulations (where the classical trajecto­
ries of the ions, moving on the concurrently calculated Born-Oppenheimer 
(BO) electronic potential energy surface, are obtained via integration of 
the Newtonian equations of motion), a.re possible and have been performed 
[43, 111] [for a. detailed description of the BO-LSD-MD method, see Bar­
nett, R.N. and Landman, U. (1993) Phys. Rev. B 48, 2081]. Such calcula­
tions, using norm-conserving non-local pseudopotentials and self-consistent 
solutions of the Kohn-Sham local spin-density functional (LSD) equations 
[43, 111], applied to small sodium (43] and potassium (111] clusters, re­
vealed several important trends (Figs. 18 - 20): (i) The energetically fa­
vorable fission channel for such doubly-charged clusters is the asymmetric 
one, M;+ -+ M!_3+ Mt, containing a "magic" da.ugther Mt (M = Na, 
K), i.e., ~ m = E(M!-m) + E(M~) - E(M~+) is smallest for m = 3; (ii) 
Fission of clusters with n ~ n~+, where n~+ = 7, involves barriers, whose 
magnitudes reflect the closed-shell stability of the parent cluster (i.e., Ei, for 
n = 10 is particularly high), exhibiting a double-hump barrier shape [see, 
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Fig. 18. Molecular dynamics results for the potential energy vs distance (in atomic 

units) between the centers of mass for the fragmentation of Na~ri into Na,t and Na; 

(solid) and Na,t and Na+ (dashed), obtained via constrained minimization of the LSD 

ground-state energy of the system (43]. 

Figs. 18 and 20( a)]; (iii) The eventual fission products may be distinguish­
able (i.e., preformed) already at a rather early stage of the fission process 
( on the top of the exit barrier for N aid, see Fig. 19, or prior to the exit 
barrier for Ki!, see Fig. 20), and the electronic binding between the two 
fragments is long-range in nature; (iv) The kinetic energy release £r in the 
favorable channel obtained via dynamic simulations was found to be given 
by £r ::::::: Eb+ l~al, and the results are in correspondence with experimental 
measurements [111] for K~+ (5 ~ n ~ 12). Furthermore, in agreement 
with experimental findings, the emerging fragments a.re vibrationally ex­
cited, with the heating of the internal nuclear degrees of freedom of the 
fission products in the exit channel originating from dynamical conversion 
of potential into internal kinetic en~rgy [see, Ki1' in Fig. 20(b )]. 

Several of the trends exhibited by the microscopic calculations ( such as 
influence of magic numbers, associated with electronic shell closing, on fis­
sion energetics and barrier heights; predominance of an asymmetric fission 
channel; double-hump fission-barrier shapes; shapes of deforming clusters 
along the fission trajectory portraying two fragments connected through 
a stretching neck) suggest that appropriate adaptation of methodologies 
developed originally in the context of nuclear fission may provide a. use­
ful conceptual and ca.lculational framework for studies of systematics and 
patterns of fission processes in metallic clusters. 

We comment first on the earliest treatments of pertinent nuclear pro­
cesses, i.e., fission [122, 15] and alpha radioactivity [124, 125, 3]. Adap-



182 

li! (a) (d) t=0.15 pa (g) 
'o ~ 
m --

• --- 0 

1~ • ·J:~., ._. 0 

a: a:◄ 

~ N 
~ 

~ (,-• (h) 
_, -- • 0 

•• .lj > • • .!. -:.o •• Wo. a: 
I "' • I N 

~ 

:it ~ (f) t :2.4 pa (I) 
~ -- • > 0 - • .~ .. ., 

.!. ~ • 
~ --- 0 . "" ur a 

a:◄ 

~ 

~ 
0 1 2 s •12 0 12 

time (ps) Ra ( •o) 

Fig. 19. Fragmentation dynamics of N~t from first-principles Born-Oppenheimer 

Local-spin-density functional Molecular-dynamics simulations (43]. (a)-(c) Center-of­

mass distance between the eventual fission products (Rc.m.-c.m.), total potential energy 

(Ep), and the electronic contribution E 9 to Ep, vs time. (d)-(f) Contours of the total 

electronic charge distribution at selected times calculated in the plane containing the two 

centers of mass. The R11 a.xis is parallel to Rc.m.- c.m .. (g)-(i) Cluster configurations for 

the times given in (d)-(f) . Dark and light balls represent ions in the large and small 

fragments, respectively. Energy, distance, and time in units of eV, bohr (ao), and ps, 

respectively. 
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Fig. 20. (a) Potential energy of K~f fissioning in the favorable channel (Kt +Kt) 
versus the inter-fragment distance Rc.m .-c.m . obtained via constrained minimization. 

The origin of the E,, scale is set at the optimal pre-barrier configuration (A). For large 

R c.m .-c.m . , E,,=-0.9 eV, i.e., ~3- Included also are cluster configurations of K~f cor­

responding to: a compact isomer (A') (the energy of the optimal compact isomer found 

is denoted by an arrow); the optimal bound configuration (A); the structure on top of 

the exit-channel barrier for which contours of the total electronic charge density, p, are 

shown[l 11]. 

(b) Time evolution of R c.m.-c.m., the internal vibrational kinetic energies of the frag­

ments (K;r and K!+t) and the sum of the fragments translational kinetic energies (Kem) 
obtained via a BO-LSD-MD simulation starting from ionization (t = 0) of a K!2 cluster 

at 500 °K. A line is drawn in K!r (for t ~ 3 ps) to guide the eye, illustrating heating of 

the internal vibrational degrees of freedom of the departing fragment. 
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tation of the simple one-center LDM to charged metallic clusters [98], 
involving calculation of the Coulomb repulsive energy due to an excess 
charge localized at the surface, yields a reduced LDM fissility parameter 
{ = (x2/n)/(x2/n)cn where (x2/n)cr = 16n;u/e2 with the surface energy 
per unit area denoted by u (using bulk ra and u values, (x2/n)cr = 0.44 
and 0.39 for K;+ and Na;+, respectively). Accordingly, a cluster is unsta­
ble for { > 1 (implying that for K;+ with n ~ 9 and Na;+ with n ~ 10 
barrierless fission should occur) with the most favorable .channel being the 
symmetric one (i.e., when the two fragments have equal masses, which is 
only approximately true for nuclear fission, and certainly not the case for 
small metal clusters). For 0.351 < € < 1, the system is metastable (i.e., 
may fission in a process involving a barrier), and for 0 < { < 0.351 the 
system is stable. 

At the other limit, a-radioactivity, which may be viewed as an extreme 
case of (superasymmetric) fission, is commonly described as a process where 
the fragments are formed ( or as often said, preformed) before the system 
reaches the top of the barrier (saddle point), and as a result the barrier is 
mainly Coulombic [3]. We note here that asymmetric emission of heavier 
nuclei is also known ( e.g., 223Ra-t14C+209Pb, referred to as exotic or clus­
ter radioactivity [126, 127, 128]), and the barriers in these cases resemble 
the one-hump barrier of alpha radioactivity and do not exhibit modulations 
due to shell effects [128]. We also remark that such a-radioactivity-type 
( essentially Coulombic) barriers have been proposed recently [110] for de­
scribing the overall shape of the fission barriers in the case of metal clusters. 

Although several aspects of the simple LDM (e.g., competition between 
Coulomb and surface terms) and the a-particle, Coulombic model (e.g., 
asymmetric channels and a scission configuration close to the location of 
the saddle of the multi-dimensional potential-energy surface) are present in 
the fission of metal clusters, neither model is adequate in light of the char­
acteristic behavior revealed from the microscopic calculations and experi­
ments discussed earlier. Rather, we find that proper treatments of fission in 
these systems require consideration of shell effects (for a recent experimen­
tal study that demonstrates the importance of shell effects in metal-cluster 
fission, see Ref. [119b]). While such effects are known to have important 
consequences in nuclear fission (transforming the one-hump LDM barrier 
for symmetric fission into a two-hump barrier [129, 3]), their role in the case 
of metal clusters goes even further. Indeed, as illustrated below for the case 
of the magic Na~ri, shell effects can be the largest contribution to the fission 
barrier, even in instances when the LDM component exhibits no barrier (in 
this case the LDM fissility { > 1). In this respect, N~ri is analogous to 
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the case of superheavy nuclei, which are believed [130] to be stabilized by 
the shell structure of a major shell closure at Z = 114, N = 184 (Z is the 
number of protons and N is the number of neutrons; unfortunately such 
nuclei have not been yet observed or synthesized artificially). 

The method we adopt for studying metal-cluster fission is a generaliza­
tion of the semi-empirical shell correction method (SE-SCM) described in 
section 3.2.1 (see also Ref. [7]). 

As discussed above (see section 3.2.1), in the SE-SCM method we need 
to introduce appropriate model potentials. As will become apparent from 
our results, one-center potentials (like the one-center anisotropic harmonic 
oscillator of Ref. [7]) are not adequate for describing shell effects in the 
fission of small metal clusters; rather, a two-center potential is required. 
Indeed, the model potentials should be able to simulate the fragmentation 
of the initial parent cluster towards a variety of asymptotic daugther-cluster 
shapes, e.g., two spheres in the case of double magic fragments, a sphere 
and a spheroid in the case of a single magic fragment, or two spheroids in 
a more general case. In the case of metal clusters, asymmetric channels 
are most common, and thus a meaningful and flexible description of the 
asymmetry is of primary concern. We found [8, 9] that such a required 
degree of flexibility can be provided via the shape parametrization of the 
asymmetric two-center-oscillator shell model (ATCOSM) introduced earlier 
in nuclear fission [131]. 

In addition to the present shape parametrization [8, 9], other two-center 
shape parametrizations [mainly in connection with Kohn-Sham local den­
sity functional (KS-LDA) jellium calculations] have been used ([132]-[134]) 
in studies of metal cluster fission. They can be grouped into two cat­
egories, namely, the two-intersected-spheres jellium [132, 135], and the 
variable-necking-in parametrizations [133, 134]. In the latter group, Ref. 
[133] accounts for various necking-in situations by using the "funny-hills" 
parametrization [136], while Ref. [134] describes the necking-in by connect­
ing two spheres smoothly through a quadratic surface. The limitation of 
these other parame- trizations is that they are not flexible enough to ac­
count for the majority of the effects generated by the shell structure of the 
parent and daughters, which in gener_al do not have spherical, but deformed 
(independently from each other), shapes. An example is offered by the case 
of the parent N a~t, which has a metastable oblate ground state, and thus 
cannot be described by any one of the above parametrizations. We wish to 
emphasize again that one of the conclusions of the present work is that the 
shell structures of the (independently deformed) parent and daughters are 
the dominant factors specifying the fission barriers, and thus parametriza-
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tions ([132]-[134]} with restricted final fragments ( or parent) shapes are 
deficient in accounting for some of the most important features governing 
metal-cluster fission. 

ASYMMETRIC TWO-CENTER OSCILLATOR MODEL 

In the ATCOSM approach, the single-particle levels, associated with 
both the initial one-fragment parent and the separated daughters emerging 
from cluster fission, are determined by the following single-particle hamil­
tonian [131, 137], 

1 2 2 1 2 ( 2 ( ) (]2) H = T + ;;.m,wp,P + ;;.m,wzi z - z;) + Vn,ck z + u i , (72) 

where i = 1 for z < 0 (left) and i = 2 for z > 0 (right). 
This hamiltonian is axially symmetric along the z axis. p denotes the 

cylindrical coordinate perpendicular to the symmetry axis. The shapes 
described by this Hamiltonian are those of two semispheroids ( either prolate 
or oblate) connected by a smooth neck [which is specified by the term 
Vn,ck(z)]. z1 < 0 and z2 > 0 are the centers of these semispheroids. For the 
smooth neck, the following 4th-order expression [137] was adopted, namely 

Vn,ck(z) = ~m,~,w;,(z - z;)40(lzl - lz;I) , 

where 0(x) = 0 for x > 0 and 0(x) = 1 for x < 0. 

(73) 

The frequency wp, in Eq. (72) must be z-dependent in order to interpo­
late smoothly between the values w;; of the lateral frequencies associated 
with the left (i = 1) and right (i = 2) semispheroids, which are not equal 
in asymmetric cases. The frequencies w;, ( i = 1, 2) characterize the lat­
teral harmonic potentials associated with the two semispheroids outside 
the neck region. In the implementation of such an interpolation, we folllow 
Ref. [137]. 

The angular-momentum dependent term U(lt), where 11 and 12 are 
pseudoangular momenta with respect to the left and right centers z1 and 
z2, is a direct generalization of the corresponding term familiar from the 
one-center Nilsson potential ( e.g., see Ref. [7]. Its function is to lift the 
usual harmonic-oscillator degeneracies for different angular momenta, that 
is, for a spherical shape the ld - 2s degeneracy is properly lifted into a 
ld shell that is lower than the 2s shell (for the parameters entering into 
this term, which ensure a proper transition from the case of the fissioning 
cluster to that of the separated two fragments, we have followed Ref. [137]). 
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The cluster shapes associated with the spatial-coordinate-dependent 
single-particle potential V(p, z) in the hamiltonian (72) are determined by 
the assumption that the cluster surface coincides with an equipotential sur­
face of value Vo, namely, from the relation V(p,z) = V0 • Subsequently, one 
solves for p and derives the cluster shape p = p(z). For the proper value 
of Vo, we take the one associated with a spherical shape containing the 
same number of atoms, Nz, as the parent cluster, namely, Vo= ½mew5R2, 

where liwo = 49r;2 Nz113 eV, R = r,Nf3
, and r, is the Wigner-Seitz ra­

dius. Volume conservation is implemented by requiring that the volume 
enclosed by the fissioning cluster surface (even after separation) remains 
equal to 41r R3 /3. 

The cluster shape in this parametrization is specified by four indepen­
dent parameters. We take them to be: the separation d = z2 - z1 of the 
semispheroids; the asymmetry ratio q., = w;2 /w;1 ; and the deformation 
ratios for the left (1) and right (2) semispheroids q; = w,;Jw;; (i = 1,2). 

The single-particle levels of the hamiltonian in Eq. (72) are obtained 
by numerical diagonalization in a basis consisting of the eigenstates of the 
following auxiliary hamiltonian: 

1_221 2 2 
Ho= T + 2meWpP + 2mew,;(z - z;) , (74) 

where Wp is the arithmetic average of w;1 and w;2 • The eigenvalue problem 
specified by the auxiliary hamiltonian (74) is separable in the cylindrical 
variables p and z. The general solutions in pare those of a two-dimensional 
oscillator, while in z they can be expressed through the parabolic cylinder 
functions (138]. The matching conditions at z = 0 for the left and right 
domains yield the z-eigenvalues and the associated eigenfunctions (131]. 

Having obtained the single-P.article spectra, the empirical shell correc­
tion (in the spirit of Strutinsky's method (21), t:.E;t, is determined from 
Eq. ( 45). 

The single-particle average, Efir (i.e., E,p in Eq. (45)], is calculated 
[139] through an Ii expansion of the semiclassical partition function intro­
duced by Wigner and Kirkwood. For general-shape potentials, thls last 
method amounts [139] to eliminating the semiclassical Fermi energy A from 
the set of the following two equations 
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and 

EStr 
av = 3:2 (2;,) 3/2 Jr; dr (rn(~ - V)s/2 + V(~ - V)3/2] 

+__!_~ [(~ - v) 1l 2v 2v - v(~ - v)-1l2v2v]) , (76) 
16 2m, 

where N, is the total number of delocalized valence electrons, and V(p, z) 
is the potential in the single-particle hamiltonian of Eq. (72). The domain 
of integration is demarcated by the classical turning point r~, such that 

V(r~) = 3:. 
Finally, from the liquid-drop-model (LDM) contributions, we retain the 

two most important ones, namely the surface contribution and the Coulomb 
repulsion. To determine the surface contribution, we calculate numerically 
the area of the surface of the fissioning cluster shape, p = p( z ), and multiply 
it by a surface-tension coefficient specified via an Extended-Thomas-Fermi 
(ETF) -LDA calculation for spherical jellia [4, 5, 7, 8]. The Coulomb repul­
sion is calculated numerically using the assumption of a classical conductor 
( for a more elaborate application of the LD M to triaxially deformed ground 
states of neutral and charged metal clusters described via a one-center shape 
parametrization, see our discussion in section 3.2.1 in connection with Eqs. 
( 48-57) and Ref. [7]). 

In brief, the total energy Etotal is given by 

(77) 

where Es and Ee are the surface and Coulomb terms, respectively. 

RESULTS 

As a demonstration of our method, we present results for two different 
1 N 2+ N 2+ parents, name y a10 , a18 . 

Fig. 21 presents results for the channel Naft -> Na+ + Na,t for three 
different cases, namely, when the larger fragment, Na+, is oblate (left col­
umn), spherical (middle column), and prolate (right column). From our 
one-center analysis, we find as expected that Na+ (six electrons) has an 
oblate global minimum and a higher in energy prolate local minimum. In 
the two-center analysis, we have calculated the fission pathways so that the 
emerging fragments correspond to possible deformed one-center minima. It 
is apparent that the most favored channel (i.e., having the lowest barrier, 
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see the solid line in the bottom panels) will yield an oblate Nat (left col­
umn in Fig. 21), in agreement with the expectations from the one-center 
energetics analysis. 

The middle panels exhibit the decomposition of the total barrier into 
the three components of surface, Coulomb, and shell-correction terms [see 
Eq. (77)], which are denoted by an upper dashed curve, a lower dashed 
curve, and a solid line, respectively. The total LDM contribution (surface 
plus Coulomb) is also exhibited at the bottom panels (dashed lines). 

It can be seen that the LDM barrier is either absent or very small, and 
that the total barrier is due almost exclusively to electronic shell effects. 
The total barrier has a double-humped structure, with the outer hump 
corresponding to the LDM saddle point, which also happens to be the 
scission point (indicated by an empty vertical arrow). The inner hump 
coincides with the peak of the shell-effect term, and is associated with 
the rearrangement of single-particle levels from the initial spherical parent 
to a molecular configuration resembling a Nat attached to a Naf. Such 
molecular configurations ( discovered earlier in ab initio molecular-dynamics 
simulations [43, 111, 8] of fission of charged metal clusters, as well as in 
studies of fusion of neutral clusters {140]) are a natural precursor towards 
full fragment separation and complete fission, and naturally they give rise 
to the notion of preformation of the emerging fragments [43, 111, 8]. 

Fig. 22(a) displays the ATCOSM results for the symmetric channel 
Nait-+ 2Nat (this channel is favored compared to that of the trimer, both 
from energetics and barrier considerations), when, for illustrative purposes, 
the parent is assumed to be spherical at d = 0. The top panel of Fig. 22(a) 
describes the evolution of the single-particle spectra. The spherical ordering 
Is, Ip, Id, 2s, etc., for the parent at d = O is clearly discernible. With 
increasing separation distance, the levels exhibit several crossings, and, 
after the scission point, they naturally regroup to a new ordering associated 
with the spherical Nat products ( at the end of the fission process, the levels 
are doubly degenerate compared to the initial configuration, since there are 
two Nat fragments). It is seen that the ATCOSM leads to an oscillator 
energy (i.e., the gap between two populated major shells exhibited at the 
right end of the figure) of 1.47 eV for each Nat fragment in agreement with 
the value expected from the one-center model [the ls state of Nat lies at 
2.21 eV; in the case of the initial spherical Nait (d = 0), the oscillator 
energy corresponding to the gap between major shells is 1.17 e V, and the 
corresponding ls state lies at 1.75 eV]. 

From the middle panel of Fig. 22(a), we observe that the shell-correction 
(solid line) contributes a net gain in energy of about 1.6 eV upon dissocia-
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Fig. 21. ATCOSM resu]ts for the asymmetric channel Na.~ci - Nat +Naj- The 

final configuration of Nai is spherical. For the heavier fragment Nai, we present results 

associated with three different final shape configurations, namely, oblate [(o,s); left), 

spherical [(s,s); middle], and prolate [(p,s); right]. The ratio of shorter over longer axis 

is 0.555 for the oblate case and 0.75 for the prolate case. 

Bottom panel: LDM energy (surface plus Coulomb, dashed curve) and total potential 

energy (LDM plus shell corrections, solid curve) as a function of fragment separation d. 

The empty vertical arrow marks the scission point. The zero of energy is taken at d::::: 0. 

A number (-1.58 eV or -0.98 eV), or a horizontal solid arrow, denotes the corresponding 

dissociation energy. 

Middle panel: Shell-correction contribution (solid curve), surface contribution (upper 

dashed curve), and Coulomb contribution {lower dashed curve) to the total energy, as a 

function of fragment separation d. 

Top panel: Single-particle spectra as a function of fragment separation d. The occupied 

(fully or partially) levels are denoted with solid lines. The unoccupied levels are denoted 

with dashed lines. 

On top of the figure, four snapshots of the evolving cluster shapes are displayed. The solid 

vertical arrows mark the corresponding fragment separations. Observe that the doorway 

molecular configurations correspond to the second snapshot from the left. Notice the 

change in energy scale for the middle and bottom panels, a.s one passes from (o,s) to {s,s) 

and (p,s) final configurations. 
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Fig. 22. ATCOSM results for the symmetric channel Nait - 2Nat, when the 

initial parent shape is assumed (a) spherical, and {b) oblate (with a shorter over longer 

axis ratio equal to 0.699). Panel distribution and other notations and conventions are 

the same as in Fig. 21. The top dotted line in the bottom panel of (a) represents the 

total energy without the Coulomb contribution. Observe that the doorway molecular 

configurations correspond to the third snapshot from the left. Notice that the zero of all 

energies is taken at d = 0. 
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tion into two Nat fragments. This gain is larger than the increase in energy 
(i.e., positive energy change) due to the surface term, which saturates at a 
value of about 1 eV after the scission point at d,;::, 23 a.u. The total energy 
is displayed in the bottom panel of Fig. 22(a) (solid line) along with the 
LDM barrier (dashed line). Even though distorted (when compared to the 
cases of Fig. 21), the total barrier still exhibits a two-peak structure, the 
inner peak arising from the hump in the shell correction, and the outer peak 
arising from the point of saturation of the surface term ( this last point co­
incides again with the scission point, as well as with the saddle of the LDM 
barrier). An inner local minimum is located at d,;::, 8 a.u., and corresponds 
to a compact prolate shape of the parent [see second drawing from the left 
at the top of Fig. 22(a)], while a second deeper minimum appears at d,;::, 18 
a. u., corresponding to a superdeformed shape of a molecular configuration 
of two Nat clusters tied up together [preformation of fragments, see third 
drawing from the left at the top of Fig. 22(a)]. The inner barrier separating 
the compact prolate configuration from the superdeformed molecular con­
figuration arises from the rearrangement of the single-particle levels during 
the transition from the initially assumed spherical N ait configuration to 
that of the supermolecule Nat +Nat. We note that the barrier separating 
the molecular configuration from complete fission is very weak being less 
than 0.1 eV. 

The top dotted line at the bottom panel displays the total energy in 
the case when the Coulomb contribution is neglected. This curve mimics 
the total energy for the fusion of two neutral N a8 clusters, namely the total 
energy for the reaction 2Na8 -> Na16• Overall, we find good agreement 
with a KS-LDA calculation for this fusion process (see Fig. 1 of Ref. [140]). 
We further note that the superdeformed minimum for the neutral N a,s 
cluster is deeper than that in the case of the doubly charged Nait cluster. 
Naturally, this is due to the absence of the Coulomb term. 

The natural way for producing experimentally the metastable N aft 
cluster is by ionization of the stable singly charged N at8 cluster. Since 
this latter cluster contains seventeen electrons and has a deformed oblate 
ground state [7], it is not likely that the initial configuration of Nait will 
be spherical or prolate as was assumed for illustration purposes in Fig. 
22(a). Most likely, the initial configuration for Nait will be that of the 
oblate N at8 • To study the effect that such an oblate initial configuration 
has on the fission barrier, we display in Fig. 22(b) ATCOSM results for the 
pathway for the symmetric fission channel, starting from an oblate shape of 
N aft, proceeding to a compact prolate shape, and then to full separation 
between the fragments via a superdeformed molecular configuration. We 
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observe that additional potential humps (in the range 2 a.u. ::; d ::; 6 
a.u.), associated with the shape transition from the oblate to the compact 
prolate shape, develop for both channels. Concerning the total energies, the 
additional innermost humps result in the emergence of a significant fission 
barrier of about 0.52 eV for the favored symmetric channel [seed ss 5 a.u. 
in Fig. 22(b)]. 

From the above analysis, we conclude that considerations of the energy 
pathways leading from the parent to preformation configurations (i.e., the 
inner-barrier hump, or humps) together with the subsequent separation 
processes are most important for proper elucidation of the mechanisms of 
metal-cluster fission processes. This corroborates earlier results obtained 
via ab initio molecular-dynamics simulations [43, 111, 8] pertaining to the 
energetics and dynamical evolution of fission processes, and emphasizes 
that focusing exclusively [132, 134] on the separation process between the 
preformed state and the ultimate fission products provides a rather incom­
plete description of fission phenomena in metal clusters. It is anticipated 
that, with the use of emerging fast spectroscopies, experimental probing of 
the detailed dynamics of such fission processes could be achieved. 
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