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CONTROL PARAMETERS FOR SYMMETRY BREAKING

IN SINGLE QD'S: WIGNER CRYSTALLIZATION

e Essential Parameter at B=0: (parabolic confinement)
2 3
R, = (/&) tuw, ~ 1/(hw)

e AN

1/2 :
. * Spatial Extent
lD_ (h/m u"'{}) } of 1s s.p. state

k : dielectric const. (12.9)

1/2

m”: e effective mass (0.067 m,) GaAS

T-u_uu (5-1meV) => R, (1.48-3.31)

e |[n a magnetic field, essential parameter is B itself

IN QDM'S: DISSOCIATION (Electron puddles, Mott transition)

Essential parameters: Separation (d)
Potential barrier (Vb)
Magnetic field (B)

Rs = gm/(2mh*)




(SMALL IS DIFFERENT)

Unprecedented experimental control of few-body systems of
trapped ultracold ions and neutral atoms, and of few-electron
assemblies in quantum dots

Time-evolution phenomena in quantum mechanical finite systems
which is not captured by mean-field approaches

Different direction from that in the book:
“Basic Notions of Condensed Matter Physics”,
by P.W. Anderson, 1984 (MORE IS DIFFERENT)
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bias voltage (meV)

Ellenberger, Ensslin, Yannouleas, Landman et al.,
Phys. Rev. Lett. 96, 126806 (2006)



Control and measurement of three-qubit
entangled states
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* Basics of ion trap quantum computers .
i ° 'ESETCCT S DD + DSD + DDS)
* Entangling operations (Bell states, CNOT)

* Generation of W- and GHZ-states

AG Guantenopti
und Spekhoskope

* Selective read-out of a quantum register

* Entanglement transformation by condional operations

H. Haeffner et al., Nature 438, 643 (2005)

The system: String of °Ca* ions in a linear Paul trap |

Qubits with trapped ions |

P1.-2 -2 B

S

-
S, —X

ions in a linear Paul
trap form a quantum
register

S — D transitions in alkaline earths:
Ca*, Sr*, Ba*, Ra*, (Yb*, Hg") etc.

70 pm



40Ca+

Fermion

Noguchi, A. et al., Nat. Commun. 5:3868 (2014).



40Ca+

Fermion

Figure 4.7: Concept for symmetric ring trap. RF electrodes are shown in red, ground in

black. Tons trapped above the surface shown in blue.

Urban et al.,

Coherent Control of the
Rotational Degree of
Freedom of a Two-lon
Coulomb Crystal,
arxXi1v:1903.05763

lons moving freely in 1D
potential

- - - -

lons pinned to one side by
electric field




Linear arrangement (LI) Parallel arrangement (PA)

Experimental
depictions of
1D

optical traps



LOWERING

Attraction
Restricted approach (RHF)

Nilsson potential
(fermions, nucleons)

Gross-Pitaevskii (GP)
(attractive bosons,

Lump of ultracold neutral
atoms)

GP for repulsive bosons:

SB raises the energy !

Repulsion
Unrestricted approach (UHF)

Hydrogen molecule, dissociation
(electrons, chemistry)

Wigner molecules
(electrons, quantum dots)

Space-time crystals on rings
(fermion or bosons, ultracold ions)



FERMIONS
(Self-consistent Pople-Nesbet Egs.)
Different orbitals for different spins
Two coupled equations/ Spin-up coupled to spin-down
Self-consistent solution - orbital localization
[example from chemistry:
dissociation of Hydrogen molecule (next slide)]

BOSONS?
A different orbital for each particle
Self-consistent set of Egs. is not practical
Reason: orbitals for bosons are not orthogonal/
spin-orbitals for fermions are orthogonal

In case of crystals, employ ansatz = permanent of
orbitals approximated as displaced Gaussians



Szabo and Ostlund, Modern Quantum Chemistry

3.8.7 The Dissociation Problem and Its Unrestricted Solution

nowever, one 1S really trying to descri
individual hydrogen atoms. A proper description will have one electron on
one H atom and the other electron on the other H atom, i.e,, the two electrons
will have quite different spatial distributions. They should not have identical

o j\ f /K‘

E(Hz} - ZE(H} {u.u.)

N PN

Figure 3.16 Qualitative behavior of unrestricted molecular orbitals y] ag
function of 8.

Next step: Heitler-London




w(ry)a(l)  wiry)3(1) |
uw(rs )a(2)  wvirg)3(2) |

u(1)7(2)),

v 2PE

spin

(w(ry)v({ry) 4+ wirs)v{ry )y (0, 0)

v(is=0,5. =0) = (a(1)B(2) — a(2)8(1))/v2

Heitler-London/ EPR-Bohm-Bell
Energy gain vs ENTANGLEMENT
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Andrea Bergschneider et al. (Heidelberg),

Nature Physics, 22 April 2019
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Brandt, Yannouleas, Landman,
PRA 97, 053601 (2018)
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To understand what many-particle entan-

glement means, let’s start by considering a

s non-entangled system. If I create a system

et t 1 I | g t e mea Sure that has N particles, each in an identical state

independent of their N- 1 neighbours, then its

many-body description is simple, and meas-

Of ent anglement uring one particle or partitioning the sample

has little impact on the overall system. Not that

such states are uninteresting — this is a good

A property called entanglement entropy helps to describe the quantum states of description of a state of matter called a Bose—

interacting particles, and it has at last been measured. The findings open the door Einstein condensate, for example. Similarly, if

to a deeper understanding of quantum systems. SEE ARTICLE R 77 each particle is in its own different state, with

no relationship to its neighbours, then meas-
urement or partitioning has no global effect.

STEVEN ROLSTON famously bothered by the idea that measuring But if the particles are entangled with one

Measuring entanglement entropy ina
quantum many-body system

Rajibul Islam', Ruichao Ma', Philipp M. Preiss', M. Eric Tai!, Alexander Lukin', Matthew Rispoli' & Markus Greiner'

3 DECEMEBER 2015 VOL 528 NATURE




Even weirder, it's possible for two particles to become "entangled,”
meaning they will retain a sort of causal relationship with each other,
no matter their distance In and space. If you measure one
particle and it spins clockwise, for example, then its entangled
companion would instantly collapse into a counterclockwise spin,
even if it's on the other side of the universe. That either means that
one communicated with the other in an instant, or the state of each
particle only popped into existence once one was measured.

We know what you're thinking. For one thing, this whole idea is
ridiculous: Things are what they are regardless of whether you're
looking at them. For another, nothing can go faster than light, so
how can two particles communicate across the universe in an
instant? , derisively calling the idea
"spooky action at a distance." Those in Einstein's camp are in favor
of a concept called "local realism." "Locality" says that no signal can
travel faster than light, and "realism" says that particles have definite
states even before you measure them.



https://curiosity.com/topics/entangled-quantum-particles-can-communicate-through-time-curiosity/
https://www.technologyreview.com/s/427174/einsteins-spooky-action-at-a-distance-paradox-older-than-thought/
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Bosons in the ring trap.

Energy, angular momentum and probability densities.

Probability densities

Rotating Frame Magnetic Field

The hidden crystalline structure in the projected
function can be revealed through the use of
conditional probability density (CPD).

p(rlro) = (P[> 6(ri —r)d(r; —ro)|®)/(P|P)

17 ]



Presenter
Presentation Notes
I want to demonstrate results obtained with our two-step method. On the left  I show the single-particle probability 
density for unprojected Hartree-Fock wave function for particles on the ring. Obviously the UBHF density does not have 
a rotational symmetry.  The second figure shows projected single-particle density and this density is symmetric.  
The symmetric wave function has good angular momentum and lower energy. The crystalline structure of the projected wave 
function is hidden, but it manifests itself in the quantization of angular momentum of the ground state. The total energy 
of the system is a monotonous function of rotational frequency, consisting from linear segments. Each linear segment
of the curve corresponds to the new angular momentum of the system. The angular momentum increases in steps.
Height of each step is equal to the number of particles on the ring. The situation in magnetic field is similar to the situation
in the rotating frame except that segments of the energy curve are not linear, but rather parabolic and energy of the system
grows with magnetic field.




Bosons in the ring trap.
Energy, angular momentum and probability densities.

Probability densities Rotating Frame Magnetic Field
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grows with magnetic field.




TOTAL ENERGY

A HIERARCHY OF APPROXIMATIONS

Restricted Hartree-Fock !FIHF}

All spin and space symmetries are preserved
Double occupancy / e-densities: circularly symmetric
Single Slater determinant (central mean field)

Unrestricted Hartree-Fock !LIHFr

Total-spin and space symmetries (rotational or
parity) are broken / Different orbitals for different spins

Solutions with lower symmetry (point-group symmetry)
Lower symmetry explicit in electron densities

Single Slater determinant (non-central mean field)

Pople-Nesbet Egs.
2D harmonic-oscillator basis set
Two coupled matrix Eqgs. (for up and down spins)

¥

Restoration of symmetry via projection technigues
Superposition of UHF Slater det.’s (beyond mean field)
e-densities: circularly symmetric

Good total spin and angular momenta

Lower symmetry is INTRINSIC {or HIDDEN)

Detection of broken symmetry:

CPDs and rovibrational excitations of quantum dots
CPDs and dissociation of quantum dot molecules

Correlations

Non-linear equations
Bifurcations

EMERGENT
PHENOMENA

Restoration of linearity
of many-body equatons

TIME EVOLUTION
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‘ROTATING” QUANTUM-MECHANICAL SP DENSITY
SHOULD EXHIBIT PERIODICITY IN BOTH SPACE AND TIME

lon crystal
Coulomb repulsion
(*Mg™ )
(°Be™ )

A different orbital for each particle

T. Lietal., PRL 109, 163001 (2012)

Lump/ Bose-Einstein soliton

Attractive contact interaction
(8’Rb or 8°Rb )

By  The same orbital for all particles
F. Wilczek, PRL 109, 160401 (2012)




> each particle localized at position R; as a
1ssian function

| 1 (r-R;)* . | ‘
U*(rﬁRj) — \/%)\ 6Xp<— 2)\2 o ?’Q(rﬁ Rj“!B))f (3)

with A\ = Vi/(MQ); Q = Vw? + w2/4 where w, =

nB/M is the cyclotron frequency. The phase in Eq. (3)
is due to the gauge invariance of magnetic translations
57, 58]) and is given by p(r, R;; B) = (Y, —yX;)/(21%),
with g = +/h/(nB) being the magnetic length. For

o(r,R;: B) = (2Y;—yX;)/(2l3)
Construct determinant/ permanent WSB
(MF symmetry-breaking ansatz)




O Rotational spectrum: quantum rigid rotor

Ry = 1000
R8= 50

I/int

)

EPRONL) & Vige + Cr(L — N®/dg)”

Magnetic flux

L => magic (fermions spin polarized)
| polygon crystal:
Liyp = kN3 k=0,4+1,£2, 43, Sp Fermions, N odd; bosons

1 :
L= (k+5)N; k=0,+1,42,43,. sl Fermions, N even

L,, =0,£1,£2,.. & bosons, lump
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Rotational spectrum: quantum rigid rotor

EPROJ (L) ~ ‘/int + CR(L — ]\/T(I)/(I)())Q

SECOND TERM/ AHARONOV-BOHM TYPE SPECTRUM

AN

N=7 fermlons




Norm overlap/
Time-reversal

where in such a way that the quotient h(a)/n(a) is a rather smooth
: A i i
tion. 1his 1s a general property of many-body wave functions (which

discussed in great detail in Sec. 10.7). Following the arguments of
ion 10.7.4, we obtain*

n(a)=~exp(i(J ) a— 1(AJ%a?), (11.79)

A =J (D),
nly difference now being that we also allow for time odd components
e wave functions, which does not give a pure Gaussian, but an

projected energy now has the form:

(A jz o j .

E] ‘_____/H/_ +____’ _(,"\_]- _J_ £ L

. 5, t g (I=D)+ TGRSR UED
t us first study the method of variation before projection, which was
nally proposed by Peierls and Yoccoz [PY 57, Yo 57). Here the wave
ion @) is obtained from a minimization of H without constraint. It

erefore, time-reversal invariant and has vanishing expectation values
and ( HJ ). The spectrum then has the form

RETTS - I
B LRA . 1192
EprOJ' (H 2gy>+zgy ( )
he spectrum of a one-dimensional rotor with the Yoccoz value 4, for
oment of inertia (see Sec. 11.4.5)." The band head is obtained from

<J> =
O/D,

Ring & Schuck,
Ch. 11
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Wave packets/ Time evolution

Z C . (I)PR()I Invert the projection

. JE
Many frequencies, terms e -



T J. Sato et al.,
\c 100 PRL 108, 110401 (2012)




O"WM(Ly Lost = 0) = a®f RO + geloU=0) g RO




O (snapshots) r = orh/|E) — Es)

o
N

BOTH SPACE AND TIME TRANSLATIONAL SYMMETRY ARE
BROKEN




SYMMETRY RESTORATION IS A NATURAL
METHOD TO BE USED IN ADDRESSING
THE PHYSICS IN MESOSCOPIC SYSTEMS
OTHER THAN NUCLEI
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