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From Wikipedia

“A time crystal or space-time crystal is a structure that repeats
periodically in time, as well in space.

, leading the crystal to change from moment to

moment.
The idea of a time crystal was first described by Nobel laureate

and MIT professor Frank Wilczek in 2012"

Time reflection and time translational symmetries are broken
Quantum Space Time Crystal (symmetry breaking in all four
dimensions: space and time)

Time evolution phenomena in guantum mechanical finite systems

Unprecedented experimental control of few-body systems of
trapped ultracold ions and neutral atoms


https://en.wikipedia.org/wiki/Nobel_laureate
https://en.wikipedia.org/wiki/MIT
https://en.wikipedia.org/wiki/Frank_Wilczek
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VIEWPOINT

How to Create a Time Crystal

A detailed theoretical recipe for making time crystals has been unveiled and swiftly
implemented by two groups using vastly different experimental systems.

by Phil Richerme*

he story of time crystals—whose lowest-energy
configurations are periodic in time rather than
space—epitomizes the creative ideas, controversy,
and vigorous discussion that lie at the core of the
scientific process. Originally theorized by Frank Wilczek in
2012 [1] (see 15 October 2012 Viewpoint), time crystals were
met with widespread attention, but also a healthy dose of
skepticism [2]. This ignited a debate in the literature, culmi-
nating in a proof that time crystals cannot exist in thermal
equilibrium, as originally imagined by Wilczek [3]. But the
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Figure 1: Yao et al. [7] have developed a blueprint for creating a
time crystal and a method for detecting it, which has been followed
by two experimental groups [8, 9]. Quantum spins are subjected td
imperfect spin-flip driving pulses and then allowed to interact with
each other in the presence of strong random disorder in the local
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O THE CONCEPT/ INTUITION/ TWO PROPOSALS/

STARTING POINT BASED ON SYMMETRY BREAKING

Lump/ Bose-Einstein soliton

O Attractive contact interaction
O S

F. Wilczek, PRL 109, 160401 (2012)







Noguchi, A. et al., Nat. Commun. 5:3868 (2014).



‘ROTATING™ QUANTUM-MECHANICAL SP DENSITY
SHOULD EXHIBIT PERIODICITY IN BOTH SPACE AND TIME

lon crystal
Coulomb repulsion
(**Mg™)
(°Be™)

A different orbital for each particle
T. Li et al., PRL 109, 163001 (2012)

Lump/ Bose-Einstein soliton

Attractive contact interaction
(8’Rb or 8°Rb)

Iy  The same orbital for all particles
F. Wilczek, PRL 109, 160401 (2012)




LOWERING

Attraction
Restricted approach (RHF)

Nilsson potential
(fermions, nucleons)

Gross-Pitaevskil (GP)
(attractive bosons,

Lump of ultracold neutral
atoms)

GP for repulsive bosons:

SB raises the energy !

Repulsion
Unrestricted approach (UHF)

Hydrogen molecule, dissociation
(electrons, chemistry)

Wigner molecules
(electrons, quantum dots)

Space-time crystals on rings
(fermion or bosons, ultracold ions)



FERMIONS
(Self-consistent Pople-Nesbet Eqs.)
Different orbitals for different spins
Two coupled equations/ Spin-up coupled to spin-down
Self-consistent solution - orbital localization
[example from chemistry:
dissociation of Hydrogen molecule (next slide)]

BOSONS?
A different orbital for each particle
Self-consistent set of Egs. Is not practical
Reason: orbitals for bosons are not orthogonal/
spin-orbitals for fermions are orthogonal

In case of crystals, employ ansatz = permanent of
orbitals approximated as displaced Gaussians



Szabo and Ostlund, Modern Quantum Chemistry

3.8.7 The Dissociation Problem and Its Unrestricted Solution

nowever, one 1S really trying to descri
individual hydrogen atoms. A proper description will have one electron on
one H atom and the other electron on the other H atom, i.e,, the two electrons
will have quite different spatial distributions. They should not have identical
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Figure 3.16 Qualitative behavior of unrestricted molecular orbitals ] 8
function of 8.

E(H;) - 2E(H) (a.u)

Next step: Heitler-London




RESOLUTION OF SYMMETRY DILEMMA:

(Projection)!

* Per-Olov Lowdin
(Chemistry - Spin)

 R.E. Pelerls and J. Yoccoz
(Nuclear Physics — L, rotations)

Ch. 11 in the book by P. Ring and P. Schuck




CONTROL PARAMETERS FOR SYMMETRY BREAKING

IN SINGLE QD'S: WIGNER CRYSTALLIZATION

e Essential Parameter at B=0: (parabolic confinement)
2 3
R, = (/&) huw ~ 1/(hw)

e AN

1/2 i
* Spatial Extent
(h/m """’g) } of 1s s.p. state

1/2

ln =
k : dielectric const. (12.9)

m”: e effective mass (0.067 m,) GaAS

fuw, (5-1meV) => R, (1.48-3.31)

e |[n a magnetic field, essential parameter is B itself

IN QDM'S: DISSOCIATION (Electron puddles, Mott transition)

Essential parameters: Separation (d)
Potential barrier (Vb)
Magnetic field (B)

R

0

= om/(2wh)




TOTAL ENERGY

A HIERARCHY OF APPROXIMATIONS

Restricted Hartree-Fock !FIHF}

All spin and space symmetries are preserved
Double occupancy / e-densities: circularly symmetric

-

Single Slater determinant {central mean field)

Unrestricted Hartree-Fock !LIHFr

Total-spin and space symmetries (rotational or
parity) are broken / Different orbitals for different spins

Solutions with lower symmetry (point-group symmetry)
Lower symmetry explicit in electron densities

Single Slater determinant (non-central mean field)

Pople-Nesbet Eqgs.
2D harmonic-oscillator basis set
Two coupled matrix Eqgs. (for up and down spins)

Restoration of symmetry via Emiectiﬂn technigues

Superposition of UHF Slater det.’s (beyond mean field)
e-densities: circularly symmetric

Good total spin and angular momenta

Lower symmetry is INTRINSIC {or HIDDEN)

Detection of broken symmetry:

CPDs and rovibrational excitations of quantum dots
CPDs and dissociation of quantum dot molecules

Correlations

Non-linear equations
Bifurcations

EMERGENT
PHENOMENA

Restoration of linearity
of many-body equatons

TIME EVOLUTION
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> each particle localized at position R; as a
ssian function

| _ (r—R;)° | ‘
u(r,R;) = NG exp(— e —3,9(r,R:],B)), (3)

nB/M is the cyclotron frequency. The phase in Eq. (3)
is due to the gauge invariance of magnetic translations
57, 58]) and is given by p(r, R;; B) = (¢Y; —yX;)/(21%),
with I = /h/(nB) being the magnetic length. For

o(r,R;; B) = (2Y;—yX;)/(203)
Construct determinant/ permanent ¥>B
(MF symmetry-breaking ansatz)
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where
h(y) = (USB(0)[H| W8 (7)),
and the norm overlap

n(y) = (L5F(0)|¥°P(y))

/




O Rotational spectrum: quantum rigid rotor
Rs =50

X/int

)

EPRONL) & Vige + Cr(L — N® /D)

Magnetic flux

| => magic (fermions spin polarized)
| polygon crystal:
+£2, 13, S Fermions, N odd; bosons

1 |
L = (k+5)N; k=0,%1,4+2 43, s Fermions, N even

L,, =0,%&1,4&2, ... - bosons, lump

Ly = AN, k= 0, =1,




Rotational spectrum: quantum rigid rotor

EPROJ (L) ~ Vint + CR(L — NT(I)/(I)())Q

SECOND TERM/ AHARONOV-BOHM TYPE SPECTRUM

YR

N=7 fermlons




Norm overlap/
Time-reversal

where in such a way that the quotient h(a)/n(a) is a rather smooth
tion. This " general property of many-body wave functions (which
discussed in great detail in Sec. 10.7). Following the arguments of
ion 10.7.4, we obtain*

zz(a):exp(1'<j>-a—%(AJAZ,}aZ). (11.79)

AT =J—{J),
inly difference now being that we also allow for time odd components

le wave functions, which dogs not give a pure Gaussian, but an
ional phase in Eq. (11.79) ({/)#0). The idea of Kamlahf ' No

projected energy now has the form:

E! ,=/H/_,/AJA2/+2(1_(JA\ +_]_ ] j 2
3 THRE M A TR L

t us first study the method of variation before projection, which was
nally proposed by Peierls and Yoccoz [PY 57, Yo 57]. Here the wave
ion |®) is obtained from a minimization of H without constraint. It
erefore, time-reversal invariant and has vanishing expectation values
and <Hf>. The spectrum then has the form

2

1..
T

AR ] ¢ s
B H >+

(1192)

he spectrum of a one-dimensional rotor with the Yoccoz value $, for
woment of inertia (see Sec. 11.4.5)." The band head is obtained from

<3\> -
/D,

Ring & Schuck,
Ch. 11



RIGID ROTOR

= Cm™ + (n+1/2) Frou_ + (2N+M+1) Fauo
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N=6, L=75 (v=1/5) N=7, L=105 (v=1/5)

N

AN

Lowest Landau level B - Infinity



Wave packets/ Time evolution

E : Cr (I)PR()T Invert the projection

. =
Many frequencies, terms e L



J. Sato et al.,
PRL 108, 110401 (2012)
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O (snapshots) ey
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BOTH SPACE AND TIME TRANSLATIONAL SYMMETRY ARE
BROKEN




SYMMETRY RESTORATION IS A NATURAL
METHOD TO BE USED IN ADDRESSING
THE PHYSICS IN MESOSCOPIC SYSTEMS
OTHER THAN NUCLEI



