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In analogy with nuclear many-body studies, the discrete-matrix random phase approxima- 
tion (RPA) is used to describe the photoabsorption of large, spherical metal clusters. In this 
limit, the single-peak, classical Mie regime is valid and the matrix-RPA equations can be 
solved analytically. The RPA yields a closed formula for the width, r, of this peak due to 
Landau damping. This width is inversely proportional to the radius R of the cluster, in 
agreement with experimental observations for large silver and gold clusters embedded in a 
host medium. The RPA proportionality coefficient is unequivocally determined, and the 
reasons for the uncertainty in its value arising from disagreements among previous theoretical 
approaches are discussed. Specifically, f = ,Ig(frQ,&,) v/R, where 1 is the multipolarity of the 
plasma vibration, Sa,, is the frequency of the surface plasmon, and .ss is the Fermi energy 
of the conduction electrons. The function g varies from unity to zero as the frequency 
of the surface plasmon increases from zero to infinity. It is shown that the frequency 
dependence of g for a spherical shape is identical to that of a cubical boundary. 
V= (3+/4){ I+ (a*,%)( 7&)‘) is the average speed of a Fermi gas at temperature T. This 
result indicates a very small dependence on temperature, a trend in agreement with the 
observation. 

A classical interpretation of this result is proposed based on the similarities with the one- 
body, wall-dissipation theory familiar from nuclear physics. According to this interpretation, 
the surface of the cluster is viewed as a moving wall whose interaction with the conduction 
electrons mimicks the multipole transitions induced by the electric field of the plasmon. This 
interpretation expresses r as the ratio, I=y/B, of a surface friction coefficient, y, over an 
inertia mass, B. The l/R dependence results from the fact that the inertia mass is proportional 
to the volume, whereas the friction coefficient is proportional to the surface of the cluster. 
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1. INTRODUCTION 

1.1. Optical Response of Large Metal Clusters 
The optical properties of metal clusters have been the focus of intense experimen- 

tal [l-7] and theoretical investigations [8-221 in the last few years. The interest 
in this subject is due to the availability of mass-selected, free clusters that can be 
produced in molecular beams as a result of improved experimental techniques. 

Yet, these experimental investigations are still in their early stages; they have 
been performed on the smallest mass numbers (40 atoms or less) and only for a 
limited number of metals (i.e., Na, K, and Cs). For these cases, theoretical calcula- 
tions [ 10, 11,201 based on the discrete-matrix RPA formalism-in the spirit of 
nuclear many-body approaches-have been successful in amounting for the 
experimental trends, and in particular, for the possibility of pronounced fragmenta- 
tion of the surface plasmon, as well as for the redshift of its position with respect 
to the classical Mie theory [23]. 

Earlier experimental studies [24-301 of the optical response of metal clusters had 
been limited to large silver (or gold) clusters embedded in a supporting medium. 
Despite the fact that these samples were not mass-selected, but comprised a 
distribution of different mass sizes, these earlier investigations yielded valuable 
experimental information. Specifically, they showed that 

1. the optical absorption spectrum of heavy metal clusters is dominated by a 
single peak in rough agreement with the classical Mie theory for the dipole 
excitation of a metal sphere; 

2. the full width at half maximum, r, of this peak is almost temperature 
independent and inversely proportional to the radius, R, of the cluster. 

Specifically, for the width, r, it was found that 

I-=A%, 11) 

where vr is the Fermi velocity of the conduction electrons and A is a dimensionless 
constant of order unity. 

A theoretical interpretation of this l/R law was provided by Kawabata and Kubo 
[31] using a semiclassical linear-reponse approach for the imaginary part of the 
dielectric function of a metal sphere. Subsequent theoretical work [32-381 has 
reproduced the 1 /R dependence, but there is no agreement (cf. Ref. [29]) 
concerning the precise value of the proportionality coefficient A. Comparison 
between theory and experiment has not been of particular assistance, since the host 
medium markedly influances [29] the value of the coefficient A. 

On the other hand, the recently obtained results for free clusters indicate that the 
law (1) breaks down for very small sizes, as noticed in Ref. [4]. Indeed, Eq. (1) 
predicts for the small mass numbers (8 and 20 atoms) a much larger width than the 
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one actually observed. In this case, the broadening of the sharp RPA absorption 
lines is expected to result from the fluctuations of the surface of the system 
117, 18, 221 and to exhibit an appreciable ,/?-temperature dependence. 

Since the discrete-matrix RPA has successfully described the optical response of 
the smallest metal clusters, it is of considerable interest to inquire about its ability 
to account for the corresponding properties of the heavy, large clusters. This 
endeavor is of particular importance, since larger (up to 2000, and even higher, 
atoms), free, unsupported metal clusters have very recently become experimentally 
available [39,40], providing for the first time the possibility to test the different 
theoretical predictions for the coefficient A. 

It is the purpose of the present paper to show that the matrix-RPA formalism 
can indeed describe the optical response of the heavy metal clusters, and thus it can 
offer a unified theoretical framework for the whole range of masses, from the 
smallest to the the largest ones. Moreover, the correct value of the coefficient A will 
be derived for spherical clusters and for surface plasma oscillations of arbitrary 
multipolarity L. 

In particular, for a large spherical cluster, the plasmon width will be found in the 
present work to be given by 

where Sz,, is the surface-plasmon frequency, sF is the Fermi energy, and g(c) is a 
frequency-dependent function that approaches unity as c approaches zero. 

The present value A = $, for Q,, = 0 and 1= 1, is different from the corresponding 
value A kK = 6/7r* [34] found by Kawabata and Kubo for a spherical particle. In 
addition, their function gKK({) [34] d ecreases with the frequency faster than the 
corresponding function in Eq. (2). As a result, the Kawabata-Kubo expression 
noticeably underestimates the plasmon width compared to the present result. The 
discrepancy is due to the McMahon formula [41] for the location of the zeroes of 
a spherical Bessel function utilized in Ref. [3 1 ] (as well as in all other studies 
[35, 381 that considered the case of a spherical boundary). Namely, the McMahon 
formula yields a total density of states for a spherical Fermi gas that is lower than 
the actual one. In the present work, an improved expression for the number of the 
zeros of a spherical Bessel function has been used, and therefore the correct 
expression for the proportionality coefficient A has been determined. 

1.2. Connection with Nuclear Wall Dissipation 
The observed 1/R dependence of the broadening of the photoabsorption peak has 

been earlier [25] interpreted classically as the effect of diffuse, random collisions of 
the conduction electrons with the surface of the cluster. This interpretation leads to 
an effective mean free path, Lem, for the conduction electrons, and to a width that 
is given by vFILell, in analogy with the usual theory of conductivity in the bulk 
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metal. For a sphere, Lea= R [42], and the constant A equals unity. As pointed out 
in Ref. [31], however, this interpretation is not satisfactory. The surface of the 
system cannot be considered as a fixed scatterer as if it were an impurity; it simply 
determines the single-particle states of the system. The decay of the plasmon is due 
to Landau damping induced by dipole transitions between these single-particle 
states. 

The present work proposes a different classical interpretation. Instead of con- 
sidering the surface as a fixed scatterer, it views it as a moving wall. The interaction 
of the moving wall with the conduction electrons mimics the dipole transitions and 
leads to a dissipative process known as wall dissipation. This interpretation does 
not need to invoke an effective, short mean free path that decreases along with the 
size of the cluster. On the contrary, this dissipative process is expected to be 
important for finite-size systems with a sharply demarcated boundary in the regime 
where the mean free path of the constituent fermions becomes larger than the 
dimensions of the system. This is the case, not only of atomic nuclei, but equally 
well of large metal clusters considered here. 

The phenomenology of wall dissipation was introduced in nuclear physics by 
Swiatecki and coworkers [43] in order to model a dissipative dynamical approach 
to nuclear fission and heavy-ion collisions [4446]. The connection of the nuclear 
wall dissipation with the microscopic RPA dynamics, and its ensuing interpretation 
as a special form of Landau damping, was later presented in Ref. [47] (cf. also 
Refs. [48, 491). 

The motivation for associating the broadening of the plasmon with the wall 
dissipation derives from the fact that 3u,/4 in the RPA result (2) is precisely the 
average speed, V, of the particles of a Fermi gas at zero temperature. Indeed, accor- 
ding to the wall interpretation, the time-varying electric field associated with the 
surface plasmon creates an electric current and thus sets in motion, as a whole, the 
Fermi gas of the conduction electrons of the large cluster. There arises a velocity 
difference, u, between the center-of-mass of the electron gas and the boundary of the 
cluster. In an equivalent way, one can think of the surface of the system as a rigid 
wall or piston moving with the opposite velocity, -u, with respect to the Fermi 
gas. The ensuing energy dissipation rate, ~.diss, Jt), over the total surface area is 
given by the wall formula [43], 

where pp is the mass density and U is the average speed of the particles of the Fermi 
gas. Note that only the velocity component perpendicular to the surface enters into 
expression (3). 

Small deformations of given multipolarity A away from a spherical equilibrium 
shape of radius R are described with the help of the deformation variables an, as 

r=R+a,~A,,(8), (4) 
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and in such a case one finds for the energy dissipation rate over the total surface 
of the sphere, 

Naturally, the friction coefficient ywf is proportional to the surface area. The width, 
rwr, of the associated oscillatory motion is expressed [43, SO] as the ratio yJBi,, 
where B, is usually taken to be the irrotational inertial mass of a Fermi droplet. 
This irrotational mass is proportional to the volume of the system. With respect to 
the deformation parameters CI~,, it is given [ 511 by 

B, = P,, R’lA 

and hence one immediately derives that the classical width for a spherical particle 
is 

However, this width, Twf, is precisely the RPA width, Jxp, of Eq. (2) in the case 
when kQ2,, 4 sF. 

1.3. Plan of Paper 

The plan of the present paper is as follows: 

l Section 2 reviews the formalism of the discrete-matrix RPA theory developed 
in nuclear physics [52, 533 and applied earlier in the case of very small metal 
clusters [lo]. Subsequently, Section 2 describes the limiting case when the size of 
the cluster becomes large and derives an explicit microscopic expression for the 
width rRP of the surface plasmon associated with Landau damping. 

l Section 3 is devoted to describing the analytical integrations and to 
extracting the final, closed expression for rRP under the simplifying assumption 
of an infinitely deep, spherical confining potential. This section also discusses the 
implications for the experiment, both concerning the dipole plasma mode in 
different metallic species and with respect to different multipole modes. 

l Section 4 presents the classical model of wall dissipation and elaborates on 
the interpretation of the plasmon broadening in large clusters as the effect of this 
one-body/long-mean-free-path dissipative process. It also explains how the pre- 
viously derived damping parameters for cubical geometries [34, 371 can be easily 
understood with the help of the wall-dissipation concept. Section 4 also presents the 
very small, but nonvanishing temperature contribution to the plasmon broadening 
that is consistent with the process of wall dissipation. 

l Section 5 discusses in detail the reasons for the breaking down of the l/R law 
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(cf. Eq. (1)) in the case of very small sizes, when the electronic single-particle states 
do not form a quasi-continuum of states but must be treated as individual discrete 
‘states. 

l A general discussion concerning the universality of one-body dissipative 
processes (wall and window formulas [43]) for small systems and the prospect for 
their being relevant to fission and collisions of heavy metal clusters, in analogy with 
corresponding approaches in atomic nuclei, is presented in Section 6. 

l The summary occupies Section 7. 
l Appendix A contains the mathematical details that support the results 

presented in Section 3. 
l Finally, Appendix B offers a detailed justification why expression (54) for the 

zeroes of a spherical Bessel function is the proper one to account for the correct 
total density of states of a spherical Fermi gas. 

2. LARGE-VOLUME LIMIT OF DISCRETE-MATRIX RPA 

2.1. A Dispersion Relation for the Surface Plasmon and the Resulting Width from 
Landau Damping 

In the discrete-matrix RPA the exact physical, many-body eigenstates Iv), are 
approximated with the solutions of the linearized equations of motion [52,53] 
inside a particle-hole subspace, S, of finite dimensions. The RPA many-body wave 
functions in this subspace are given by 

lv>=Qt IO>, 
where 10) is the correlated ground state of the system and the RPA creation 
operator Qt is a linear superposition of particle-hole excitations, i.e., 

Q! = c (Xph(m,) a@h - Y,h(o,) ah,>. Ph (9) 

Henceforth, the indices p, m, n will denote a particle, while the indices h, i, j will 
denote a hole. The amplitudes X,,(o,), Yph(m,,), and the eigenenergies ho, 
determining the many-body states Jv > obey the RPA equations of motion 

where the matrices ZZZ and L# are specified by their elements as follows: 

(10) 

d ph,p’h’ = 6,f 8hh’(Ep - E/J + Vph’hp’i ~ph,p’h’ = vpp’hh” (11) 
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Here tBya are the matrix elements of the residual two-body force and E, are the 
single-particle energies. In the case of small metal clusters, and in the framework of 
the local density approximation [54], this force is the Coulomb force slightly 
modified with additional contributions from exchange and correlation effects 
[S-lo]. In the case of large clusters, however, the exchange-correlation contribu- 
tion becomes negligibly small [ 151, and one needs to consider only the effect of the 
bare Coulomb force. 

The system of Eqs. (10) is usually solved numerically, and then the distribution 
of the corresponding oscillator strengths for each eigenvalue ho, is constructed; it 
determines the profile of the photoabsorption cross section. However, in many 
instances, and especially when among the states Iv) there exists a prominent collec- 
tive state, Ic), carrying a large fraction of the total oscillator strength, it is helpful 
to divide the full problem in two steps. Following Ref. [SS], we divide the full par- 
ticle-hole space S in two parts, S = SR + S,; the first part-labeled as the restricted 
subspace, S,-is responsible for building up the strong collective state Ic), while 
the second part-labeled as the additional subspace, S,-is responsible for the 
broadening of the collective peak. 

In the case of large metal clusters, it is natural to construct the restricted 
subspace S, from those particle-hole states with energies much smaller than the 
high energy, /iQ,,, of the surface plasmon which agrees with the Mie resonance (for 
simple metals like Na and K, fZ2,, = dm ko,, where /io, is the energy of 
the bulk plasmon). In particular, among other states, the subspace SR comprises all 
the states of dN= 0, 1, 2, 3 and 4 character, where N= 2(n - 1) + 1 is the principal 
single-particle quantum number. As explicitly shown by the numerical calculations 
[lo, 111 (cf. also pp. 470 and 480 in Ref. [Sl]), these states with small AN carry 
most of the oscillator strength. In addition, unlike the case of the small clusters 
[ 10, 11, 203, where the AN = 3 and AN = 4 particle-hole states lie as high, and even 
higher, as the surface plasmon, the corresponding states in the large clusters lie 
much lower than the surface plasmon, and their energies become vanishingly small 
in the limit of very large volume. This behavior can be understood from a con- 
sideration of the evolution of the major shell of the equivalent harmonic oscillator. 
This quantity, which reflects the average distance between single-particle states 
decreases as N, ‘j3, where N, is the total number of free conduction electrons in the 
cluster. 

The additional subspace S,, responsible for the damping of the surface plasmon, 
consists of all those particle-hole states within a narrow energy band that are 
degenerate with the surface plasmon. 

Taking into consideration this division into two subspaces, the original RPA 
excitation operator (9) and the RPA equations (10) are written as 

+ c {X,,(o,) ut,ui - Y,,(w,) afa,}, 
riii 

(12) 
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where a tilde denotes quantities associated with the additional subspace SA. 
In Eq. (13), the submatrices A and B express the couplings among the states 

(m, i) of the restricted subspace, SR, and have the form 

Atni,aj=6mn bJ~rn-&Ei) + ‘/njie; Bminj = Vmng, (14) 

while the submatrices C and D describe the coupling between the subspaces SR and 
S,, and are given by 

c,i. @ = vmjifi ; 4ni,,li = VnlriQ~ (15) 

In writing Eq. (13), we assumed that the couplings among the states (6, 2) of the 
additional subspace, SA, can be neglected. As a result the matrix block 

is purely diagonal, and the submatrix E is of the form 

E,,q=6,6 ~T(E,-E,). (17) 

When the submatrices C and D are set equal to zero, the subspaces SR and SA 
decouple. Then the RPA equations within the restricted subspace SR yield separate 
eigenenergies fro, and eigenvectors 

4%) 
( ) Y(%z) * 

Namely, the RPA equations within SR are 

fW 

(19) 

The index a here runs over the dimensions of the subspace SR. Henceforth, we 
will assume that there is one highly coherent collective state Ic) among the states 
la), which carries most of the total oscillator strength. 

However, this collective state lc} is a sharp line without any broadening. The 
additional subspace SA forms a quasicontinuum of states degenerate with the 
collective state. Due to the coupling between the subspaces S, and S,, the sharp 
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state lc) will broaden and acquire a finite width r. To derive a formula for this 
width in the case of a quasi-continuous S,, it is more economical to introduce a 
time-dependent picture. This way, we will circumvent the mathematical subtleties 
for treating a pole in the stationary picture (cf. Refs. [SS, 56)). 

To introduce the time-dependent picture, we proceed as follows: In the total 
subspace, S = SA + S,, we consider time-evolving wave packets, I@(t)), that are 
formed as a linear superposition of the RPA eigenstates Iv). These wave packets 
can decay in time, unlike the stationary states Iv), and are created by the action 
of a time-dependent operator O+(t) on the correlated ground state, i.e., 

I@(t)) = o+(t) IO>? (20) 

where 

and the time-dependent amplitudes are given by 

nph(t) =I b,X,,(o,) fciCO,’ (22) 

and 

Pph(t) = c b, Y,,(o,) epi”“. (23) 

Making the usual distinction between indices in the restricted and additional 
subspaces, the corresponding time-dependent RPA equations for the amplitudes 
17,,(t) and Pph(t) have the form 

We now seek solutions of Eq. (24) of the form 

n(t) x(0,.) P(t) Y(Oc) 

Hi i R(t) = fiysz) e 

--Mf+ql 

’ 

m ma 

(25) 

where Q x w, - ir,,/2 is now a complex frequency. As a result, the time-dependent 
picture can describe a decaying time-evolution, unlike the stationary equations (13). 
Note that the substitution (25) is a shorthand notation, equivalent to Landau’s 
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treatment [57] of going around the pole in the imaginary plane through 
appropriate Laplace transforms. 

With the help of Eq. (19) and the RPA orthonormality relations, substitution of 
Eq. (25) into Eq. (24) and elimination of the amplitudes of the additional subspace 
yield the dispersion relation (for details, cf. Ref. [55, Appendix B]) 

(26) 

where .sfii = sfi -si, and the quantities K(Cr, ?; 0,) and n(fi, ‘i; 0,) express the 
effective coupling between the collective state jc) and the states (fi,?) of the 
additional subspace; they are given by 

and 

Since the additional subspace forms a quasi-continuum, we can replace the 
summations with integrations. Then, with the help of the well-known formula 

lim 
1 

=P 
?+o+ x-e+itj 

-&-“6(x-e), (29) 

the dispersion relation (26) yields the following expression for the width r,, 

(30) 

where the small modification of the real part o, of the collective frequency due to 
the principal value in (29) will be neglected henceforth. 

Starting from the discrete-matrix RPA, we have derived a closed expression for 
the width rRP of the surface plasmon in the case of large metal clusters. This 
expression is still fully microscopic but can be simplified by considering the average 
time-varying electric field of the surface plasmon. This simplification is carried out 
in the next subsection, where expression (30) is brought into complete equivalence 
with the linear-response expression of Kawabata and Kubo [31]. 

Before leaving this subsection, it should be observed that the present treatment 
of collective excitations of large metal clusters is quite analogous to the reversible 
Landau damping of bulk plasma oscillations as described by the many-body theory 
of ionized gases [57-591. Besides reversibility, the analogy consists in that both the 
bulk plasmon mode and its decay by Landau damping are described by using the 
RPA approximation [58, 591. However, the present treatment describes a finite 
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electron gas at zero temperature, whereas the original Landau-damping theory 
described an in~n~te electron gas at finite tem~rature [ 57 f. 

2.2. Simplifications Due to the Classical Field of the Surface Plasmon 

Expression (30) for the width of the surface plasmon is fully microscopic. Indeed, 
the effective coupling matrix element K(&, ?; w,) is expressed through the two-body 
matrix elements V’1xP;s of the Coulomb force and the values of the forward-going 
and backward-going amplitudes ~(0,) and y(w,). However, in the case of large 
clusters, a significant simpli~cation can be achieved by noting that the effective 
matrix element &‘(a, 1; o,,) is simply the Fourier transform of the time-varying 
mean field associated with the collective state (cf. Ref. [60, especially Section 51). 
Because of this property, one can try to guess appropriate approximations of the 
mean field and thus circumvent the full microscopic expression. In the case of a 
large metal cluster, where the regime of the single-peak Mie resonance is applicable, 
it is natural to approximate the mean field with the classical field of a metal sphere 
oscillating with multipolarity I, namely to assume that 

K(fFz, 7; co,,) - (*I r”%&(8) II). (31 i 

This initial simplification leads to an additional one. As is familiar from nuclear 
physics [5i-53 3, and as was suggested in Ref. [ 151 for the case of metal clusters, 
the result (31) of the simple multipole field can be effectively reproduced by 
replacing the Coulomb force by a separable two-body interaction of the form 

J/rpyii = -K D& D&, (32) 

where 

D$= (4 r’%dW lu>. (33) 

Naturally, away from the Mie regime, the radial dependence of the field is very 
different from the one in Eq. (3 1 ), and the multipole-multipole separable interac- 
tion is a poor approximation. This point was stressed in Ref. [20], were the case 
of the small sodium clusters Na,, Na,,, and Na,, was considered. In that case, it 
was shown that the original, nonseparable Coulomb interaction was necessary to 
account for the pronounced fragmentation of the photoabsorption stength in 
several well-separated, distinct peaks. 

With the assumption of the separable form for the two-body interaction, the 
Fourier transform of the time-varying part of the mean field becomes (cf. Eq. (27)) 

K(k?, 7; w,) = n(w,; /I)(11711 F+?+,,(8) I?), (34) 

where the overall amplitude n(o,.; 1) of the field is given by the expression 

(35) 
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This amplitude can be further calculated as follows: With the separable form 
(32), the RPA equations (19) in the restricted subspace can be solved for the 
amplitudes x(0,) and y(o,), and one obtains 

The amplitudes x(0,) and ~(0,) obey the RPA normalization 

This condition is sufficient to specify the amplitude n(o,; 2). Moreover, since the 
particle-hole excitations, snj, in the restricted subspace are much smaller than the 
energy of the surface plasmon, we can expand the 1.h.s. of Eq. (37) in powers of anj 
and retain only the linear terms. 

Then the energy-weighted sum rule 

can be invoked. 
In the case of a uniform spherical density of radius R, 

<r 21-2) =-5-R'"-2, 

and as a result the amplitude n(w,; A) is found to be 
p2fio 3 1 

n2(o,; A) = 2 212 B R2"-2' 
1 

In Eq. (40), B1 is the irrotational inertial paramater defined in Eq. (6 
Introduction. 

Taking into consideration Eqs. (34) and (40), we can write expression 
the width r,, as 

(40) 

) of the 

(30) for 

(38) 

(39) 

(41) 

A further simplification of Eq. (41) is achieved by noting that the matrix element 
Dii can be written as a double commutator of the function F(r, 0) = r%Y~0(8) with 
the single-particle hamiltonian H,,, that is, 

where 
Ho = T+ U(r) (43) 
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is the static part of the single-particle hamiltonian; T is the kinetic-energy operator 
and U(r) is the static average field that binds the valence electrons. 

Using the property that 
V*F( Y, 8) = 0, (44) 

the double commutator in Eq. (42) is calculated to be 

[H,, [If,, F]] = - f&j, ~VF.V] 
i 

= -~~(ai~jF)~j~i+~V~.Vu, 
Y 

where the indices i and j sum over the Cartesian coordinates. 
For the case of a dipole field, the volume term (the first term) in the r.h.s. of 

Eq. (45) apparently vanishes. For a higher multipol~, II, it contributes mainly for 
particle-hole transformations of character AN< 1, as can be estimated from a 
Fermi gas with a cubical boundary. Since the energies corresponding to these 
transitions decrease with increasing size of the cluster, this volume term can be 
neglected for the relevant transitions at the high energy of the surface plasmon 
(cf. also the Appendix of Ref. [35]), 

As a result, we can retain only the surface term (second term) in the r.h.s. of 
Eq. (43, and find that 

D& = R-m -$ (fil VF.VU II>, 
mi 

In the case of large clusters, we can neglect the spill-out and assume that the 
profile of U(r) is a spherical square well, i.e., 

U(r) = U&r - R). (47) 

Explicitly introducing the multipole field in relation (46), we obtain for the 
matrix elements D&, 

Then taking into consideration the energy conservation imposed by the delta 
function, we derive the final expression for r,,; it is of the form 

Naturally, in the case considered here, the collective state is the surface plasmon 
and w, = f2,, . From Eq. (49), we see that the width of the surface plasmon for any 
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multipolarity ;1 is expressed as a surface effect through the derivative of the static 
mean field. It is also expressed as the ratio of a friction coefficient, yRP, over the 
irrotational mass, B,, in analogy with the classical view of a damped motion. 

In the case of a dipole mode, expression (49) is fully equivalent to the linear- 
response expression for the real part, cri, of the effective conductivity derived by 
Kawabata and Kubo and given by Eq. (10) of Ref. [34]. To make the connection 
between effective conductivity and the width of the plasma mode, observe that 
r=4na,o*/co;, a relation that follows immediately from the Drude dielectric 
constant. 

Furthermore, apart from a factor r resulting from a slightly different definition of 
the deformation parameter a,, the coefficient yRP in Eq. (49) agrees in detail with 
the quanta1 friction coefficient associated with the nuclear wall dissipation and 
given by Eq. (3.12) of Ref. [47]. This agreement is present in spite of the fact that 
the short-range, nuclear two-body force is very different from the long-range, 
Coulomb force. 

Thus the Landau damping expressed by Eq. (49) is a feature of a universal 
dissipative regime appropriate for small Fermi systems. Here we summarize the 
conditions for its manifestation; they are: 

1. the existence of a strong collective state carrying most of the oscillator 
strength; 

2. that the volume of the system is large enough, so that the associated 
single-particle spectrum forms a quasi-continuum; 

3. that the mean free path of the fermions is large compared to the dimen- 
sions of the system; then the RPA equations provide an adequate description and 
do not need to be modified by the addition of a two-body collision term. 

The universality of the damping process described here is also reflected in the fact 
that the coupling constant x does not enter into Eq. (49). Indeed, it is the precise 
value of x that distinguishes among the separable interactions representing different 
two-body forces, e.g., nuclear forces from the Coulomb force. In the case of large 
metal clusters, the coupling constant x is determined as follows: 

Substitution of expressions (36) for the amplitudes x(w,) and ~(0,) into Eq. (35) 
defining the field amplitude n(o,; 1) yields a dispersion relation for the frequency, 
QSp, of the surface plasmon, namely, 

(50) 

Neglecting the particle-hole energies E,,~ in comparison with the plasmon energy, 
and using the sum rule (38), one finds (cf. also Ref. [15]) 

-1 3(2,?.+1)N,R*“-* 
x =- -- 

4n p 0;’ (51) 

where ho, is the energy of the bulk plasmon. 
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3. EVALUATION OF SURFACE-PLASMON WIDTH (49) 

3.1. The Final Integrated Analytical Expression 

To derive the final formula for the width rRP, we need to carry the integrations 
in Eq. (49). These integrations can be carried analytically under the assumption of 
an infinitely deep central potential, namely in the limit when U, -+ co (cf. Eq. (47)). 
This assumption has been also invoked in all the previous literature that produced 
a closed analytic expression [31-371. However, apart from its expediency in 
producing closed analytical formulas, the assumption of an in~nitely deep well 
expresses the physical properties of the actual self-consistent potential binding the 
valence electrons in the cluster-in spite of the finite depth of the latter. Indeed, the 
self-consistent potential for metal clusters has been calculated by various methods 
[61, 133. When approximated by a finite square well, it is seen that these potentials 
are of the type utilized in nuclear physics to describe neutron resonances [62]; 
namely, even in the case of the smallest clusters, the binding-strength parameter 
s = 2pU0R2/h2 is much larger than unity, i.e., s >> 1. As a result, in the continuum 
range slightly above their rim where the surface plasmon lies, these potentials 
support sharp single-particle resonances embedded in the continuum, which may 
have a strong influence on the profile of the photoabsorption spectrum. In the case 
of small clusters, these resonances can be specified either by discretizing the 
continuum [lo] or by a phase-shift analysis of the delocalized scattering states 
[63]. In the case of large clusters, the infinitely deep potential provides an 
economic way for isolating these resonances, which by this fact are shown solely 
responsible for the l/R dependence of the width of the surface plasmon. 

As mentioned earlier, the RPA friction coefficient, YRp = Bi, rRp, was considered 
in Ref. [47], where its analytical integration was carried out. The calculation is 
straightforward, but lengthy, and the details are given in Appendix A. Here, we will 
highlight three pivotal points that guarantee an accurate final result. The second 
and third of these points differentiate the present approach from the calculation of 
Kawabata and Kubo [31], as well as from an earlier calculation by Lushnikov and 
Simonov [35] who utilized an RPA-propagator approach in the coordinate space. 

Naturally, in the limit of an in~nitely deep square well, the radial part of the 
single-particle wave functions is given by the spherical Bessel functions, j,(kr), and 
their vanishing on the boundary of the system provides the quantization condition 

j,(kR) = 0. 152) 

In the analytic evaluation, we first carry the integrations over the spatial 
variables, and then sum over the quantum num~rs. Due to the delta function 
&(P - R) arising from the derivative, dU/dr, of the step potential (47), the radial 
functions contribute only through their value at the surface, i.e., for r = R. 

(i) Then the first point to be remembered is that the matrix elements in 
Eq. (49) can be evaluated analytically to be 



120 YANNOULEAS AND BROGLIA 

where the unprinted indices refer to the particle index fit, while the primed indices 
refer to the hole index i. 

(ii) The second important ingredient in the evaluation of fRP is an 
appropriate expression for enumerating the single-particle states inside a spherical 
box. 

We denote by n the number of single-particle radial eigenstates of wave number 
less than k for a given angular momentum (L, M). Thus n is equal to the number 
of zeroes of the spherical Bessel function j,(p) with p = kr in the interval 
0 < p $ kR. To carry the integrations over n the following expression for the density 
dn/dp must be used: 

$ (L fixed) A 

i 0, p < L. 
(54) 

As shown in Appendix B, expression (54) yields the correct volume contribution 
for the density of states in a spherical box of large spatial volume. This volume 
contribution is independent of the shape of the box and thus equal to the result in 
the case of a cubic box. According to Ref. [64], it is also the leading term in an 
asymptotic expansion for the density of states and the only one surviving in the 
limit kFR + co. 

We note that expression (54) is essential in obtaining the correct result for the 
RPA width r,,. Less accurate approximations for the number of zeroes do not 
suffice. In particular, the more familiar approximation, 

dnztdk, (55) 

which corresponds to the McMahon formula [41] for the zeroes of a Bessel 
function, as well as to the asymptotic expansion 

j&W - j& sin kR-@ [ 1 2 

for the spherical Bessel functions, underestimates the correct result by a factor 6/7r2. 
The reason for the deficiency of (55) is the fact that both the Mc~ahon formula 
and the asymptotic form (56) are valid in the limit 

Lep=kR. (57) 

This condition is always fulfilled in the case of scattering, but fails in the case of 
a spherical box. Indeed, in this latter case, the main contributions to the integrals 
come from values of L of the same order as kFR. One needs expressions for the 
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position of zeroes that hold when both the argument p as well as the order L are 
large (see Appendix B for details). 

In the previous literature, and in particular in Ref. [31], the McMahon formula 
was used, and as result the width of the surface plasmon was underestimated, both 
through the lower value of A,,(Q,, = 0; 1= I) and through the faster decrease with 
frequency of the function g,,(%&,/+). 

(iii) The third important point is the summation over the angular momenta. 
It is precisely because of an oversight at this step that Ref. [35] found the value of 
A&G,, =O; L) = (12~)/(~(2~ + 1)) (cf. also Ref. [36]), which for n = 1 disagrees 
with the corresponding value of Kawabata and Kubo. 

Specifically, by invoking the orthonormality relations of the Wigner 3-j symbols 
(cf. Appendix A), one can sum over the angular projections A4 and M’, as well as 
over the angular momentum of the hole, L’. Namely, one effectively uses the 
identity 

= 1-f 
%u %‘M’ (58) 

M, M’, L’ 
C&,di2 ‘=F. 

As shown in Appendix A, consideration of the previous three important points 
yields the following intermediate expression (cf. Eq. (105)) for the friction coefficient 
yRP defined in Eq. (49): 

where the dimensionless variables y and z are 

Y = Wkd02, z = (p/k,R)*. (60) 

A corresponding equation holds for the case [ > 1 and is given by Eq. (108) in 
Appendix A. Equations (59) and (108) show that the friction coefficient yRP is 
proportional to the surface area of the spherical cluster. 

The final result for the friction coefficient yRP is given by Eqs. (107) and (108) in 
Appendix A as the dimensionless ratio yRP/ywl, where ywf = pgFR2 = (hkt R2)/(47c2) 
is the wall-fo~ula friction coefficient (cf. Eq. (5)) when the spin degeneracy of the 
electrons is taken into account. 

The expressions for ~~~~~~~ in Appendix A are lengthy, but they can be written 
in a compact form with the help of the inverse hyperbolic functions. Then using the 
relation fRp = YRP/~j, and expression (6) for the irrotational mass (which is propor- 
tional to the volume), one finds the following final expression for the RPA width 
of the surface plasmon when 1~ k, R: 
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where the function g(c) is of the form 

- $ ([ + 2) arc sinh (%)-i(l-2) larccosh ($)I, i< 1, (62) 

and 

g(c)=L(l +[)“12+i(1 +[)‘/‘-i(c+2)arcsinh 
31 

, 1>1, (63) 

with the dimensionless parameter [ being the ratio of the surface-plasmon energy 
over the Fermi energy of the electron gas, namely, 

(64) 

The function g(c) defined in Eqs. (62) and (63) was calculated for a spherical 
boundary. However, it agrees in detail with the corresponding functions derived in 
Refs. [32, 34, 373, but for a cubical boundary. In this respect, there is no difference 
between a spherical and a cubical boundary (and by analogy with any other 
boundary arbitrarily shaped, e.g., a cylinder), unlike the results listed in 
Refs. [34, 311. The discrepancy is again due to the inaccuracy introduced by the 
McMahon prescription in counting the zeroes of the spherical Bessel function that 
was utilized in Refs. [34, 313. This independent behavior of the function g(i) with 
respect to the shape of the boundary suggests that the energy-dissipation rate per 
unit area is the same for all shapes. The different values of the damping width, rRP, 
between different shapes arise from purely geometrical factors, namely, from the dif- 
ferent ratios of the surface versus the volume that are particular to each geometry. 

3.2. Implications for the Experiment 

The function g(c) is plotted in Fig. 1 and Fig. 2. Also in Fig. 2 the corresponding 
function gKK([) of Refs. [34, 311 is plotted to facilitate the comparison. It should 
be noted that g(5) starts from unity at 5 =0 and decreases monotonically with 
increasing [. For i = 1 its value is g(i) = 0.635. 

g(c) approaches zero as [ + co. By expanding the inverse hyperbolic functions in 
powers of fi, we find that the asymptotic behavior of g(c) is given by 

This frequency dependence of the width rRP is expected to be reflected in the 
experimental observation. Moreover, the Fermi velocity of the electron gas depends 
on the Wigner-Seitz radius rs of the metal, since ur = fik,/p and k, = (9z/4)“‘( l/r,). 
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FIG. 1. The frequency-dependent RPA function g(c) for a spherical boundary (cf. Eqs. (62) and 
(63)). The dimensionless parameter [ equals M2,,/s,, where Q,, is the frequency of the surface plasmon 
and eF is the Fermi energy of the conduction electrons, 

Taking into consideration that fi2/p = 2Ry. b&r2 in atomic units, the overall 
dependence of the dipole width r”,;,‘,, on the Wigner-Seitz radius is given by the 
formula 

g(ii= 1) s eV. bohr’ 
s 

=39.17g(i,_,)~eV.bohr2, 
., 

The strong dependence of rRP on the multipolarity 2 is also remarkable. Indeed 
the width increases linearly with I, and as a result higher multipolar surface 
plasmons will tend to overlap significantly. This seems to be consistent with the 
observation [65] in electron energy-loss-spectroscopy studies of small metallic 
spheres. 

1.0 

0.8 

FIG. 2. The RPA function g(c) for a spherical boundary (solid line) compared to the corresponding 
function of Kawabata and Kubo (KK. dashed line) (cf. Refs. [34, 313). 
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4. CLASSICAL WALL DISSIPATION 
AND TEMPERATURE DEPENDENCE 

4.1. Wall Fmnula 

As was mentioned in the Introduction, one can interprete the broadening of the 
surface plasmon in large clusters as the effect of wall dissipation. The term wall 
dissipation refers to a classical analog that describes dissipative processes in the 
regime when the mean free path of the particles in a tinite system is large compared 
to the dimensions of this system. The dissipative exchange of energy between 
collective and microscopic degrees of freedom may then be viewed as proceeding 
mainly through collisions of the particles with a moving boundary of the system 
(or, in a microscopic approach like the RPA, with the time-varying part of the 
mean field). This “one-body/long-mean-free-path” mechanism [43] contrasts with 
the “two-body/short-mean-free-path” dissipative mechanism of Navier-Stokes 
hydrodynamics, familiar from the case of ordinary liquids and gases. 

For such a one-body dissipative process, we first seek a formula for the energy 
dissipation rate per unit area of the surface. Then the total dissipation rate, kdiss. Wr, 
is obtained by an integration over the total surface leading to the wall formula 
displayed in Eq. (3) of the Introduction. 

To derive the wall formula, it is sullicient to consider a piston moving through 
a Fermi gas with velocity u. It is also convenient [66] to consider a frame of 
reference affixed to the moving piston. Then the total velocity distribution, ft for the 
Fermions is written as 

f(u)=fo(v2-2uuCOSe)=fo(v2)+sf, (47) 

where fO is the velocity distribution of the Fermi gas in its own center-of-mass 
frame of reference, and the first-order change due to the motion of the piston is 
given by 

Sf = -2mcosn~. 

In Eqs. (67) and (681, u is the particle velocity, u is the wall velocity, and B is the 
angle between v and the z-axis which is taken parallel to u (cf. Fig. 3). 

The first-order contribution, 6P, to the pressure because of the motion of the 
piston is 

(69) 

where 

F=vcos@ (70) 
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FIG. 3. Representation of particle velocity v and of wall velocity u when the frame of reference is 
affixed to the moving wall. 

is the frequency per unit area of particle collisions with the wall for a given velocity, 
and 

A4=2/.wcose (71) 

gives the momentum transfer per collision; p,, is the mass density of the gas and p 
is the mass of the gas particles. 

Substituting the corresponding quantities into Eq. (69) and using spherical 
coordinates, one obtains 

6P=p,u 4~~‘2cos3R(-sinB)d(li~O~2nv5~dv 
i 

m 
= -pPU i rcv4 df, = ppu 

0 s 
00 

v(4m1*) f&v’) dv = p,,Vu, (72) 
0 

where U is the mean speed of the particles of the Fermi gas. In deriving (72), one 
carries an integration by parts and uses the assumption that ~3f~/&* falls rapidly 
enough to zero when v2 + 00. 

The wall-formula energy dissipation rate, kdiss, ++ results from Eq. (72), when one 
multiplies with the wall velocity -u and integrates over the total surface, i.e., 

Naturally, the integral over each differential element of the surface involves the 
perpendicular component of the velocity, u,, to this surface. 

It is instructive to apply the wall-dissipation model to the damping of the dipole 
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plasmon in a metallic particle shaped as a cube (or a film). In the case of a cubical 
boundary of length L, formula (73) yields 

&giss, Jt) = -p,v(2L*)u* = -yy, (74) 

where the factor 2 in front of L* arises from the fact that only two faces are 
involved. Then, since the corresponding parameter B involves the total mass of the 
electrons, B = pr L3, and the width r’ equals 

rc Y:fm3 ‘F - 
B 2L’ (75) 

This is precisely the result for small values of Q,, found through a full quantum 
mechanical calculation in Refs. [32, 34, 371. 

Certainly, the classical model cannot account for the frequency modification 
expressed by the functions (62) and (63). This modification is a purely quantum 
effect, and in this respect the classical wall-formula (73) for the energy dissipation 
rate needs to be generalized as follows: 

(76) 

4.2. Temperature Dependence 

As discussed in Ref. [25], the experimental full width at half maximum (FWHM) 
of large silver clusters exhibits a very small temperature dependence. There are 
indications that this temperature contribution is also size dependent and varies 
as 1/R. 

The present theretical treatment of the RPA width rRP allows for a 
straightforward incorporation of temperature effects in expressions (49) and (76). 
Indeed, in the case of a Fermi gas at finite, but small, temperature T, it is sufficient 
to consider that the average speed V, which enters into these expressions, is given 
by 

u = 
s 

-$$ ; F(hk*/2p; T)i’, $$ F(fik*/2p; T) 

=;E(l+;(-;3’)1(1+;(3’) 

(77) 

where F(E; T) here is the Fermi distribution at temperature T and q is the chemical 
potential at the same temperature. Since q depends on the temperature as 

q=&F(1-;(;)2), (78) 
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the final expression for the average speed is of the form 

(79) 

In deriving Eq. (79), the Sommerfeld expansion [67] of F(E; T) has been used 
and only terms up to TZ have been retained. 

Since the Fermi energy of most metals is much larger than room temperatures, 
expression (79) indeed implies a very small temperature dependence for the width 
r,, = I(C/R) g(i). Practically, the RPA width rRP is temperature independent. 
This behavior is particular to the Landau damping considered here and should be 
contrasted with the rather significant ,/!? dependence arising from the quadrupole 
fluctuations of the cluster surface, which is expected to be important in the case of 
very small clusters (cf. Refs. [17, 18 , 11, 211). 

5. BREAKDOWN OF THE l/R LAW IN SMALL CLUSTERS 

The Landau-type RPA width (61) was derived under certain assumptions, 
namely, 

1. that the spatial volume of the cluster is large enough so that the electronic 
single-particle spectra form a quasi-continuum. This allows the use in Eq. (30) of 
the delta function which expresses the conservation of energy between initial and 
final states; 

2. that most of the oscillator strength resides in the immediate neighborhood 
of a single strong collective state, i.e., the Mie surface plasmon. This leads to 
replacing the residual Coulomb interaction with the effective multipole-multipole 
interaction (32). 

These two assumptions are valid in the case of large clusters, but break down in 
the case of small clusters. In particular, the discreteness of the single-particle spectra 
cannot be ignored below a certain size. In the framework of the discrete-matrix 
RPA, this question was considered in Ref. [55] (cf. also Ref. [68]). Specifically, 
Ref. [55] found that, as long as the discrete additional particle-hole states are 
numerous enough, the strength of the single collective state, Ic), will be distributed 
over the RPA states, Iv), of the total subspace according to the probability 

l.f”c12 = 
1 

1 f (7tK/d)* + (hOJ, L fiC0,)2/K2’ 
030) 

where d is the average spacing parameter for the particle-hole states in the 
additional subspace at energy fro, and K is a typical matrix element, K(%, I; o,), 
coupling the collective state lc) to these additional lp-lh states (cf. Eq. (27)). 

595/217/l-9 
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The RPA distribution (80) does not display, in general, the profile of a single 
broadened peak. However, when the subspace, SA, of the additional particle-hole 
states is dense, namely when 

(K/d)2 B 1. (81) 

the unity in the denominator of Eq. (80) can be neglected and the probability lfJ* 
acquires a Breit-Wigner form, i.e., 

(82) 

which now exhibits a decay width r given by 

2rt Ic* 
r=h2. (83) 

In the case of large clusters, d-+ 0 and condition (81) is automatically fulfilled; 
as a result, the collective state is broadened due to Landau damping. Moreover, 
expression (83) for the FWHM can be replaced by the continuum expression (30) 
which leads to the l/R law. 

In the case of small clusters, however, the situation is totally different. Indeed, in 
the mass area of Nazo, one finds that the spacing parameter d is of the order of 
0.7 eV. Additionally, the typical coupling matrix elements [20] are of the order of 
0.1-0.4 eV, and thus condition (81) is no longer valid. The states of the additional 
subspace are not necessarily numerous enough, neither can they be treated as a 
quasi-continuum. As a result, the l/R law for the Landau damping breaks down. 
In this case, the RPA fragments do not bunch together to form a single broadened 
peak as in Eq. (82). Instead, depending upon the individual cluster, detailed 
numerical calculations [ 10, 11,201 using the full Coulomb interaction have shown 
that the RPA response may consist of one, two, or several strongly separated and 
well distinguishable sharp spikes that share the total oscillator strength. The 
experimentally observed broadening of these spikes is expected to come from the 
fluctuations of the cluster surface [17] and cannot be accounted for within the 
framework of the RPA. Unlike the case of large clusters, the breaking down of 
condition (81) in the case of small clusters results in photoabsorption profiles which 
not only are nontrivial compared to the prediction of the single Mie resonance, but 
are also highly dependent upon the individual cluster under consideration. 

This different trend in the behavior between small and large clusters is illustrated 
in Fig. 4., where the distributions of oscillator strength for Na,,, and Na,,,,, 
according to the RPA numerical calculations are contrasted. In the case of Na,,,2 
most of the strength fragments tend to group together within a narrow energy band 
of -0.1 eV around 3.4 eV. On the contrary, in the case of Na,,, the strength 
fragments are scattered over a wide energy range from 2.4 to 3.8 eV. When folded 
with Lorentzian curves in order to produce smooth shapes, the ensuing optical 
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FIG. 4. Oscillator strengths for Na,, and Na,982 resulting from numerical RPA calculations with the 
full Coulomb force. 

response of Na,982 would suggest a single peak, while the optical response of Na,, 
would exhibit a rather flat profile encompassing several well-separated peaks of 
comparable strength. In the former case, the corresponding full width at half 
maximum is in agreement with Eq. (66), while in the latter case it is much larger 
than the value resulting from the same expression. 

It should be noted that the discreteness of the single-particle spectra is visible 
even in the case of 1982 sodium particle. As mentioned earlier, the smooth response 
observed experimentally results from additional broadening effects beyond the 
RPA. In the case of large clusters, the broadening introduced by these effects is 
smaller than the overall l/R broadening of the Landau damping, and thus does not 
influence the value of the full width at half maximum. 

A further example of the different behavior between small and large clusters is 
offered by the case of Na, [lo]. Indeed, in spite of its mass proximity to Na,,, Na, 
exhibits one dominant peak with an experimentally determined width [2] of 
-0.25 eV, which is now much smaller than the 0.7 eV predicted by Eq. (66). As 
noted in Ref. [4], K,+ and K&, with 8 and 20 electrons respectively, exhibit one 
single peak that is much more narrow than the corresponding width from 
expression (66); hence they also belong to the same class of examples as does Na,. 

6. DISCUSSION: IMPLICATIONS FOR I~OSCALAR MODES 

We have shown that the Landau damping of plasmons in large metal clusters can 
be viewed as a slowing down of the motion associated with the inertia of the con- 
duction electrons due to the friction supplied by the wall formula. It is remarkable 
that this dissipative process is independent of the Coulomb force between the 
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electrons. Expressed as the energy dissipation rate per unit area, it only depends on 
the Fermi energy of the system. Thus it is not surprising that it was also derived 
for systems and modes very different than the fast plasma modes in metal clusters. 
In particular, the wall formula has also been derived in the case of slow shape 
vibrations of a large nucleus. These modes represent a shape distortion of the 
surface of the system in which the protons and neutrons move in phase. Such 
modes are called isoscalar in contradistinction to the isovector modes, like the giant 
dipole resonance, where the protons move against the neutrons (in this respect, the 
plasma modes in metal clusters belong to the class of isovector modes). 

For a shape oscillation, whether in clusters or atomic nuclei, the time-varying 
part of the total mean field can be obtained (cf. p, 353 of [5 11) by a deformation 
of the static potential. Then the appropriate separable two-body force is of the form 

Since the final result is independent of the coupling strength x, input of this force 
into the RPA equations leads again to the wall formula, as was shown in Ref. [47]. 

Shape vibrations in clusters are difficult to be directly observed due to the very 
small energies involved. Indeed in such a mode, the ionic cores will participate in 
the motion in order to keep in phase with the electrons, and as a result the inertia 
associated with this mode will increase by a factor of 1000 with respect to the case 
of plasma oscillations. However, as is the case with the atomic nuclei, the collective 
motion associated with the fission of clusters [69-721 or the collisions between 
them can be viewed as a straightforward extension of such shape modes. It is then 
natural to conjecture that frictional forces will play an important role in the 
dynamics of fissioning or colliding heavy metallic clusters. Unlike the nuclear case, 
however, such a possibility has not as yet been explored for metal clusters. 

In the case of nuclei, these processes are treated within the framework of classical 
modelrs which establish a balance between conservative, inertia, and dissipative 
terms governing the evolution of the collective motion. The wall formula is one of 
two members of a family of dissipative terms characterized as one-body dissipation. 
The other member is known as the window formula [43,44] and is appropriate for 
two Fermi droplets with different velocities that come in contact through a small 
area during the collision process. The dissipation of the relative motion results from 
the transfer of particles from one droplet to the other and is, again, independent of 
the two-body force acting between the particles. 

The approach of one-body dissipative dynamics has had a large effect on the 
theory of nuclear fission and deep inelastic heavy-ion collisions [45,46]. As was 
discussed in Section 5, the limit of large volume provides the ideal regime for the 
unrestricted application of the wall formula; for small sizes, the shell structure 
inhibits the one-body dissipation. Fortunately, unlike the case of atomic nuclei, 
there is no upper limit in the number of constituent atoms in a cluster. Thus metal 
clusters appear to be an even more promising candidate than nuclei for the applica- 
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tion of one-body disipative dynamics, both for isovector modes, such as plasmons, 
as well as for isoscalar modes, such as shape vibrations, fission, and heavy-cluster 
collisions. 

7. SUMMARY 

The nuclear, discrete-matrix version of RPA, earlier applied numerically to small 
clusters [lo], was treated analytically to describe the response of large, spherical 
metal clusters. In particular, the RPA width r,, of a surface plasmon of arbitrary 
multipolarity 1, was specified by solving a dispersion relation, in anlogy with the 
original Landau-damping treatment [57 3 of the bulk plasmon in the infinite elec- 
tron gas (cf. Section 2). rRP was evaluated to be (cf. Section 3) frequency dependent 
and proportional to l/R, where R is the cluster radius. The RPA proportionality 
coefficient was unequivocally determined and is given for zero temperature by 
Eq. (61). The reasons for the earlier uncertainty in its value arising from dis- 
agreements [29] among previous theoretical approaches were discussed in detail. 
In particular, the inadequacy of the McMahon formula was stressed; for counting 
the numbers of zeroes of a spherical Bessel function, the present work utilized an 
improved expression (cf. Section 3), and thus the correct proportionality coefficient 
was determined. Specifically, for all plasmon frequencies, the present result for A = 1 
yields values noticeably higher than the corresponding result of Kawabata and 
Kubo [31]. In contrast to the previous litterature, the frequency dependence of rRP 
for a spherical shape agrees precisely with the corresponding frequency dependence 
in the case of a cubical boundary. The correct value of the l/R proportionality coef- 
ficient is of significant importance for the experiment, since free, unsupported heavy 
metal clusters have been recently produced in molecular beams [39,40], unlike the 
large clusters which are embedded in a host medium and were used in earlier 
optical studies [29,30]. These studies had shown that the host medium markedly 
affects the l/R proportionality coefficient, and therefore the availability of free 
clusters offers for the first time the promise of isolating this influence. 

The RPA result (61) for r,, was found to be proportional to the average speed, 
V, of the conduction electrons forming a Fermi gas, namely rRP N F/R. This fact led 
to a new classical interpretation of the l/R broadening as the effect of a long-mean- 
free-path dissipative process known as wall dissipation (cf. Section 4) and widely 
studied in connection with the case of atomic nuclei [43,47]. According to this 
view, the surface of the cluster can be considered as a moving wall whose interac- 
tion with the conduction electrons mimicks the multipole transitions induced by the 
field of the plasmon. Moreover, in analogy with the wall dissipation which is a 
surface effect, the RPA plasmon width is expressed as the ratio of a surface friction 
coefficient, yRP, over an irrotational mass, B,, proportional to the volume. Thus the 
l/R dependence simply reflects the ratio of surface over volume. Expressed as per 
unit surface area, the corresponding energy dissipation rate at all frequencies is 
independent of the shape, a property that allows for an immediate calculation of the 
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plasmon width in the case of an arbitrary boundary. The different values of rRP for 
various shapes result from the different ratios of the surface versus the volume. 

The association of rRP with the wall dissipation allows for a straightforward 
incorporation of finite-temperature effects. Indeed, it suffices to consider the 
temperature dependence of the average speed in a Fermi gas. This was done in 
Section 4, and the temperature dependence was found to be 1 + (7~~/6)(7’/sr)~, a 
result that indicates that rRP is almost temperature insensitive. 

The l/R law is derived from the RPA only in the limit of a large cluster. In small 
clusters, shell effects and the discreteness of the spectra inhibit the process of wall 
dissipation. Section 5 discussed in detail the breakdown of the 1/R dependence for 
small sizes. 

The wall dissipation exhibits a universal character; indeed, it is independent of 
the two-body force (the long-range Coulomb force in metal clusters or the short- 
range nuclear force) acting between the particles of the Fermi gas. In this respect, 
in addition to the fast isovector plasma modes, it is expected to be associated with 
other slower modes in metal clusters, in complete analogy with the nuclear case. 
Some implications of this universal behavior for the case of isoscalar modes in 
metal clusters-like shape vibrations, fission, and heavy-cluster collisions-were 
discussed in Section 6. 

APPENDIX A 

In this appendix, we calculate the coefficient yRP defined by Eq. (49) in the 
infinitely deep square-well potential/large-radius limit (U, + cc and R + co). To 
this end, we follow closely Ref. [47]. 

Because of assumption (47) that the shell-model potential is a spherical square 
well, and since U, + co, all single-particle states are bound and have wave functions 
of the form 

where j,(h) are the spherical Bessel functions, C, is their normalization constant, 
and R is the radius of the spherical well. 

Henceforth, we adopt the convention that unprimed indices denote a particle, 
while primed indices denote a hole, i.e., 

where the wave numbers kLn and k,,,, take only those values which make the 
spherical Bessel function vanish at r = R, i.e., 

j,(k,, R) = j,.(k,.,. R) = 0. (87) 
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Then using the property that the derivative of the step function is a Dirac delta 
function, one obtains for the matrix elements in Eq. (49) 

The integral over the three spherical harmonics imposes the conservation of 
parity and angular momentum on the plasmonelectron scattering, and for low 
plasmon multipolarity A it requires that L and L’ be of nearly the same magnitude. 

To calculate the normalization constant, we use the orthogonality integral for the 
spherical Bessel functions [73], namely 

where k,, and k,,, are two values satisfying the vanishing of the wave functions at 
the boundary. 

Because of the continuity condition at the boundary satisfied by the wave 
functions, the following limit holds when U, + cc: 

dj,(k,, r) 
lim Jm j,(k,, R) = - dr 

4,(P) = -k,, - (90) 
uo-oc r=R dp ’ P = kLnR 

One can relate the normalization constant (89) to expression (90) with the help 
of the vanishing of the eigenfunctions at the spherical surface and of the recurrence 
relations of the spherical Bessel functions [73], namely, 

(91) \ I 

2L+l 
jL-l(P)+jL+l(P)=- ’ p JL(Ph 

djL(P) 
Lj,~,(p)-(L+l)j,+,(p)=(2L+l)- 

4 . 

Combining Eqs. (89), (90), and (91), one finds 

Substituting (92) into Eq. (49), one obtains 

dn dn’(k,,k,f,,)* C lYyZ,+, YL’M’ Yj.0 dQl* 6(hwc-~(Gt, 1)). (93) 
MM’ 

The overall factor of 2 accounts for the spin degeneracy The number n (n’) 
denotes the number of single-particle radial eigenstates of wave number less than 
k,, (k,.,,) inside the spherical box for a given angular momentum (L, M) 
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((I,‘, M’)). Thus n is equal to the number of zeroes of the spherical Bessel function 
j, (kr) in the interval 0 < r < R. 

.The sum over indices A4 and M’ is calculated with the help of the relations of the 
Wigner 3-j symbols [74]: 

= (2~+1)(2~+1)(2~‘+1) I’* L L’ A 

[ 47c 1 (0 0 o)( -i!l ii $ tg4) 

CL 
A j2 j3 jt j2 ii 

m1m2 w m2 m3 )C ml m2 4 ) 
= C2j3 + l1-l djjj; d,,,; Wt j2 j3h (95) 

where S(j, j, j,) = 1 if jl, j2, j, satisfy the triangular condition and is zero 
otherwise. 

Using Eqs. (94) and (95), one finds 

= (zi+1)(2Lq~1)(2L’+l)(~ ; A.)‘F(-“M ; ;> 

= (2L-t up’+ 1) (‘d “d J.7 s(LL,n)* 

The particle-hole energy s(fi, 2) is equal to 

E(fi, i) = ; (kin -k&/f) = & (P2 - P’*h 

(96) 

(97) 

where the dimensionless variables p = k,,R and p’ = kc,, R have been introduced; 
they lie within the ranges 

O<p’<kFR (for a hole), 

k,R<p<cc (for a particle), 
(98) 

where k, is the Fermi wave number. 
For the density dpriab of the zeros of a spherical Bessel function j,(p) with given 

L, we use expression (54). The leading-order contribution to the integral of (93) 
results from values of L and L’ large compared to 1 ( ek,R). Then L and L’ are 
nearly equal so that 

(99) 
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With Eqs. (99) and (96), Eq. (93) yields 

fi4 
“’ = 271=p=w,. R6 L 

c j-j. dp dp’fpp’) ,,/7-=? ,/779(2L + 1) 

x 6(hw,. - E(k, ‘i)) c (2L’ + 1) 
L’ 

To carry out the summation over L’, we utilize the following orthogonality relation 
for the Wigner-3~ symbols [74]: 

c (2j, + 1) j1 jz j3 (101) 
J3m3 ml m2 m3 

Considering values 2L $1, we can replace the L-sum by an integral and find 

ii4 
YRP = 2n2p2W,R6 JJJ dp dp’ dL=(pp’) +‘m Jm S(fiw, - E(& 2)). f1021 

From Eq. (102), one can see that the value of YRP is independent of A for small 
I$kGFR. 

To proceed further, one first needs to execute the partial integration over p’. This 
is done by transforming the Dirac delta function as 

6(ho, - &(fi, a)) = ,uR2 
f+FiGm 

&P’-Jml, (103) 

where 

( = hWJ&F (104) 

and &r is the Fermi energy. 
We first calculate yRP for the case i < 1; we treat [ > 1 below. When i < 1, 

integration over p’ in (102) yields 

,~~=~~[J~‘-:,,:“d~~~~~- 

+j‘:~;dl.ji+’ 
Y + r 

kj’G,iz--;-=3 , i<l, 
i 

W) 

where the dimensionless variables y and z are 

Y = WbR)2, z = (p/kFR)2. 1106) 

The integration limits in (105) have been determined to prevent both the delta 
function, G(tio,-&f&2)), and the density (54) for the zeroes of a spherical Bessel 
function from vanishing. 
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The integrals in (105) can be evaluated by means of the three formulae in 
Ref. [75] and the formula in Ref. [76] to yield 

E= g(C)= 
(1 +[)3’*-(1-1)3’2 

w 31 

+~[(l+[)1~2-(l-i)1~2]+~ln 
( 

2-1+2&q 

2+1+2Jl+i ) 

-fin [(2-i+2,/1-i)(2+i+2Jl+j)l 

+ f In [, [ < 1. (107) 

In writing Eq. (107), we took into consideration the definition of yWr in Eq. (5). 
To facilitate the comparison, we notice that, in the case of a Fermi gas at zero 
temperature and with the definition (4) for the deformation parameter, the 
well-formula friction coefficient equals yWr = p,UR2 = (hk4,R2)/(4n2), when the spin 
degeneracy of the electrons is taken into account. The corresponding expression in 
Ref. [47] equals yWr = (MC: R4)/(87z2), since one kind of spin only was considered 
and the deformation parameter differed by a factor of R. 

For large values of ho, such that { > 1, the integration of (102) by similar means 
yields 

-i(i+2)ln 
2+1+2JiT 

[ 1 7 l>l. (108) 

APPENDIX B 

B.l. 

Due to the central role played by expression (54) in determining the precise value 
of Landau damping, we show in detail in this appendix that it yields the correct 
volume term for the density of states in a spherical Fermi box. Indeed, expression 
(54) provides the density of zeroes of a spherical Bessel function j,(p) of given 
angular momentum L with respect to the argument p. 

For fixed L, the total number S, of the zeroes of j,(p) in the interval 
0 c p < k,R is given by the integral of (54), namely by 

(109) 
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For given (L, M), S, is also the number of radial wave functions that vanish at 
the boundary (j,(k,,R) = 0) and have wave numbers smaller than the Fermi wave 
number (0 <k,, < kF). 

To calculate Eq. (109) we use the integral 

and find that 

S==k Jm-Larccos & 
[ ( )I F 

The total number N of states with k,, Q k, is given then by 

N= kiR (2L+l)SL 
L=O 

To proceed further, one needs the following three integrals: 

s 

With the help of Eqs. (113t( 115) one obtains 

and 

L2 dL arc cos =$ (kFR)3. 

Therefore, the final result for the total number of states is 

=&(k,R)‘=(volume)-$. 

(110) 

(111) 

(112) 

(113) 

(114) 

(115) 

(116) 

(117) 

(118) 
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As it ought to do, result (118) agrees exactly with the familiar result for the 
density of states for one kind of Fermi particles in a cubical box. 

B.2. 
Apart from the direct, but a posteriori, justification for the density (54) presented 

in the previous section there exist in the literature two a priori proofs based 

(i) On expressions that yield the positions of zeroes of a usual Bessel function 
J,(p) when both the argument and the order are large [77,78]; 

(ii) On the WKB quantization condition [79, SO]. 

In particular, for the (i) case here, the appropriate expression is [ 811 

J,( v set /?) = 0, (119) 
with 

v( tan /I - /I) + x = n7c, (120) 

where x here is a quantity varying very slowly with the order v and remaining 
between the following limits for large v: 

‘z<x,E 
6 4' (121) 

Naturally since p = v set /I, the previous equations can be rearranged to yield 

psinfi-/?v+x=nn. (122) 

For a spherical Bessel function, v = L + 4, and differentiation of Eq. (122) with 
respect to dn, dp, and L$? immediately yields the density (54). Observe that we have 
neglected the f in front of L for convenience. This is allowed because of the 
predominance of large L's. However, retaining this i does not produce any changes. 

Concerning case (ii), one needs to notice that, due to the separation of motion, 
the WKB quantization condition for a sphere yields the radial integral 

(123) 

Differentiation of (123) immediately yields the density (54). Note that even 
though the result is the same, the proof (i) based on the position of the zeroes of 
a Bessel function is more general than the WKB approach. Specifically, as an 
integration of Eq. (123) can show, the WKB quantization condition corresponds to 
Eq. (122) when x is replaced by the upper limit 71/4. 

B.3. 
In this subsection, we show that the McMahon formula for the location of the 

zeroes of a spherical Bessel function leads to an erroneous result when used to 
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calculate the volume term for the density of states in a spherical Fermi box. The 
total number N of states with k,, d k, is 

&lXX 
N= 1 (2L+1)SL, (124) 

L=O 

where S, is again the total number of zeroes of j,(p) in the interval 0 < p <k, R 
for fixed L. 

The McMahon formula for the location of the zeroes of a usual Bessel function 
J,(p) is given in Ref. [41]. According to this formula, the nth zero of the spherical 
j,(p h where 

j,(p)= ; ( > 112 
JL + 1,2(P)? (125) 

is located at z~,~ given by 

Z L,n= (126) 

Then setting z~,~ = k, R gives an estimate of S, = n via 

Whence, 

kF R = nS, + L71/2. (127) 

Lnm k,R L 
N= 1 (2L+l) --- 

L=O [ 1 71 2 

(128) 

Result (128) does not agree with the correct result for a cubical box, namely, 
with ki/6n2; specifically, it underestimates the total number of states by a factor 
of 61~~. 
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