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A two-step method [1] of symmetry breaking at the unrestricted Hartree-Fock (UHF) level
and of subsequent post-Hartree-Fock restoration of the broken symmetries via projection
techniques is reviewed for the case of two-dimensional (2D) semiconductor quantum dots
(QDs; often referred to as artificial atoms and molecules). The general principles of the two-
step method can be traced to nuclear theory (Peierls and Yoccoz) and quantum chemistry
(Lowdin); in condensed-matter nanophysics, it constitutes a novel many-body approach.

In conjunction with exact diagonalization calculations [2,3] and recent experiments [3,4],
it will be shown that this method can describe a wide variety of strongly correlated phenom-
ena in QDs in both the zero and strong-magnetic-field (B) regimes. These include:

(I) Chemical bonding, dissociation, and entanglement in quantum dot molecules [5] and
in electron molecular dimers formed within a single elliptic QD [2,3,4], with potential tech-
nological applications to solid-state quantum logic gates [6];

(IT) Electron crystallization along the vertices of concentric polygonal rings and formation
of rotating Wigner molecules (RWMs) in parabolic QDs. At zero B, the RWMs rotate rigidly
[7]; at high B, the RWMs are “supersolid”-like, i.e., they exhibit [8] a non-rigid rotational
inertia [9], with the rings rotating independently of each other [8].

At high magnetic fields, the two-step method yields analytic many-body wave functions
[10], which are an alternative to the composite-fermion and Jastrow-Laughlin approaches,
offering a new point of view of the fractional quantum Hall regime in QDs (with possible
implications for the thermodynamic limit).

The two-step method can be used [11] to describe crystalline phases of strongly repelling
ultracold bosons (impenetrable bosons/ Tonks-Girardeau regime) in 2D harmonic traps. Re-
cent results for rotating toroidal and harmonic traps will be discussed [12].
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