
© Tushar Krishna, School of ECE, Georgia Institute of Technology

 1

Interconnection Networks for High-Performance Systems

ECE 6115 / CS 8803 – ICN

Spring 2020

Lab 2: Topology Comparison [50 pts]

Goal:
In this lab, you will compare a Mesh (called Mesh_XY in Garnet), Flattened-Butterfly, and a

hierarchical ring topology for network performance. The focus of this lab is on design space

exploration – you will run a suite of simulations for of these three topologies and plot the results.

Step 0:
Update your gem5 copy
hg pull –u

Now build the simulator. This only needs to be done ONCE (the first time you pull).
./my_scripts/build_Garnet_standalone.sh

Sample Run Command:
./build/Garnet_standalone/gem5.debug

configs/example/garnet_synth_traffic.py \

--network=garnet2.0 \

--num-cpus=16 \

--num-dirs=16 \

--topology=Mesh_XY \

--mesh-rows=4 \

--sim-cycles=50000 \

--inj-vnet=0 \

--router-latency=2 \

--injectionrate=0.02 \

--synthetic=uniform_random \

--link-width-bits=32

The highlighted parameters are what you will be sweeping through in this Lab.

- All experiments will be with a 16 router system.

- Unless otherwise mentioned, all your simulations should be for 50000 cycles.

Traffic Description:
All packets are 64-bits wide.

The number of flits in every packet = (packet_size / link width).

If you change the link widths, the number of flits per packet will go up – this is handled internally

within the code and you do not need to worry about it.

The command for changing link-width when you run garnet from the command line is (for e.g.,)
--link-width-bits=32

You will run Uniform Random (--synthetic=uniform_random), Tornado (--

synthetic=tornado) and Neighbor (--synthetic=neighbor) traffic for all the designs.

The details of each traffic pattern can be seen in src/cpu/testers/

garnet_synthetic_traffic/GarnetSyntheticTraffic.cc

© Tushar Krishna, School of ECE, Georgia Institute of Technology

 2

How to run Traffic Simulations

Start at a (packet) injection rate of 0.02, and keep incrementing in intervals of 0.02 till the network

saturates (i.e., the latency becomes > 100 cycles). In other words, you do not need to run it till a

fixed injection rate (like 0.5 in Lab 1) but till the injection rate at which that network saturates.

This is because you will cut off the y-axis off at 100 cycles.

Network Stats:
./my_scripts/extract_network_stats.sh generates network_stats.txt.

You will be working with average_packet_latency and packets_received as the stats for this lab.

How to Plot Results

For each (configuration, traffic pattern) pair, you need to plot the average packet latency vs.

injection rate for all three topologies on the same graph. In other words, each graph in your report

will have 3 lines: Mesh, Flattened Butterfly and Hierarchical ring.

Note: average packet latency is in cycles.

Make sure to label the axes, and add clear legends to specify which line corresponds to which

topology.

Step 1: Flattened Butterfly Topology [10 pts]

Step 1.1

Read the Flattened Butterfly papers and implement it in Garnet (link available in the class schedule

spreadsheet)

• Kim et al., “Flattened Butterfly: A Cost-Efficient Topology for High-Radix Networks”,

ISCA 2007

• Kim et al., “Flattened Butterfly Topology for On-Chip Networks”, MICRO 2007

- You need to focus just on the topology - don’t worry about the routing and flow-control

aspects discussed in the paper.

- You do not need to implement the concentration factor (4 nodes connected to one

Router) used in the paper. You can assume garnet’s default one traffic injector per router.

Step 1.2

Create a FlattenedButterfly.py file in

$gem5/configs/topologies

It is a python file. But you do not need to be a python expert to write this.

Tips: Take a look at Mesh_XY.py for reference.

- Mesh_XY.py has some print commands to print all the links that are created every time a

simulation is run – this will be useful for debugging.

- All links are uni-directional – i.e., you need to add links in both directions.

© Tushar Krishna, School of ECE, Georgia Institute of Technology

 3

- You will notice a link weight of “1” on the x-links and “2” on the y-links. This is for

deadlock avoidance which we will talk about later. Please use the same allocation in the

topologies you implement.

- Reuse the mesh-rows parameter that Mesh_XY.py uses to specify the number of rows in

the Flattened Butterfly topology.

- The router ids used in Mesh_XY code follow the following numbering scheme (0 to 15):

-

Step 1.3

You can run this topology by specifying --topology=FlattenedButterfly

Test your topology using the run command. You can also use the debugging tips on the garnet GT

website: http://tusharkrishna.ece.gatech.edu/teaching/garnet_gt/ to make sure the latency and hop

values make sense with this topology.

Step 2: Hierarchical Ring Topology [10 pts]

Step 2.1

Implement the following simple hierarchical ring topology. It is built with 4 base rings (shown with

red links), and one additional ring to rule them all connecting these rings (shown with blue links).

Name this as HierarchicalRing.py

Step 2.2

Use the same Tips as Step 1.2 for FlattenedButterfly.

You can assume that this topology will only be called with 16 routers and add links accordingly;

you do not have to make it generic.

12 13 14 15

8 9 10

4 5 6 7

0 1 2 3

11

http://tusharkrishna.ece.gatech.edu/teaching/garnet_gt/

© Tushar Krishna, School of ECE, Georgia Institute of Technology

 4

Step 2.3

Run and test this topology.

Step 3: Performance Simulations and Plots [10 pts]

Configuration A: Equal Link Widths.

Suppose there are no wire constraints.

Assume that all three topologies have the same link width: 32b.

Step 3.1: For each topology – Mesh_XY, FlattenedButterfly, and HierarchicalRing, plot the

average packet latency vs injection rate across all three traffic patterns. [Look at “How to Plot

Results” above].

Step 3.2: Add these three graphs into a document called Report. Label each graph clearly

Configuration B: Equal Bisection Bandwidth.

Suppose that all three topologies have the same wire area.

Assume that the Mesh has 32b links.

Scale the link widths in HierarchicalRing and FlattenedButterfly accordingly.

Step 3.3: For each topology – Mesh_XY, FlattenedButterfly, and HierarchicalRing, plot the

average packet latency vs injection rate across all three traffic patterns. [Look at “How to Plot

Results” above].

Step 3.4: Add these three graphs into your Report. Label each graph clearly

Step 4: Analysis Questions [20 pts]

Complete Lab2-Questions.docx.

What to Submit:
Create a tarball called Lab2.tar.gz with the following files:

FlattenedButterfly.py

HierarchicalRing.py

Report.doc/pdf

Lab2-Questions.doc/pdf

