
© Tushar Krishna, School of ECE, Georgia Institute of Technology

 1

Interconnection Networks for High-Performance Systems

ECE 6115 / CS 8803 – ICN

Spring 2020

Lab 3: Deadlock Avoidance [50 pts]

George P. Burdell attended the Routing lecture of Interconnection Networks and felt that a minimal

deterministic XY routing is inefficient as the Mesh topology loses its path diversity. He implemented a

new minimal oblivious routing algorithm that randomly forwards a flit out of one of the ports along its

minimal path at each router. Recall that an oblivious routing algorithm randomly chooses one out of

available minimal output links (without taking any congestion into account).

But once he started running the network, George noticed that he is unable to inject any new messages

into the network after a while and some of the old messages have not been received despite waiting for

thousands of cycles. George missed the next couple of lectures of Interconnection Networks where

techniques to solve this problem were discussed, because he was cross-registered for multiple classes

at the same time1!. Your goal is to fix George’s network.

Step 0:
Update your copy of gem5 which contains George’s network.
hg pull -u

[You can also clone a fresh copy if you wish]
hg clone /nethome/tkrishna3/teaching/simulators/gem5/repo/gem5

Now build the simulator.

THIS NEEDS TO BE DONE EVERYTIME YOU CHANGE THE C++ CODE.
./my_scripts/build_Garnet_standalone.sh

On a fresh login to the machines, don’t forget to source the environment file before running
source <path_to_gem5>/my_scripts/set_env.sh

Step 1:

Run Command:
./build/Garnet_standalone/gem5.opt configs/example/garnet_synth_traffic.py \

--network=garnet2.0 \

--num-cpus=64 \

--num-dirs=64 \

--topology=Mesh \

--mesh-rows=8 \

--sim-cycles=20000 \

--synthetic=uniform_random \

--vcs-per-vnet=4 \

--inj-vnet=0 \

--injectionrate=0.02 \

--routing-algorithm=random_oblivious

The parameters in blue are what you will be varying at various points in this lab.

Note: You will be running experiments on a 64-core system in this lab, with 4 VCs (per VNet) and

using gem5.opt (not gem5.debug).

1 https://en.wikipedia.org/wiki/George_P._Burdell

© Tushar Krishna, School of ECE, Georgia Institute of Technology

 2

Add the following to a Report.doc/pdf:

Part I: Deadlock Detection (6 points)

Determine the peak throughput with XY and random_oblivious routing for the following three

traffic patterns: uniform_random, bit_complement and tornado.

(--routing-algorithm=xy / --routing-algorithm=random_oblivious)

Definition:

• Reception Rate (packets/node/cycle) is total_packets_received/num-cpus/sim-cycles

• Peak Throughput. Maximum reception rate provided by the network.

For XY routing, estimate peak throughput by looking at the total_packets_received at the highest

possible injection rate (--injectionrate=1.0)

For random routing, once the network deadlocks, you will see a deadlock assertion failure.

For random routing, estimate peak throughput using the total_packets_received at the injection

rate right before the network first deadlocks.

Fill in the following table and add it to your report:

Traffic Pattern Peak Throughput with XY

(packets/node/cycle)

Peak Throughput with Random

(packets/node/cycle)

Uniform Random

Bit Complement

Tornado

Part II. Deadlock Avoidance using Turn Model (15 points)
Avoid the deadlock by implementing the North-last turn model in Garnet. Assume the routing

algorithm is oblivious – i.e., it randomly selects among the viable output ports for minimal routing.

The routing code is here: src/mem/ruby/network/garnet2.0/RoutingUnit.cc

Implement the function outportComputeTurnModelOblivious()

See how outportComputeXY() and outportComputeRandomOblivious() are implemented in

that file for reference.

You can invoke this by setting --routing-algorithm=turn_model_oblivious

Briefly describe the routing scheme you implemented.

Copy and paste your outportComputeTurnModelOblivious()implementation into the report.

You will only get points if running the network with --routing-

algorithm=turn_model_oblivious does not deadlock for any traffic pattern. We would

recommend running your design with different traffic patterns (uniform_random, bit_complement,

shuffle, transpose, etc) at extremely high injection rates to make sure your solution is robust and your

network does not deadlock.

© Tushar Krishna, School of ECE, Georgia Institute of Technology

 3

Extra Credit (5 points)
Implement an adaptive version of the North-last turn model based minimal routing algorithm

(outportComputeTurnModelAdaptive()). Use the number of free VCs at the next router as a proxy

for choosing the output port. If all viable output ports have the same number of VCs, choose any of

them randomly. You are free to add any code/functions/header files.

Hint: The code does not provide any function for getting the total number of free VCs and you will

need to implement it. Look at the has_free_vc() and select_free_vc() functions in

OutputUnit.cc for reference.

III. Deadlock Avoidance using Escape VC (25 points)
Avoid the deadlock by implementing an escape-VC based deadlock avoidance scheme in Garnet. In

other words, you will run the simulation with George’s random routing algorithm (--routing-

algorithm=random_oblivious), but avoid deadlocks by controlling which VC a flit can go into.

Hint: Look at the has_free_vc() and select_free_vc() functions in OutputUnit.cc.

These functions are called from inside SwitchAllocator.cc

There are no guidelines on where to add code. In addition to has_free_vc() and

select_free_vc(), depending on your design, you may restrict the routing based on which VC the

flit arrived on. You are free to add any code/functions/header files. The only requirement is that the

routing algorithm code inside the outportComputeRandomOblivious() function should not be

changed.

Briefly describe the escape VC scheme you implemented and why it provides deadlock freedom.

Copy-paste the relevant functions you changed/added in the code into the report.

You will only get points if running the network with --routing-

algorithm=random_oblivious does not deadlock for any traffic pattern.

We would recommend running your design with different traffic patterns (uniform_random,

bit_complement, shuffle, transpose, etc) at extremely high injection rates to make sure your solution is

robust and your network does not deadlock.

Part IV. Analysis (4 points)

Plot the reception rate vs injection rate for the following configurations. For all configurations, start at

an injection rate of 0.02 (packets/node/cycle) and increment in steps of 0.02.

Graph 1

Traffic: uniform_random

Routing: XY, Turn Model Oblivious, (Turn Model Adaptive), Random Oblivious + EscapeVC.

Graph 2

Traffic: transpose

Routing: XY, Turn Model Oblivious, (Turn Model Adaptive), Random Oblivious + EscapeVC.

Add both graphs to your report.

Clearly label all axes and legends. Otherwise you will not get any points for this part.

In each case, write down which routing algorithm provides the highest throughput.

© Tushar Krishna, School of ECE, Georgia Institute of Technology

 4

What to Submit:
Report.pdf

garnet2.0.tar.gz (a copy of your code)

	Interconnection Networks for High-Performance Systems
	ECE 6115 / CS 8803 – ICN
	Spring 2020
	Lab 3: Deadlock Avoidance [50 pts]
	Step 0:
	./my_scripts/build_Garnet_standalone.sh
	Step 1:
	Run Command:
	Note: You will be running experiments on a 64-core system in this lab, with 4 VCs (per VNet) and using gem5.opt (not gem5.debug).
	Add the following to a Report.doc/pdf:
	Implement the function outportComputeTurnModelOblivious()
	What to Submit:
	Report.pdf

