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NETWORK ARCHITECTURE

= Topology
= How to connect the nodes
= ~Road Network

= Routing
= Which path should a message take
= ~Series of road segments from source to destination

= Flow Control
= When does the message have to stop/proceed
= ~Traffic signals at end of each road segment

= Router Microarchitecture
= How to build the routers

= ~Design of traffic intersection (number of lanes, algorithm for
turning red/green)
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NETWORK PERFORMANCE

Saturation Throughput: the
injection rate at which
latency ~3x(zero-load latency)

Throughput
given by flow
control

Throughput
given by
routing

Zero load latency
(topology+routing+f
low control)

Throughput
given by

Min latency given
by routing D\ oo,
algorithm X
Min latency
given by o
topology Offered Traffic (bits/sec)
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TOPOLOGY:

HOW T0 CONNECT THE NODES WITH LINKS

~Road Network
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TOPOLOGY OVERVIEW

= Often the first step in network design

= Significant impact on network cost-performance
= Determines implementation complexity, i.e., cost
= number of routers and links
= router degree (i.e., ports)
= ease of layout
= Determines application performance
= number of hops = latency and energy consumption
= maximum throughput
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HOW T0 SELECT A TOPOLOGY?

° ‘ Best topology? @ ” @

O N
ou” _ B

Network Topology Graph Vertices - cores

Application’s Edges - links
Task Communication Graph Problems?
_ Cannot change algorithm
Vertices - tasks .
Edges - communication Cannot change mapping
Cannot adapt to data-dependent load
Topology is fixed at design-time. imbalance in application

Benefits to being regular and flexible Layout/packaging issue with long wires

and high-node degree
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LET US DEFINE SOME JES76N-TIME METRICS

= Degree — number of ports at a node
= Proxy for area/energy cost

= Bisection Bandwidth - bandwidth crossing a
minimal cut that divides the network in half
= (Min # channels crossing two halves) * (BW of each channel)

= Proxy for peak bandwidth

= Can be misleading as it does not account for routing and flow
control efficiency

= At this stage, we assume ideal routing (perfect load balancing)
and ideal flow control (no idle cycles on any channel)

= Diameter — maximum routing distance (number of
links in shortest route)
= Proxy for latency
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SOME RUN-T/ME METRICS

= Hop count (or routing distance)
= Number of hops between a communicating pair
= Depends on application and mapping

= Average hop count or Average distance: average hops across
all valid routes

= Channel load
= Number of flows passing through a particular link
= Depends on application and mapping
= Maximum channel load determines throughput

= Path diversity
= Number of shortest paths between a communicating pair

= Can be exploited by routing algorithm
= Provides fault tolerance
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.
REGULAR TOPOLOGIES

° e Can you suggest a regular topology (each router

* with same degree) with smallest possible diameter?

G Trick question :p
One node. Degree = 0, Diameter = 0.

Application’s Qﬁ

Task Communication Q%

Graph O)@

Vertices - tasks
Edges - communication
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.
REGULAR TOPOLOGIES

° e Can you suggest a regular topology (each router

* with same degree) with diameter = 1?
'E ‘I Challenge?

Not scalable!!

I Cannot layout more
Application’s v Iv than 4-6 cores in
Task Communication this manner for area

Graph and power reasons

Bisection Cut

Vertices - tasks Fully Connected
Edges - communication Degree = ? 5

Bisection BW =7 9
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BUS

= Pros
|_|__|_|_-|—| = Cost-effective for small number
of nodes
= Easy to implement snoopy

coherence
Diameter = ? 1 = Most multicores with 4-6 cores
Degree = ? 1 use Buses
Bisection BW =? 1 = Cons

= Bandwidth! 2 Not scalable
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POPULAR BUS PROTOCOLS

= ARM AMBA Bus
= AHB
= AXI
= ACE
= CHI

= JBM Core Connect

= ST Microelectronics STBus

= How to increase bus bandwidth?
= Hierarchical Buses
= Split-buses
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ROUTE PACKETS, NOT WIR

Route Packets, Not Wires: On-Chip Interconnection Networks

William J. Dally and Brian Towles
Computer Systems Laboratory
Stanford University
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TOPOLOGY CLASSIFICATION

= Direct
= Each router (switch) is associated with a terminal node
= All routers are sources and destinations of traffic
= Example: Ring, Mesh, Torus
= Most on-chip networks use direct topologies

= Indirect
= Routers (switches) are distinct from terminal nodes
= Terminal nodes can source / sink traffic
= Intermediate nodes switch traffic

= Examples: Crossbar, Butterfly, Clos, Omega, Benes, ...
= Next lecture
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RING AND TORUS

= Formally: k-ary n-cube
= k" network nodes
= n-dimensional grid with k nodes in each dimension

<(_Dr A=Np 'A‘>
e —

= e el B . 1 =1 >

I } I I
8-ary 1-cube —— kA = =
=

ValValValllv

4-ary 2-cube
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RING

= Pros
—| B = Cheap: O(N) cost
= Used in most multicores
A —— today

Diameter? N/2 =« Cons
Avg Distance?  N/4 - High latency

. ] = Difficult to scale —
Bisection BW? 2 bisection bandwidth
Deg ree? 2 remains constant

= No path diversity
= 1 shortest path from A to B
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= Pros
= O(N) cost

= Exploit locality for near-
neighbor traffic

=
|
!
|
]
| |
=

= High path diversity
= 6 shortest paths from A to B

A = Edge symmetric
K/ = good for load balancing

= Same router degree

vV V V

Diameter? VN

= Cons
Bisection BW? 2VN - Unequal link lengths
Degree? 4 = Harder to layout
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N e B e B = Pros
| | | | = O(N) cost
[ —] |— = Easy to layout on-chip: regular and
| | | | equal-length links
I e I e B = Path diversity
I I I I = 3 shortest paths from A to B
— L L = Cons
= Not symmetric on edges
Diameter? 2(VN-1) = Performance sensitive to placement on
edge vs. middle
Bisection BW? VN = Different degrees for edge vs. middle
Deg ree? 4 routers

= Blocking, i.e., certain paths can block
others (unlike crossbar)
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FOLDED TORUS

‘ ] Easier to layout
q W 9 F 10 ‘—I
8“ ) ‘ i 1{ = 1 i Is there any con compared to the
?
—r— 1= 6 mesh’
= 4 1 ¥ ~ 7 |
1 5 ‘ All channels have double the length
|_ I i
i 12 = G 19 [= 3
i v 'Y v
= 1 > 2
- o 1t > 3 nal
1 3
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_
MULTI-DIMENSIONAL TOPOLOGIES

= Used in Supercomputers, Datacenters, and other off-
chip System Area Networks

= Example:

e%6%%"°
%6%:%°
+%6%:%*

2,3,4-ary 3 Mesh
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RUN-TIME METRICS

= Hop Count

= Latency

= Maximum Channel Load
= Throughput
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HOP COUNT

We will consider Uniform Random Traffic

¢

OO0

vow

9-ary 1 cube 3-ary 2 cube 3-ary 2 mesh
Max= 4 2 4
Avg = 2.22 1.33 1.77
k-ary n cube k-ary n mesh
ne k even nk k even
Hav = 4 , aveg = 3 ,
: { n(§ —zp) kodd Havg { nk — L) kodd
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NETWORK LATENCY

“T=Ht +T, +T +T,
= H = number of hops
= t. = router delay
= T, = wire delay
= T, = serialization delay
= T. = contention delay

-T=Ht +D/v+L/b+T,
= D = wire distance
= Vv = propagation velocity
= L, = packet length
= b = channel bandwidth
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HOW T0 REDUCE HOP COUNT?

= Low-diameter topology
= Challenge?
= high-radix of each switch

= Some dedicated long-range links
= High-radix for few switches

= How to decide where to add long links?
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ST SPIDERGON

= Proprietary NoC from ST
Microelectronics

= Pseudo-regular topology
= All routers have 2 or 3 ports

(a) 6-node Spidergon (b) 6-node Spidergon with extra links

= Depending on application BW needs,
links can be added removed

(11—(10}—{0) = e.g, (a) vs. (b), and (c) vs. (d)
Q\'@ = Easy to layout
@

(d) 12-node Spidergon with-li remove

(c) 12-node Spidergon with all links
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SMALL WORLD NETWORKS

= Milgram’s Experiment and “Six degrees of
separation”
= Common across neurons, WWW, electrical power grid, ...

= Add few long-distance links to a mesh randomly
reduces average distance ~ logN

= “’It’s a Small World After All’: NoC Performance Optimization
Via Long-Range Link Insertion”, VLSI 2006
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RUN-TIME METRICS

= Hop Count

= Latency

= Maximum Channel Load
= Throughput

= We will consider Uniform Random Traffic
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MAXIMUM CHANNEL LOAD

= [dentify channel with maximum traffic
= Count total flows through it

= Maximum Throughput = 1 / (max channel load)
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MAXIMUM CHANNEL LOAD

= [dentify bottleneck channel
= For uniform random traffic, is the bisection channel

= Suppose each node generates p messages per cycle
= 4p messages per cycle in left ring

= 2p message per cycle will cross to other ring
= Link can handle one message per cycle
= SO0 maximum injection rate of p = %
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MAXIMUM CHANNEL LOAD

= What if Hot Spot Traffic?

= Suppose every node sends to node G

= Which is the bottleneck channel?
= Used by A,B,C,D,E,and Ftosend to G

= Max Throughput=1/6
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MAXIMUM CHANNEL LOAD

With uniform random traffic
— 3 sends 1/8 of its traffic to 4,5,6
— 3 sends 1/16 of its traffic to 7 (2 possible shortest paths)
— 2 sends 1/8 of its traffic to 4,5
— Etc

Max Channel load = 1
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. ,
TRATTIC PATTERNS

Traffic Pattern Destination

= Historically derived from
particular applications of
interest

(binary coordinates)

Bit-Complement (Y1, Yo, - - - 1. o, " Important to stress test the
The1, T2 - -+ s T1,T0) network with different
Bit-Reverse (o, T1,y. .., Th_2, Tp_1, patterns
Y0s Yls - - s Yk Y1) = Uniform ranc?.om can make
Shuffle (Uk—2, Yo—3, - - - 140, Tkt bad topologies look good
Tk—2,Tk-3,---,%0,Yk—1) = For a particular topology
Tornado (Yk—15Yk—2, - - -, Y1, YO, and traffic pattern, one can
T_14[%]—1>--->T[E]—1) derive
Transpose (Th—1,Tk—2,...,T1,T0, = Avg Hop Count (- Low-Load
Yke—15Yk—25---5Y1, yo) Latency)
Uniform Random random/() » Max Channel Load (= Peak

Throughput)
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IS IT POSSIBL

E T0 ACHIEVE DERIVED LOW-LOAD

LATENCY & PEAK THROUGHPUT?

Zero load latency
(topology+routing+f
low control)

|

Throughput
given by flow
control

Throughput
given by
routing

Throughput

Min latency given given by
by routing D\ topology
algorithm N

\

Min latency

given by
topology

Eg

Offered Traffic (bits/sec)

ICN | Spring 2020 | MO2: Topology

© Tushar Krishna, School of ECE, Georgia Tech January 8-15, 2020



UNIFORM RANDOM TRAFFIC ON A KxK MESH

Zero-load latency?

—_— P ("Ideal Latency”)
| | | T= (H+1)-(trouter + tstall_avg)"' (H+2)-(twire) + Tser
— ] H = number of hops inside network
| | | touter = per-hop router pipeline delay
twire = per-hop link delay
— 1 tsar = per-hop stall delay (due to contention)
| | | Teer = serialization delay
1 1 Bk k even
— 3
Havg = n(’3i — az) kodd

Ideal case: tiouter = 1, thie = 1

Let’s assume 1-flit packets (Teor = 0)

Zero-load => tea ag ~ 0

Suppose k = 8, Hayg = 5.333 => Tyer0-10ad = 13.666
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UNIFORM RANDOM TRAFFIC ON A KxK MESH

Saturation Throughput?

— e ("Ideal Throughput” or

| | | Peak Injection Rate)

1 / max channel load

| | | Lets calculate load on one of the bisection links

e ] - k2/2 nodes on the left.

| | | - Half their messages (k2/4) cross the bisection links

- Total k bisection links from left to right.
- Load on each bisection link = k2/4k = k/4

- Peak Throughput = 4/k

For k = 4, peak throughput = 1 flit/node/cycle
For k = 8 (64-core mesh), peak throughput = 2
flits / node / cycle
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ANOTHER REPRESENTATION OF PERFORMANCE:
INJECTION RATE AS A % OF “CAPACITY”

For 4x4 Mesh, 100 => 1 flit/node/cycle
For 8x8 Mesh, 100% => 0.5 flits/node/cycle

Latency

This representation
Is better to
understand if we are
able to achieve the
throughput the
network was actually
designed for

50 100

Offered Traffic (% of capacity)
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TOPOLOGY CLASSIFICATION

= Direct
= Each router is associated with a terminal node
= All routers are sources and destinations of traffic
= Example: Ring, Mesh, Torus
= Most on-chip networks use direct topologies

= Indirect
= Routers are distinct from terminal nodes

» Terminal nodes can source / sink traffic
» Intermediate nodes switch traffic
= Examples: Crossbar, Butterfly, Clos, Omega, Benes, ...

ICN | Spring 2020 | MO2: Topology © Tushar Krishna, School of ECE, Georgia Tech January 8-15, 2020



CROSSBAR

5 = Pros
= Every node connected to all others
S (non-blocking)
: - Low latency and high bandwidth
5 - Used by GPUs
S = Cons
_ D| ...[D = = Area and Power goes up
‘ quadratically (O(N?) cost)
Switch | » = Expensive to layout
= Difficult to arbitrate
Diameter = ? 1
Degree = ? 1

Bisection BW =7 N
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BUTTERFLY (K-ARY N-FLY)

ON ppg BRI gy B R gy 0 D Asacon vention, source and destination nodes
O\ \1 / z/1< ~O  drawn logically separate on the left and right,
QN — —/ N> though physically the two 0Os, two 1s, etc are
g \ / ><>< B often the same physical node.
O W = / \ - >< —~( Radix of each switch = k
% — — — — % (i.e., k inputs and k outputs
_ e o0 Number of stages = n
o8 Y / ;< O Total Source/Destination
05 5 25 35 Terminal Nodes = kn
O~ 05 / \ 1o 2o ] ae A In each stage, k"1 switches
Og / \ 2>< ~(® Each switch is a k x k crossbar
0.7 1.7 2.7 3.7
Sources 2-ary 4-fly Destinations
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BUTTERFLY (K-ARY N-ILY): METRICS

1.0

1.

=
\

Degree?

11

/
\

1.2

Diameter?

B

\
/

1.3

[
[ —
[ ——

Bisection Bandwidth?

0.4 14

1.5

1.

7 L
\ @

Hop Count?

——
-

1.6

Channel Load?

A

(for uniform traffic)

Ry
N
.
SR
N
w w

1.7

LPRPRPYPRYLPRPRY

2-ary 4-fly

3680803080853685

Path Diversity?

n+1

N/4
where N = k")

n+1

1

None.
Only one route
between any pair
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TACKLING PATH DIVERSITY IN A BUTTERFLY

Additional Stage




BENES NETWORK

Pronounced Ben-ish

>

>

>
>

Back to back butterflies

N-alternate paths between any pair

Is non-blocking
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SHUFFLE/OMEGA NETWORK
(LSOMORPHIC BUTTERFLY)

e,
~O

o’

Shuffle Network
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FLATTENED BUTTERFLY

O % e o By
R W AV e
==X >
o=\ =<~
(@O \ —&)
\ b L8
i >
miminen
o — Yo
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e+ 18 . =
e -0 4 |
S = 2 | Il |
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CLOS NETWORKS: (M, N, R)

m=5rxr

Clos (5, 3, 4)

r=4nxm T r=4mxn
A/ AN .
O——- input output @
@— switch \“('4, \‘:V‘{{ switch —:
@ nxm mxn
@ — input “ / \ ” output ———@
@— sw?tch "“% " ‘Y‘\i‘z swi'I:ch —Q
QA )
o o PR A 2
oo (04 wwi A‘\< ih |—®
@ — nxm / ‘ mxn ——@
O input ,’\\ / A output -O
@—— switch \ o switch ——@
input
switch

3-stages

m = number of
middle switches

n = number of
input (output)
ports on input
(output) switches

r = number of
input / output
switches
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NON-BLOCKING CLOS

= A clos network is strictly non-blocking for unicast
traffic iff m >= 2n-1
= an unused input on an ingress switch can always be

connected to an unused output on an egress switch without
having to re-arrange existing routes

= Proof (1953):

= Suppose an input switch has one free terminal and this has to
be connected to a free terminal of an output switch
= Worst case

= (n-1) input terminals of input switch use (n-1) separate middle
switches

= (n-1) output terminals of output switch use (n-1) separate middle
switches

= We need another middle switch to connect this input to output
= Total = (n-1) + (n-1) + 1 = 2n-1
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NON-BLOCKING CLOS

= A clos network is rearrangeably non-
blocking for unicast traffic iff m >=n

= an unused input on an ingress switch can always
be connected to an unused output on an egress
switch but this might require re-arranging of
existing routes

= Proof (1953):

= [f m = n, each input can use one middle switch to
connect to its output
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BENES = FOLDED CLOS
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HIERARCHICAL TOPOLOGIES: CONCENTRATORS

‘_\ Advantages:

C - Low diameter
‘—'0 - Fewer links
@in
7

Disadvantages:

- Lower bisection bandwidth
- Link at concentrator can
become bottleneck
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MORE HIERARCHICAL TOPOLOGIES

vlm

(a) 64 Optically-Connected Clusters

=~ _ _ANet = ONet + BNet + EMesh
BNet "
SNELl 4 A A A
T
EMesh| [ 3
[ 2 s
\ v v v
ONet ' ‘

(b) Electrical In-Hub Networks

Connecting 16 Cores

(¢) core architecture

ATAC: PACT 2010
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WHICH TOPOLOGY SHOULD YOU CHOOSE?

= Hard to optimize for everything
= Desired bandwidth
= Desired latency

= Physical Constraints
= Wire budget
= Indirect topologies popular off-chip

= On-chip networks often use direct topologies due to wiring
constraints

= Wire layout
= Topologies should be easy to layout on a planar 2D substrate

= Router complexity
= Number of ports
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SPECIALIZED NOCS

= Example for Deep Learning
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