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§ Topology
§ How to connect the nodes
§ ~Road Network

§ Routing
§ Which path should a message take
§ ~Series of road segments from source to destination

§ Flow Control
§ When does the message have to stop/proceed
§ ~Traffic signals at end of each road segment

§ Router Microarchitecture
§ How to build the routers
§ ~Design of traffic intersection (number of lanes, algorithm 

for turning red/green)
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§ Implementation of routing, flow control, and switching
§ Impacts per-hop delay and energy
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§Components
§ Virtual Channel Buffers
§ Routing Logic
§ Allocation

§ Switch Allocation
§ VC Allocation

§ Crossbar Switch
§ Link

§Pipeline
§ 5-cycle router à 1-cycle router
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§Components
§ Virtual Channel Buffers
§ Routing Logic
§ Allocation

§ Switch Allocation
§ VC Allocation

§ Crossbar Switch
§ Link

§Pipeline
§ 5-cycle router à 1-cycle router
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§ Why does the router have buffers?
§ To manage contention between shared links

§ Minimum number of buffers needed?
§ Functionality/Correctness

§ One per Virtual Channel to avoid deadlocks
§ Messages in two different VCs will never indefinitely block one 

another
§ If one of the VCs is blocked, the second one can go ahead

§ How many VCs required to avoid deadlocks?
§ Two kinds of deadlocks: Protocol and Routing (next slide)

§ Performance (Flow Control)
§ Message going out of congested output port should not block a message 

behind it going out of different output port
§ i.e., avoid “Head-of-Line Blocking”

§ Cover buffer turnaround time to sustain full throughput
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§ State Information
§ G (Global): Idle, Routing, waiting for output VC, waiting for credits in 

output VC, active
§ R (Route): output port for the packet
§ O (Output VC): output VC (VC at next router) for this packet
§ C (Credit Count): number of credits (i.e., downstream flit buffers) in 

output VC O at output port R
§ P (pointers): pointers to head and tail flits in buffer pool VCs 

implemented as shared pool (next slide)
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§ Storage
§ Private Buffers Per VC

§ n-flit deep FIFO per VC
§ n >= 1, but can be smaller than the size of the packet

Or
§ Shared Buffers

§ All VCs share a pool of buffers
§ One reserved buffer per VC

+ Allows variable sized VCs
- More complex circuitry

§ Pointers for every flit
§ Linked list of free buffer slots
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§On/Off Flow Control
§ downstream router signals if it can receive or not

§Credit-based Flow Control
§ upstream router tracks the number of free buffers 

available at the downstream router
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§Downstream router sends a 1-bit on/off if it 
can receive or not
§ Upstream router sends only when it sees on

§Any potential challenge?
§ Delay of on/off signal
§ By the time the on/off signal reaches upstream, there 

might already be flits in flight
§ Need to send the off signal once the number of buffers 

reaches a threshold such that all potential in-flight flits have 
a free buffer
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§On/Off Flow Control
§ Pros

§ Low overhead: one-bit signal from downstream to 
upstream node, only switches when threshold crossed

§ Cons
§ Inefficient buffer utilization – have to design assuming 

worst case of Nthreshold flights in flight
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§Upstream router tracks the number of free 
buffers available at the downstream router
§ Upstream router sends only if credits > 0

§When should credit be decremented at 
upstream router?
§ When a flit is sent to the downstream router

§When should credit be incremented at 
upstream router?
§ When a flit leaves the downstream router
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§On/Off Flow Control
§ Pros

§ Low overhead: one-bit signal

§ Cons
§ Inefficient buffer utilization – have to design assuming 

worst case of Nthreshold flights in flight

§Credit Flow Control
§ Pros

§ Each buffer fully utilized - an keep sending till credits are 
zero (unlike on/off)

§ Cons
§ More signaling – need to signal upstream for every flit
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§Components
§ Virtual Channel Buffers
§ Routing Logic
§ Allocation

§ Switch Allocation
§ VC Allocation

§ Crossbar Switch
§ Link

§Pipeline
§ 5-cycle router à 1-cycle router
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§ Source Routing – each packet comes with a fixed output port
§ Example: (E, E, N, N, N, N, Eject)
§ Each router reads left most entry, and then strips it away for next 

hop
§ Pros

+ Save latency at each hop
+ Save routing-hardware at each hop
+Can reconfigure routes based on faults

+ Supports irregular topologies

§ Cons
- Overhead to store all routes at NIC

- Overhead to carry routing bits in every 
packet (3-bits port x max hops)
- Cannot adapt based on congestion
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§ Routing Table at every router
§ Packet can index into it via destination bits, or some static VCid
§ Pros

+ Any routing algorithm can be implemented by reconfiguring the tables

§ Cons
- Latency, Energy, and Area Overhead – not recommended on-chip
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Routing Table for West-first routing in a 3x3 Mesh



§ Combinational Logic - Compute output port at each router
§ packet carries only destination coordinates, and each router computes 

output port based on packet state and router state
§ e.g., deterministic: use remaining hops and direction
§ e.g., oblivious: use remaining hops and direction and some randomness factor

§ e.g., adaptive: use congestion metrics (such as buffer occupancy), history, etc.

§ Pros
+ Simple to implement – most common approach in NoCs

§ Cons
- Routing delay is in critical path
- Routing algorithm has to be fixed at design time
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§Components
§ Virtual Channel Buffers
§ Routing Logic
§ Allocation

§ Switch Allocation
§ VC Allocation

§ Crossbar Switch
§ Link

§Pipeline
§ 5-cycle router à 1-cycle router
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§ “Allocator” matches N requests to M resources

§ “Arbiter” matches N requests to 1 resource

§ VC Allocation
§ Requests: Input VCs
§ Resources: Output VCs (i.e., VCs at next router)

§ Switch Allocation
§ Requests: Input VCs/Input ports
§ Resources: Output ports of the router

§ Allocator that delivers the highest matching translates to higher 
network throughput

§ In most NoCs, the allocation logic determines cycle time
§ Allocators must be fast and/or able to be pipelined
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§ Intuitively, a fair arbiter is one that provides equal service to 
different requesters

§ Weak fairness: Every request is eventually served

§ Strong fairness: Requesters will be served equally often

§ FIFO Fairness: Requesters are served in the order they make 
their requests
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R3 receives 4 times the bandwidth as r0, even though individual 
arbiters provide strong fairness
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§Last request serviced given lowest priority

§Generate next priority vector from current 
grant vector

§ If no requests, priority is unchanged

§Exhibits fairness
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§Least recently served priority scheme

§Triangular array of state bits wij for j < i
§ Bit wij indicates request i takes priority over j
§ Each time request k granted, clears all bits in 

row k and sets all bits in column k

§Good for small number of inputs

§Fast, inexpensive and provides strong fairness
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§Grant Policy
§ When a request is asserted, it is AND-ed with the 

state bits in its row to disable any lower priority 
requests

§ Request with highest priority is granted

§Update Policy
§ Each time a request k is granted, the state of the 

matrix is updated by clearing all bits in row k and 
setting all bits in column k.
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§ Arbiter assigns a single resource to one of a group of 
requesters (i.e., N : 1)

§ Allocator performs a matching between a group of 
resources and a group of requestors (i.e., M : N)
§ Each of which may request one or more resources

§ 3 rules
§ A grant can be asserted only if the corresponding request is 

asserted
§ At most one grant for each input (requester) may be asserted
§ At most one grant for each output (resource) can be asserted
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§ Both G1 an G2 satisfy rules

§ Which is more desirable?
§ G2
§ All three resources assigned to inputs
§ Maximum matching: solution containing maximum possible number of 

assignments



§Hard to design an allocator that is both fast 
and gives high-matching

§Need pipeline-able allocators for NoCs

§Separable allocator composed of arbiters
§ First stage: select single request at each input port
§ Second stage: selects single request for each 

output port
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12:3 Allocator

Suppose 4 requestors (A, B, C, D) and 3 resources (X, Y, Z)

3:1 
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X, Y, Z
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X, Z
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Z
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X, Z

Grant X:
A

Grant Y:
0

Grant Z:
D

Easier to implement in 
HW but not very 
efficient



§N input ports, v VCs per input port, N output 
ports
§ N x v : N Allocator

§Implementation Choices
§ Separable Switch Allocator

§ Allocator composed of Arbiters
§ Stage 1: At every input port, choose one VC

§ N v:1 arbiters
§ Stage 2: At every output port, choose one input port

§ N N:1 arbiters
§ Arbiters: Round-Robin, Queueing, Matrix, …
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§Pros of Separable?
§ Simple
§ Pipeline-able è Increased frequency
§ Can be synthesized from RTL

§Cons
§ May not be very efficient in the overall matching

§ Bad choice in first phase can limit matching
§ Lower throughput of system

§Which design did Intel SCC use?
§ “Wavefront Allocator”
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§Arbitrate among requests for inputs and 
outputs simultaneously

§A diagonal group of cells is assigned a set of 
row and column “tokens”

§ If a cell is requesting a resource, it needs to 
consume a row token and a column token to 
grant its request
§ Intuition: each row represents a request, each 

column represents a resource. Getting a token for 
both implies a grant

§Cells that cannot use tokens pass row tokens 
to the right and column tokens to the left
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A requesting 
Resources 0, 1 ,2

B requesting 
Resources 0, 1 

C requesting 
Resource 0 

D requesting 
Resources 0, 2 

Tokens inserted 
at P0

Entry [0,0] receives 
grant, consumes 

token

Remaining tokens 
pass down and right

[3,2] receives 2 
tokens and is 

granted
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2 tokens and 

granted

All wavefronts
propagated



§Pros of Wavefront?
§ Better matchings
§ Parallel distribution of multiple tokens

§Cons
§ Delay scales linearly
§ Requires custom tiled-design (synthesis from RTL 

not very efficient)

Feb 10-12, 2020ICN | Spring 2020 | M06: Router uArch              © Tushar Krishna, School of ECE, Georgia Tech 

50



§N input ports, v VCs per input port, N x v
output VCs

§Implementations
§Separable VC Allocator

§VC Selection (Kumar et al, ICCD 2007)
§ No point in allocating VC before flit wins SA
§ Maintain a pool of free VCs at every output port

§ Perform SA only if output port has at least one free 
VC

§ Winner of SA is granted this VC
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§Components
§ Virtual Channel Buffers
§ Routing Logic
§ Allocation

§ Switch Allocation
§ VC Allocation

§ Crossbar Switch
§ Link

§Pipeline
§ 5-cycle router à 1-cycle router

Feb 10-12, 2020ICN | Spring 2020 | M06: Router uArch              © Tushar Krishna, School of ECE, Georgia Tech 

52



Feb 10-12, 2020ICN | Spring 2020 | M06: Router uArch              © Tushar Krishna, School of ECE, Georgia Tech 

53

Mux-based Crossbar

Mux

Pass-gate 
switch

Input-driver

Matrix Crossbar

+ Synthesizable from RTL
- Typically More Area and Power

+ Lower area and power
- Requires careful custom design



§ Key Challenges
§ Area and power scale at O((pw)2)

§ p: number of ports (function of topology)
§ w: port width in bits (determines phit/flit size and impacts packet energy 

and delay)

§ Arbitration in a large crossbar is challenging

§ Crossbar Optimizations
§ Dimension-Slicing

§ 2x2 crossbar for X-dimension

§ Local, X
§ 3x3 crossbar for Y-dimension

§ Local, Y, X (i.e., turning)

§ Bit-Interleaving / Double-pumping (e.g., Intel SCC)
§ Send alternate bits on positive and negative phase of clock
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§Components
§ Virtual Channel Buffers
§ Routing Logic
§ Allocation

§ Switch Allocation
§ VC Allocation

§ Crossbar Switch
§ Link

§Pipeline
§ 5-cycle router à 1-cycle router
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¡ Reducing Delay
¡ Repeated Wires: Break long wire into N stages

¡ Repeater = Inverter or Buffer (2 inverters)
¡ Delay 𝛂 N.Delaystage 𝛂 N.[rwcw(L/N)2] 𝛂 rwcwL2/N
¡ If too many stages, then delay of the repeaters 

can start to dominate
¡ CAD tools automatically place repeaters

¡ Alternate Technologies
¡ RF, Photonics, Wireless

Distributed RC
Delay 𝛂 RwCw = rwcwL2

Energy 𝛂 CwV2

¡ Reducing energy
¡ Circuit Techniques

¡ Low-swing signaling (i.e., 
reduce V)

¡ Coding techniques to reduce 
toggles

¡ Alternate Technologies
¡ Photonics (energy 

consumption same irrespective 
of distance)

Dominated by wire capacitance which does 
not go down with technology scaling unlike 
transistor capacitance!
è Wires slower relative to logic every generation



§Components
§ Virtual Channel Buffers
§ Routing Logic
§ Allocation

§ Switch Allocation
§ VC Allocation

§ Crossbar Switch
§ Link

§Pipeline
§ 5-cycle router à 1-cycle router
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§ Per Packet
§ RC, VA à done by Head flit

§ Per Flit
§ BW, SA, BR, ST, LT

BW RC VA SA BR ST

BW

BW

BW

SA BR

SA BR ST

SA BR ST

Head

Body 1

Body 2

Tail

LT

LT

LT

LT

ST



§ TN: Network delay

§ tr: router pipeline delay

§ tw: wire delay per hop

§ H: number of hops

§ Tc: contention delay

§ TS: serialization delay (for multi-flit packets)
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TN = (tr+tw)×H + Tc + TS

Which of these is dynamic 
(traffic-dependent)?

Which of these is static?

H Tc

Tstr tw
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§ BW + RC in parallel
§ Lookahead Routing

§ SA + VA in parallel
§ VC Select (switch output port winner selects VC from pool of free VCs)
§ Speculative VA (if VA takes long, speculatively allocate a VC while flit 

performs SA) (Peh and Dally, HPCA 2001)
§ If SA and VA both successful, go for ST
§ If SA or VA fails, retry next cycle

§ BR + SA in parallel
§ The winner of Input Arbitration is read out and sent to the input of the 

crossbar speculatively

§ Low-load Bypassing
§ When no flits in input buffer

§ Speculatively enter ST
§ On port conflict, speculation aborted
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BW RC VA SA BR ST LT



§Analogy – Express Trains and Local Trains

§Flits on Express VCs do not get buffered at 
intermediate routers
§ Send a “lookahead” to ask local flits to wait (i.e., 

kill switch allocation)
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1-cycle for arbitration (tr), 1-cycle for traversal (tw)

Used by Tilera’s iMesh, Intel’s Ring, NoC prototypes (Park et al., DAC 2012) 
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TN = (tr+tw)×H + Tc + TS
tw = 11

fundamental
limitation?

Latency α Hops

Can we remove the dependence of latency on hops?

SMART NoC [T. Krishna et al, HPCA 2013].
Very ripe for project ideas.



§Output Queues
§“Virtual” Output Queues (== Virtual 

Channels)

§Centralized Buffers
§Rotary Router (in paper presentations)
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