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BASELINE ROUTER PIPELINE

Head

Body 1

Body 2

Tail

BW RC VA SA BR ST LT
BW SA BR ST LT
BW SA BR ST LT
BW SA BR ST LT

= Per Packet

= RC,VA - done by Head flit

= Per Flit
= BW, SA, BR, ST, LT
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WHY DOES ROUTER DELAY MATTER?

Ty = (@+tw)XH + T, + Tg

- T,: Network delay Which of these is static?

= t,:router pipeline delay t: ty Ts

= t_: wire delay per hop

= H: number of hops
Which of these is dynamic

(traffic-dependent)?
= T4: serialization delay (for multi-flit packets) H T,

= T.: contention delay
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CASE STUDY: INTEL SCC (ISSCC 2010)
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CASE STUDY: INTEL SCC (ISSCC 2010)

The 5-port virtual cut-through router (Fig. 5.7.3) used to create the 2D-mesh
network employs a credit-based flow-control protocol. Router ports are packet-
switched, have 16-byte data links, and can operate at 2GHz at 1.1V. Each input
port has five 24-entry queues, a route pre-computation unit, and a virtual-chan-
nel (VC) allocator. Route pre-computation for the outport of the next router is
done on queued packets. An XY dimension ordered routing algorithm is strictly
followed. Deadlock free routing is maintained by allocating 8 virtual channels
(VCs) between 2 message classes on all outgoing packets. VCO through VC5 are
kept in a free pool, while VC6 and VC7 are reserved for request classes and
response classes, respectively. Input port and output port arbitrations are done
concurrently using a wrapped wave front arbiter. Crossbar switch allocation is
done in a single clock cycle on a packet granularity. No-load router latency is 4
clock cycles, including link traversal. Individual routers offer 64GB/s intercon-
nect bandwidth, enabling the total network to support 256GB/s of bisection
bandwidth.
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COMMON PIPELINE OPTIMIZATIONS

= BW + RC in parallel
= Lookahead Routing BW

RC

VA

SA

BR

ST

LT

= SA + VA in parallel

= VC Select (switch output port winner selects VC from pool of free VCs)

= Speculative VA (if VA takes long, speculatively allocate a VC while flit
performs SA) (Peh and Dally, HPCA 2001)

= If SA and VA both successful, go for ST
= If SA or VA fails, retry next cycle

= BR + SA in parallel

= The winner of Input Arbitration is read out and sent to the input of the

crossbar speculatively

= Low-load Bypassing
= When no {lits in input buffer
= Speculatively enter ST
= On port conflict, speculation aborted
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EXPRESS VIRTUAL CHANNELS (ISCA 200T) ©

= Analogy — Express Trains and Local Trains

= Flits on Express VCs do not get buffered at
intermediate routers

= Send a “lookahead” to ask local {flits to wait (i.e.,
kill switch allocation)
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MODERN PIPELINES

Flit Pipeline

> Time
Rer *only required for
SA | ST+LT
Router,| vs+ Head flits
RC*
SA | ST+LT
Router,,; VS
__________________________ - e
]
®
RC* | BW
SA | SA |ST+LT
Router,,,; VS

1-cycle for arbitration (tr), 1-cycle for traversal (tw)

Used by Tilera’s iMesh, Intels Ring, NoC prototypes (Park et al., DAC 2012)
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RLTERNATE ROUTER MICROARCHITECTURES

=Output Queues

= “Virtual” Output Queues (== Virtual
Channels)

Centralized Buffers

=Rotary Router (in paper presentations)
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MODERN PIPELINES

Flit Pipeline

> Time
Rer *only required for
SA | ST+LT yreq
Router,| vs+ Head flits
RC*
SA | ST+LT
Router,,; VS
__________________________ - e
]
®
RC* | BW
SA | SA |ST+LT
Router,,,; VS

1-cycle for arbitration (t,), 1-cycle for traversal (t,,)

Used by Tilera’s iMesh, Intel’s Ring, NoC prototypes (Park et al., DAC 2012)
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IS THAT THE BEST WE CAN DO?

T, = (ﬁ$1+tth):l@)+ T. + T

Lat a H
arency °ops fundamental

limitation?

Can we remove the dependence of latency on hops?

Stay tuned!
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, ,
DESIGNING & 1-CYCLE NETWORK
| whatiimits us rom designing a 1-cycle networcz i

Is it the wire delay?

Repeated global wire delay

Repeated global wires can expected to remain

go up to 16mm within lns Wire Length = Nx / constant/decrease slightly
with technology scaling.

&

Metal Layer = M6

Repeater Spacing = Imm

Wire Width = DRC

— === repeater spacing ()

=O-45nm (Place-and-Route)

P C/O(:‘kEd 1 -©-45nm (Projected*) /
- Driver — d
7"+ 32nm (Projected®)

min

............ QO ire Spacing = 3XxDRC ..

..... ~(coupling cap > 0)

.
.........

*DSENT (NOCS 2012): Timing-driven
NoC Power Estimation Tool

01 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Length/period (mm/ns)
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DESIGNING A 1-CYCLE NETWORK

Is it the wire delay?

' INV  BUF !
. . i \ > )| Wire Length = Nx [
= Global repeated wires can transmit up to fepeatersize (W)} acing )
10-16mm within 1ns (1GHz) D PP — P |
clock period (p) A
. On-chip wires fast enough to transmit across the chip

= 1l  within 1-2 cycles at 1GHz even as technology scales

m Clock frequency expected to remain similar (power wall) -
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DESIGNING A 1-CYCLE NETWORK

Is it the wire delay? No!

Classic scaling challenge with wires
Wire-delay increases relative to logic delay

But ...

Wire-delay in cycles expected to remain constant.

Wires fast enough to transmit across chip in 1-2 cycles
today and in future.
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DESIGNING A 1-CYCLE NETWORK

Is it the wire delay? No!

\ Dream Traversal Actual Traversal '°F router
[ Dedicated 1- Hop—>Stop>Hop

cycle wire on-chip router to
manage sharing of

output link every cycle

.

< (/]
KRS ,
LSy SN,

'i;;’. Shared
v, Links!
- \ T |
Number of Fully-connected ’ Mesh Number of
wires = O(n?) (Impractical) (Practical) wires = O(n)
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.
DESIGNING A 1-CYCLE NETWORK

What limits us from designing a 1-cycle network?

Is it the wire delay? No! Is it the routers?Yes!
/ repeater : _/ 1 1 5531 Bl ‘1
) 1-cycle § R 9 -Cycles (Best Case e
PR ST - N \TT___ - -
Dedicated topology impractical* Routers required to share links
*unless we
design a chip for
a specific
application
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.
DESIGNING A 1-CYCLE NETWORK

What limits us from designing a 1-cycle network?

Is it the wire delay? No! Is it the routers?Yes!
E/ repeater \:I 5 15531 501 B 1 B39 1 \:I
) 1-cycle g N 9-Cycles (Best Case)
(single-cycle router, no other traffic!)
Dedicated topology impractical* Routers required to share links
*unless we
design a chip for Can we get both? Yes! Single-cycle
a specific - . Multi-ho
application SIMIART: achieve the performance of dedicated Asynchrj;ous
connections over a network of shared links Repeated
repeater Traversal

Do

— L= ==L

s
™~

N
7

1-cycle (no other traffic)
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R“SMART” NETWORK-ON-CHIP

= Microarchitecture
= Bypass path with clockless repeater at each router

= Flow Control
= Compete for and reserve a sequence of shared links cycle-by-cycle

Dynamically create repeated links (“SMART paths™)
between any two routers

i | (E——a—a—a | (i
[ O3 S
[ 17[3 | e
|
L > Il na =) e B ]
ol Ve et el gl Al
| | U myj I 4 TV PEEm S N VA
Single-cycle Single-cycle | Blue Flow has to
traversal reconfiguration | stop for Pink flow |
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R“SMART” NETWORK-ON-CHIP

= Microarchitecture
= Bypass path with clockless repeater at each router

= Flow Control
= Compete for and reserve a sequence of shared links cycle-by-cycle

Dynamically create repeated links (“SMART paths™)
between any two routers

= How well does SMART perform?
= 88-90% of the performance of an O(n?) wire fully-connected
(dream) topology with an O(n) wire SMART NoC

= Baseline Mesh needs to be clocked 5.4 times faster to match SMART

T. Krishna et al.
(64-core full-system simulation with real applications) HPCA 2013
IEEE Computer 2013
IEEE Micro Top Picks 2014
Microarchitecture and Flow Control details next! NOCS 2014 (Best Paper Award)
H Kwon et al., ISPASS 2017

Feb 17, 2020
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MICROARCHITECTURE: DATA PATH

network
packet

Core —p

F1lit
North —p

Input

Links South —

East '

Control Xbar

West =——p

128-bit
TMARIDBnal
Router

Microarchitecture

Buffer enable

(buffer):
latch input flit or not

Bypass mux select
(mux):
who uses crossbar+link
(local or bypass)

1T

Output
Links

Repeater ]

These signals are
setup by the
control path

Xbar select
(xbar):
select line for
xbar’s output mux
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MICROARCHITECTURE: CONTROL PATH

Dedicated repeated links from every Length = HPC_ ., hops
router to help setup a SMART path Width =log,(1+HPC,,,,) bits

HPC,, ., (max Hops Per Cycle):
maximum number of “hops” that the
underlying wire allows the {lit to
traverse within a clock cycle

e.g., HPC,,., = 10-16
@45nm, 1GHz, Imm hop
Let HPC,, ., = 3

' SSR for E

direction

v
v
1YY

2

2-bit control path

128-bit data path
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._
SMART FLOW CONTROL

Assume HPC,., =3
(max Hops Per Cycle)

= Request a path of desired length (in hops) over the SSR wires

= Intermediate routers arbitrate between control requests from
various routers and setup buffer, mux and xbar for the data path

= No ACK has to be sent back!

= Send the flit on the data wires
= May get partial or full SMART path based on contention that cycle

A
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TRAVERSAL EXAMPLE 1: R) - RJ

Cycle 1 (Ctrl): RO sends SSR = 3 (o-hop path request Assume HPC,_.. =3
(max Hops Per Cycle)
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TRAVERSAL EXAMPLE 1: R) - RJ

Cycle 1 (Ctrl): RO sends SSR =3 (3-hop path request) Assume HPC,_.. =3

(max Hops Per Cycle)

All routers set buffer, mux and xbar for this request.
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TRAVERSAL EXAMPLE 1: R) - RJ

Cycle 1 (Ctrl): RO sends SSR =3 (3-hop path request) Assume HPC,_.. =3

(max Hops Per Cycle)

All routers set buffer, mux and xbar for this request.

Cycle 2 (Data): RO sends flit to R3

____________ RO | ['-------------- mmmmmmmmmmmem
buffer 0 buffer 0 buffer
mux local mux bypass mux
xbar W->E xbar W->E xbar

A SMART path is simply a combination of buffer, mux and
xbar at all the intermediate routers.
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.
EXAMPLE 2: R0 = R3 4WJ R2 - R4

Cycle 1 (Ctrl): RO sends SSR = 3. R2 sends SSR =2  Assume HPC,,.,, =3
(max Hops Per Cycle)

> >

Challenge: only one flit can be sent on

. . SSRgz = 2
shared link between R2 and R3 at a time J®

SSRgo = 3

’.
D =1

~

l

'ﬂ llll'ﬂ ...'I'J ||'ﬂ u.'m

.
Jcoof,

buffer 0 buffer 0 buffer 0 buffer 0 buffer 0
mux X mux mux mux mux
xbar X xbar xbar xbar xbar

two alternate schemes:
Prio=Local and Prio=Bypass

Solution: Routers prioritize between
path requests based on distance
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EXAMPLE 2: R0 = R3 AAPR2 - R4

Prio = Local = 0 hop > 1 hop > 2 hop ... > HPC,,., hop
Cycle 2 (Data): R2 sends flit to R4. R0’s flit blocked at R2.

N
/]
RO
mux local local
xbar W->E W->E

Y N i NN
: ' AT ' : Ef 40
] (NN ! oo i oo
1 I [wman] i i 1 I [numn i
i (NN i i 111 i i (NN i
1€ i € i 1€ i
N i RO | 2 WA | S—— 8 24 1 | [ R4

buffer 0 buffer buffer 0

mux X mux mux local mux mux X

xbar X xbar xbar W->E xbar xbar X
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EXAMPLE 2: R0 = R3 AAJR2 - R4

Prio = Bypass = HPC,,,, hop > (HPC,,.x- 1) hop > ... > 1 hop > 0 hop
Cycle 2 (Data): RO sends flit to R3. R2’s flit waits.

R3

N N N
< /] <

| = ij 4
__________ | R4
1
X
X
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RCHIEVABLE HOPS PER CYCLE (HPC)

case), as good as Achievable HPC depends
dedicated wires on link contention Average hops in

traffic pattern

m
8' > =—Fully Connected (Dream)
"3'4 <=SMART
g:' 3 =—Baseline (Mesh)
@
o
5 2
I
1
0 | | | ( At high loads (worst

case), no worse than

0 20 40 60 the baseline
Flit Injection Rate (% of capacity)
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PIPELINE AND IMPLEMENTATION

>

Repeater Overhead

Energy: Asynchronous repeater consumes
14.3% lower energy than clocked driver

Area: No area overhead since repeaters are

embedded in wire-dominated crossbar

X X

L > »‘X>—»

SA-G Overhead

: Energy: ~2% | smarr 1ps ~2-6%0 | smart 2D

SSRez .
min{Tsrirr; Treq+ Tsac} F—
SSRg) determines critical path
SSRug (thus HPC,,,,) _
| |

o "—L uffe

I mux

oI;o xbar

[ A :

(EEEE

Cycle 0 Cycle 1%

Switch Allocation
Local (SA-L)

(can be bypassed at
low loads)

Req +
Switch Allocation
Global (SA-G)

HPC,,,,= 13| smart 1D
HPC,,.»= 9|smarr 20

Area: <1%]|gmarr 1Dy 1-5% |smarT 20

Multi-hop Switch (crossbar) +
Link Traversal (ST+LT)
(till it is stopped by some buffer=1)

HPC,_ =11

*Conventionally (i.e. in baseline), winners of
SA-L go for Switch + Link Traversal

ppe————————L L L R R N
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THE DEVIL Iy IN THE DETAILS

= Managing Distributed Arbitration
= Could flits get misrouted?

= Could flits not arrive when expected?

= SMART 2D

= How can {lits bypass routers at turns?

= Buffer Management

= How is a flit guaranteed a buffer (and in the correct virtual channel)
if it is stopped mid-way?

= How is buffer availability conveyed?

= Multi-flit packets

= How does SMART guarantee that flits (head, body, tail) of a packet
do not get re-ordered?

= How do flits know which VC to stop in
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THE DEVIL Iy IN THE DETAILS

= Managing Distributed Arbitration
= Could flits get misrouted?
= Could flits not arrive when expected?

= SMART 2D

= How can {lits bypass routers at turns?

= Buffer Management

= How is a flit guaranteed a buffer (and in the correct virtual channel)
if it is stopped mid-way?

= How is buffer availability conveyed?

= Multi-flit packets

= How does SMART guarantee that flits (head, body, tail) of a packet
do not get re-ordered?

= How do flits know which VC to stop in
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MANAGING DISTRIBUTED ARBITRATION

Cycle 1: RO sends SSR = 3. R2 sends SSR =2, Assume HPCp,, =3
(max Hops Per Cycle)

Can different routers enforce

! ! o SSRRZ =2
different priorities?

buffer

mux X mux X /; /A{ux X mux X \\qu
xbar X xbar V 4 xbar X xbar X \\\\
. Prio=
[ Prio = Bypass
Prioritize SSRpy Prioritize SSRp
over SSRp; over SSRgy
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MANAGING DISTRIBUTED ARBITRATION

Cycle 1: RO sends SSR = 3. R2 sends SSR =2, Assume HPCp,, =3
(max Hops Per Cycle)

Can different routers enforce

! ! o SSRRZ =2
different priorities? No!

buffer buffer
mux local mux bypass/; /tfux bypass mux bypass \\\qu X
xbar W-E xbar y/ 4 xbar W-E xbar W-E \\\ X
: Prio=
[ Prio = Bypass | | R0’s flit incorrectly
Prioritize SSRy reaches R4, instead of Prioritize SSRg,
over SSRy; getting stopped at R3. over SSRgo
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MANAGING DISTRIBUTED ARBITRATION

= Distributed Consensus: All routers need to take the same
decision about multiple contending flits in a distributed
manner

= Solution: All routers follow the same static priority between the
path setup requests that they receive

= Prio = Local: Ohop > 1hop > ... (HPC,,.x-1) hop > HPC,,., hop
= Prio = Bypass: HPC,,,,, hop > (HPC,,.x-1) hop > ... 1 hop > 0 hop

= Implication: a router will not receive a {lit that it does not
expect

= But can a router not receive a flit that it does expect?

ICN | Spring 2020 | M07: SMART NoC © Tushar Krishna, School of ECE, Georgia Tech Feb 17, 2020



MANAGING DISTRIBUTED ARBITRATION

Can a router not receive a flit

that it does expect?

SSRz; = X t L Control for N direction

A
/ Control for E direction

buffer buffer 0 buffer buffer buffer
mux mux X mux mux mux
xbar xbar X xbar xbar xbar

| Prio = Local
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MANAGING DISTRIBUTED ARBITRATION

Can a router not receive a flit loss?

that it does expect? Yes! The R2->R3 link was granted
for this cycle, but went
unused. What if some other

flit wanted to-use-it-
No.

(Prio=Local)

.-i' .-.if"

=

Il:l‘ i4 II' ﬂ

buffer 0 buffer 1 buffer 0 buffer buffer
mux local mux local mux @ mux X mux
xbar W->E xbar W->N xbar W->E xbar X xbar
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forced starvation and
throughput loss
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IMPRCT OF FALSE NEGATIVES

Prio = Bypass increases false negatives at h1gh -loads

’“28
u 24
320

316

=
©O H OCON

Average flit laten

|

|~=Prio=Bypass
->=Prio=Local
Pr1o Bypass saturates at
i | 5 ~44-48% injection rate
0 20 40 60 30 100

Flit Injection Rate (% of capacity)

ICN | Spring 2020 | M07: SMART NoC

© Tushar Krishna, School of ECE, Georgia Tech Feb 17, 2020



THE DEVIL Iy IN THE DETAILS

= Managing Distributed Arbitration
= Could flits get misrouted?
= Could flits not arrive when expected?

= SMART 2D

= How can {lits bypass routers at turns?

= Buffer Management

= How is a flit guaranteed a buffer (and in the correct virtual channel)
if it is stopped mid-way?

= How is buffer availability conveyed?

= Multi-flit packets

= How does SMART guarantee that flits (head, body, tail) of a packet
do not get re-ordered?

= How do flits know which VC to stop in
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BYPASS AT TURNS

Dest

Src
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BYPASS AT TURNS

Assume HPC,,,, = 3 —I

; [ ]
L ICtrl—

Any blue router Dest
(HPC,,,, neighborhood) can | [ 1 1 1 | [ |
oz peeasel i [ eyels - Shortest Path Routing >

Any router in shaded HPC,,.,
quadrant is potential
intermediate destination

-: Separate ctrl path for every
possible route.

One of the ctrl paths chosen
during route computation.

[ I ——
Only one of these 5 Reqgs will be

valid and will request for E/N/S
output port.
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CONTROL ARBITRATION

] > 1 _ Challenge: All input and output ports at
:_—G'tr all participating routers should make
I | I [

| consistent decisions simultaneously.
Prio = Local

— Solution: 2-level priority among Reqs
1. Distance

(i.e. Prio=Local or Prio=Bypass)
2. Direction

Red wins over Blue

How do we choose between
Red and Purple?
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‘ ,
PRIORITY AT QUTPUT PORT

At A: Purple wins over Red 2-level Ctrl Req Priority
— e 1. Distance
O hop > 1 hop > 2 hop ... (Prio = Local)

2. Direction
Straight hops > Left hops > Right hops

Thop 2 llop 3 hop

All green routers (sources)
can request for the North
output port at the blue

| (intermediate) router

Source Routers

All routers enforce same priority (to
guarantee no false positives)

Assume HPC ., = 3
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PRIORITY AT INPUT PORT

At A: Purple wins over Red

At B: Purple wins over Red

2-level Ctrl Req Priority

1. Distance
O hop > 1 hop > 2 hop ... (Prio = Local)

2. Direction

Int

eIl

Lediq

Straight hops > Left hops > Right hops

2hop 3 hop

All green routers (sources)
— can request for the South
input port at the blue
(intermediate) router

)
Source Routers

Assume HPC ., = 3
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THE DEVIL Iy IN THE DETAILS

= Managing Distributed Arbitration
= Could flits get misrouted?
= Could flits not arrive when expected?

= SMART 2D

= How can flits bypass routers at turns?

= Buffer Management

= How is a flit guaranteed a buffer (and in the correct virtual channel)
if it is stopped mid-way?

= How is buffer availability conveyed?

= Multi-flit packets

= How does SMART guarantee that flits (head, body, tail) of a packet
do not get re-ordered?

= How do flits know which VC to stop in
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THE DEVIL Iy IN THE DETAILS

= Managing Distributed Arbitration
= Could flits get misrouted?
= Could flits not arrive when expected?

= SMART 2D

= How can flits bypass routers at turns?

= Buffer Management

= How is a flit guaranteed a buffer (and in the correct virtual channel)
if it is stopped mid-way?

= How is buffer availability conveyed?

= Multi-flit packets

= How does SMART guarantee that flits (head, body, tail) of a packet
do not get re-ordered?

= How do flits know which VC to stop in
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BUFFER MANAGEMENT

RO > R3,R2 > R4 —D> D- D-

mux local mux bypass mux local mux bypass mux
xbar W->E xbar W->E xbar W->E xbar W->E xbar X

How do we guarantee R2 has a free buffer / VC for the flit from R0?

Every router has free VC information about its neighbor, just like the baseline.
RO sends only if R1 has a free buffer
R1 lets the incoming flit bypass only if R2 has a free buffer, else latches it.

Corollary: VCid is allocated after it stops, rather than before starting, since

router where it stops is not known.
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THE DEVIL Iy IN THE DETAILS

= Managing Distributed Arbitration
= Could flits get misrouted?

= Could flits not arrive when expected?

= SMART 2D

= How can flits bypass routers at turns?

 Buffer Mlanagement

= How is a flit guaranteed a buffer (and in the correct virtual channel)
if it is stopped mid-way?

= How is buffer availability conveyed?

= Multi-flit packets

= How does SMART guarantee that flits (head, body, tail) of a packet
do not get re-ordered?

= How do flits know which VC to stop in
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MULTI-FLIT PACKETS (1)

RO > R3,R2 > R4 —D> D- D-

mux local mux bypass mux local mux bypass mux
xbar W->E xbar W->E xbar W->E xbar W->E xbar X

How do we guarantee Body/Tail flits from RO do not bypass R2 if Head
was stopped?

If R2 sees a SSR requesting bypass from a router from where it has a buffered

flit, it stops all subsequent {lits from that router, and buffers them in the same
VvC
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MULTI-FLIT PACKETS (2)

RO > R3,R2 > R4 —D> D- D-

mux local mux bypass mux local mux bypass mux
xbar W->E xbar W->E xbar W->E xbar W->E xbar X

How do the Body/Tail flits know which VC to stop in if VC is allocated at
the router where Head stops?

Match using source_id of all the flits of the packet
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MULTI-FLIT PACKETS (2)

RO > R3,R2 > R4 —D> D- D-

What if 2 flits from different packets from the same source arrive?

Virtual Cut-Through
* enough Buffers to store all flits of a packet
 all flits of one packet should leave before flits of another packet
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EVALUATIONS

= Simulation Infrastructure: GEMS (Full-System) + Garnet
(NoC)

= System.: 64-core (8x8 Mesh)

= Technology: 45nm, 1GHz

= Networks being compared
= BASELINE (t,=1): Baseline Mesh with 1-cycle router at every hop
= SMART-<HPC,,.,>_ 1D: Always stop at turning router
= Best case delay: 4 cycles (Reqyx =2 Flity 2 Reqgy = Flity)
= SMART-<HPC,,,.,>_2D: Bypass turning router
= Best case delay: 2 cycles (Req = Flit)
= DREAM (Tyx=1): Contention-less l-cycle network (fully-connected)
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BREAKING THE LATENCY BARRIER
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SMART reduces low-load latency to 2-4 cycles across all traffic
patterns, independent of average hops.
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Shuffle (Avg Hops = 4)

Transpose (Avg Hops = 6)
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|
IMPACT OF HPC

HPC,,., of 2 and 4 give HPC,., of 8 gives HPC,,,,, (mag Hogilfef C'j?'f,fef’t .
1.8X and 3X reduction 5.4X reduction in maximum humberof “ops™ that (e
) underlying wire allows the flit to
in latency latency traverse within a clock cycle
= 3523 ] —SMART-1_1D
S 54 - <==SMART-2_1D
<50 -x=SMART-4_1D
216 -*=SMART-8 1D
% 12 -=SMART-4_2D
= 8 -=SMART-8_2D
z 4 ~~SMART-12_2D
g 0 I | | | | Bit Complement
£ 0 005 01 015 02 025 ome
Injection Rate (flits/node/cycle) Traffic
SMART is a better design choice than a A baseline mesh network
baseline l-cycle router network even at needs to run at 5.4GHz to
larger tile size or higher frequency (i.e. match the performance of a
lower HPC,,.x) 1GHz SMART NoC

HPC,,.x will go up as technology scales!
smaller cores, similar frequenc
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FULL-SYSTEM RUNTIME
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Private L2/tile

SMART reduces runtime by 26-
21% for Private L2

8% off a dream 1-cycle network

Shared L2/tile

SMART reduces runtime by 49-
52% for Shared L2

9% off a dream l-cycle network
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PROJECT IDEAS USING SMART

= SMART NoCs
= SMART NoCs vs High-Radix topologies
= SMART NoCs with non-minimal routes
= SMART paths for latency guarantees
= SMART NoC inside GPU

= Reserve SMART paths using hints from cache/memory-
controller/OS
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BACKUPS
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PROTOCOL-LEVEL ORDERING

= If a virtual network requires protocol-level ordering
= Only deterministic routing allowed within that virtual network.
= Priority should be Local > Bypass

» Guarantees that 2 flits from the same source do not overtake each other at
any router.
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SMART V3. FLATTENED BUTTERFLY

What if we exploit repeated
wires and add explicit 1-cyle
physical express links?

SMART Flattened Butterfly

Router Delay 1-2 cycle in router 3-4 cycle in router
[SA-L, SSR+SA-G] [8-14:1 Arbiter, Multi-stage Xbar]

Bisection 128x8 128x8 [1x] 448x8 [3.5x] 896x8 [Tx]
Bandwidth (BB) 1-flit req 7-flit req 2-flit req 1-flit req
5-flit resp 35-1lit resp 10-1lit resp 5-flit resp

BiC | wties | i
0.27x0.27 0.47x0.47 [3x] | 0.53x0.53 [3.9x] | 0.7x0.7 [6.7x]

RO = =

I~ »
>
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SMART V3. FLATTENED BUTTERFLY

Assume l-cycle Flattened Butterfly Router: Highly optimistic assumption

% 32
S 28 1 pkt = —F'D'SMART-S_lD
g 2 128-bit | |-~SMART-8_2D
S 16 \\ -~FBfly BB=1x
g 12 . |FBfly_BB=3.5x
3 % |==zE :*"_:‘- ' - -+-FBﬂy BB=7x
gﬂ 0 1 0.2 0.3 04 05 0.8 0.9

< Injection Rate (p de/cycle)

SMART always beats FBﬂy matches SMART in throughput only
FBfly in latency with 3.5X more wires

Better to use SMART and reconfigure l-cycle multi-hop paths based on
traffic rather than use a fixed high-radix topology.
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