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Abstract

This work extends and develops the idea of using functional priors for the design

and analysis of three and higher level experiments. Developing a prior distribution for

model parameters is challenging because a factor can be qualitative or quantitative.

We propose appropriate correlation functions and coding schemes so that the prior

distribution is simple and the results interpretable. The prior incorporates well known

principles such as effect hierarchy and effect heredity, which helps to resolve the alias-

ing problems in fractional designs almost automatically. The usefulness of the new

approach is illustrated through the analysis of some real experiments.
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1. INTRODUCTION

In the analysis of a typical experiment with any number of three and higher level factors,

the amount and nature of the calculations in the traditional analysis do not facilitate the

adoption of analysis strategies that can be easily automated. Historically, frequentist analysis

strategies have had to rely upon tedious calculations to establish the aliasing relationships

that comprise the design’s degrees of freedom. Tools like half-normal plots and interaction

plots would be used to perform variable selection and determine optimal factor settings,

respectively, while computing was used to perform calculations necessary to estimate effects.

While sometimes adequate, the traditional approach can be quite time consuming and does

not lend itself well to utilization of the computing power that is now available.

Designs of three-level and four-level factors figure prominently in physical experiments.

For example, all of the case studies reported in Taguchi, Chowdhury, and Taguchi (2000) use

mixed two, three, and higher level designs. See Taguchi (1987) and Wu and Hamada (2000)

for several other examples. Beginning with three-level factors, much more information about

the shape of the response surface can be extracted from a good design. Unfortunately, the

run size of full factorial 3p and 4p designs can be prohibitively large. Fractional factorial

designs are used for reducing the run size, but they lead to aliasing of the effects. Several

Bayesian approaches for estimating the effects from fractional designs have been suggested in

the literature. The technique used to incorporate prior information plays an important role

in both optimal design choice and the subsequent estimation of effects and variable selection.

Some previous approaches to Bayesian methods to the design and analysis of experiments

have focused on Bayesian hierarchical models that require eliciting or estimating many hyper-

parameters in order to specify priors for a linear model’s parameters. See for instance the

review of the literature by Chaloner and Verdinelli (1995). Problems arise in both the proper

specification of the numerous priors as well as potential complications with calculation.

An interesting Bayesian approach, with model priors that facilitate the incorporation of

principles like effect heredity is suggested by Chipman, Hamada, and Wu (1997). In that

paper, estimation is through a Gibbs sampling procedure.
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The specification of a prior for the model parameters is not a trivial matter. The sheer

quantity of the parameters is a major problem, but there are several other issues. For

example, consider a 32 design. Suppose u1 and u2 represent the two coded variables of the

first factor and u3 and u4 those of the second factor. Then the linear model that we would

like to fit is

Y = β0 + β1u1 + β2u2 + β3u3 + β4u4 + β5u1u3 + β6u1u4 + β7u2u3 + β8u2u4 + ε.

What should be the prior distribution for the β’s? The usual approach is to take them as

N (0, τ 2
0 ), see for example Chipman et al. (1997). Although this choice looks reasonable,

several questions remain unanswered. For example, by the effect hierarchy principle (see

Hamada and Wu 1992), we know that a two-factor interaction (2fi) is less likely to be

significant than a main effect. Therefore is it ideal to use the same distribution for a main

effect and 2fi? Moreover, we can use different coding schemes to represent the two degrees

of freedom for each factor. How should we change the prior specification depending on the

coding scheme? Are the two effects of the same factor, say β1 and β2, equally important? It is

known that if we use a linear-quadratic system, then the linear effect is more important than

the quadratic effect. How do we incorporate such a difference in the prior? Is it reasonable

to take all the parameters to be independent? How should the prior be modified depending

on the type of factor viz. qualitative or quantitative? It is imperative to develop a coherent

and systematic approach to prior specification, so that we can answer all these questions.

In this work we propose the use of functionally induced priors for prior specification

(Joseph 2006). Here a prior using a Gaussian process is postulated for the underlying

transfer function and then the prior distribution for all the model parameters is induced

from it. The work in Joseph (2006) focuses on two-level experiments. Mitchell, Morris, and

Ylvisaker (1995) and Kerr (2001) have also studied the use of stochastic processes for the

design of two-level experiments. Here we extend the approach for the case of three and higher

level experiments. The extension is not trivial as there are many issues involved in higher

level experiments that are not present in two-level experiments. For example, the type of

factor, the type of correlation function, the type of coding scheme, the mixed-level nature

3



of the experiments, etc. become important when dealing with higher level experiments, but

are irrelevant for two-level experiments.

A very nice property of the functionally induced prior is that it agrees with many widely

accepted principles in the design and analysis of experiments such as effect sparsity, effect

hierarchy, and effect heredity (Wu and Hamada 2000). The introduction of these priors has

provided for a very nice setting that enables the automation of many analytical tasks, that

in previous approaches would have required a great deal of time consuming manual work.

The technical report is organized as follows. We begin by reviewing the general function-

ally induced prior Bayesian framework. We present a decomposition result that is extremely

useful for studying three-level, four-level, · · ·, and mixed-level designs. The results are differ-

ent for the case of qualitative and quantitative factors. In Section 3, we present the results for

qualitative factors. The results of this section are very simple and general, so that they can be

used with any number of levels. In Section 4, the building blocks for applying the Bayesian

methodology to three-level and four-level quantitative factors are presented. Here, there is

a brief discussion of complications that can arise due to the choice of coding-scheme for the

model matrix. We also demonstrate that a direct consequence of the functionally induced

prior is a systematic methodology for ordering the effects. The utility of this Bayesian setting

is illustrated through examples where the forward variable selection procedure is adapted to

designs with three-level and four-level factors. This appears in Section 5. Finally, concluding

remarks and suggestions for future research are given in Section 6.

2. GENERAL METHODOLOGY

Suppose that there are p factors x = (x1, x2, · · · , xp)′, where the factor xi is experimented

with at mi levels. Assume the model

Y = f(x) + e, e ∼ N (0, σ2),

where e represents the random error in the response due to the uncontrollable variables in

the system. The transfer function f could be nonlinear and highly complex, but we would
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like to approximate it by a linear model containing the main effects and interactions of the

factors. The factor xi can be represented by mi− 1 coded variables and the interactions can

be defined through the products of these coded variables. Thus we would like to approximate

f(x) by

f(x) ≈
q−1∑
i=0

βiui,

where q =
∏p

i=1mi. For example, in the 32 design discussed in Section 1, we let u5 = u1u3,

u6 = u1u4, u7 = u2u3, and u8 = u2u4.

As the number of factors and/or the number of levels increase, the total number of

parameters (q) can become very large. Therefore, postulating a prior distribution for β =

(β0, β1, · · · , βq−1)
′ is a difficult task. Joseph (2006) used a simple idea to overcome this

problem. The idea is to postulate a functional prior for the transfer function and use that

to induce a prior for all of the parameters in the linear model. Therefore, let

f(x) ∼ GP (µ0, σ
2
0ψ),

where µ0 is the mean and σ2
0ψ is the covariance function of the Gaussian process (GP).

The covariance function is defined as cov(Y (x), Y (x + h)) = σ2
0ψ(h). Because there are q

parameters in the linear model, they can be chosen to exactly match the function values at q

points. A simple choice for the q points is the full factorial design. Let U be the q× q model

matrix for the parameter β and let Ψ be the corresponding correlation matrix. To simplify

the results, consider instead f(x) = µ0+
∑q−1

i=0 βiui at the q points in the full factorial design.

Then,

β ∼ N
(
0, σ2

0U
−1Ψ(U−1)′

)
.

For obvious reasons, we call this a functionally induced prior distribution. For large q, the

variance-covariance matrix is huge, which can be difficult to construct and handle. Therefore

it is important to simplify the representation of the above matrix so that the results can be

easily used in practice. We achieve this under some assumptions.

Assume that the correlation function ψ has a product correlation structure of the form:

ψ(h) =

p∏
j=1

ψj(|hj|). (1)

5



Let U j be the model matrix for factor xj and let Ψj be the corresponding correlation

matrix. For example, for a 3-level factor with possible levels 1, 2, and 3, the model matrix

using orthogonal polynomial coding (with common column lengths of
√

3) is

U j =


1 −

√
3
2

√
1
2

1 0 −
√

2

1
√

3
2

√
1
2

 (2)

and the correlation matrix is

Ψj =


1 ψj(1) ψj(2)

ψj(1) 1 ψj(1)

ψj(2) ψj(1) 1

 . (3)

Now we have the following result. All of the proofs are given in the Appendix 6.

Theorem 1. Under the product correlation structure in (1):

var(β) = σ2
0

p⊗
j=1

U−1
j Ψj(U

−1
j )′.

The impact of this theorem is that we can focus on each factor, one at a time, in choosing

whatever coding scheme and correlation function suits our modeling needs. For example, to

construct the variance-covariance matrix in a 2p2×3p3×4p4 design, we only need to establish

the structure of U−1
j Ψj(U

−1
j )′ for a two-level, three-level, and four-level factor. The results

can then be combined by taking Kronecker products to get the desired variance-covariance

matrix for any values of p2, p3, and p4.

In the following sections, we investigate the structure of the variance-covariance matrix,

so that the result can be easily interpreted and applied in the design and analysis of ex-

periments. The choice of correlation functions and coding schemes depend on the type of

factors. Therefore we study the case of qualitative and quantitative factors separately.

3. QUALITATIVE FACTORS

By qualitative factor we mean a factor whose levels are nominal. That is, a qualitative factor

might be the name of: the vendor for a part, a machine, a method, etc.
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3.1 Correlation Function

For a qualitative factor, we should assign equal correlation between any two levels. This is

because among our prior assumptions, there is no information as to how to either order these

factor levels or to determine the relative distances between any of the levels. As mentioned

previously, we assume that the prior Gaussian process is stationary. So for the jth factor, we

need only be concerned with hj = |xij − xkj|, for two runs i and k. That is,

ψj(hj) =

 1 if hj = 0

ρj if hj 6= 0
,

where 0 < ρj < 1. Then the mj ×mj correlation matrix has the compound symmetry form:

Ψj =


1 ρj . . . ρj

ρj 1 . . . ρj
... · · · . . .

...

ρj ρj . . . 1

 . (4)

3.2 Prior Distribution

Suppose that for whatever coding schemes are selected for each of the single factor model

matrices U j for j = 1, . . . , p, we impose only the restrictions that the first column of each

U j is 1mj
to correspond to the “y-intercept” effect, and that the remaining mj − 1 columns

of each U j are a set of mutually orthogonal contrasts normalized to the length
√
mj. Thus

U ′
jU j = mjImj

, where Imj
is the identity matrix of dimension mj. Then for Ψj as in (4),

U ′
jΨjU j = mj


1 + (mj − 1)ρj 0 . . . 0

0 1− ρj . . . 0
... · · · . . .

...

0 0 . . . 1− ρj

 . (5)

Of course, since the columns of Uj are mutually orthogonal vectors, each with squared length

mj, we have:

U−1
j Ψj(U

−1
j )′ =

1

m2
j

U ′
jΨjU j. (6)
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Now we can propose the following very general result for the joint prior distribution of the

effects for a design incorporating some number of qualitative factors with any mixture of

levels. This follows directly from Theorem 1, Equation (5) and Equation (6). Let

τ 2
0 = σ2

0

p∏
j=1

1 + (mj − 1)ρj
mj

and rj =
1− ρj

1 + (mj − 1)ρj
.

Let δij = 1 if βi includes the factor j and 0 otherwise.

Proposition 1. For factorial experiments on p qualitative factors, if we use an orthogonal

coding for each factor and correlation matrix as in (4), then

βi ∼ N (0, τ 2
0

p∏
j=1

r
δij
j ), i = 0, 1, · · · ,

p∏
j=1

mj − 1

and the effects are all mutually independent.

Note that because of the independence, the variance-covariance matrix is diagonal, which

makes it very easy to construct. While the expression in the above proposition may seem

a bit complicated, it is easy to summarize what is happening. The variance of any effect

depends not on what the interpretation of the effect is, which contrasts are involved, but

only on which factors are involved in that effect. For further clarity, consider the following

example.

Example: Suppose we have two factors: A and B each experimented at three levels. Let

a1 and a2 represent the two coded variables of factor A and b1 and b2 that of factor B. With

the correlation matrix for factor A (and similarly for factor B):

ΨA =


1 ρA ρA

ρA 1 ρA

ρA ρA 1

 ,

we have τ 2
0 =

σ2
0

9
(1+2ρA)(1+2ρB), rA = (1−ρA)/(1+2ρA), and rB = (1−ρB)/(1+2ρB). So

that from Proposition 1: β0 ∼ N (0, τ 2
0 ), βa1 and βa2 ∼ N (0, τ 2

0 rA), βb1 and βb2 ∼ N (0, τ 2
0 rB),

and βa1b1 , βa1b2 , βa2b1 , and βa2b2 ∼ N (0, τ 2
0 rArB).
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Since each 0 < rj < 1 can be specified or estimated, both concepts of effect hierarchy

and effect heredity are appropriately integrated into the prior. Generally, as the number of

factors involved in an interaction increases, the a priori variance around the effect’s mean,

which is zero, decreases, justifying effect hierarchy. If a particular ρj is small, then the

corresponding rj is large, which would suggest a comparatively larger variance for effects

that include that factor than those interactions of the same order that do not, justifying

effect heredity.

There is a very simple case of Proposition 1 which arises when all of the correlation

matrices for the factors are the same. When this occurs, the marginal prior of the effect

depends on whether that effect is a “main effect” (me), “two-factor interaction” (2fi), . . . ,

“p-factor interaction” (pfi):

Corollary 1. . For r1 = r2 = . . . = rp = r,

β0 ∼ N (0, τ 2
0 )

βme ∼ N (0, τ 2
0 r)

β2fi ∼ N (0, τ 2
0 r

2)

...

βpfi ∼ N (0, τ 2
0 r

p),

and the effects are all mutually independent.

3.3 Coding Schemes

The restrictions imposed on our model matrix to obtain the convenient result of Proposition 1

actually admit many reasonable choices for coding schemes. We would naturally find it

desirable to estimate an overall mean effect, so the leading column of 1’s is not really an

imposing constraint. That the other columns need be orthogonal contrasts is also quite

natural. We are still free to choose contrasts that have a sensible interpretation for the type

of factor we are considering in this section, a qualitative factor. Below we discuss two such

9



coding schemes that satisfy the assumptions of Proposition 1, but have been suggested in

the frequentist design setting, indicating their value in interpretation.

For ease of implementation and interpretation, the orthogonal contrast coding scheme we

recommend for a qualitative factor is Helmert coding (see Harville 1997). Other commonly

used alternative coding schemes present problems. For instance, the effects from orthogonal

polynomial coding do not have a natural interpretation for a qualitative factor. Although we

do note that for two-level and three-level factors, Helmert coding and orthogonal polynomial

coding are the same. Wu and Hamada (2000) offers some other alternatives. For example, for

a three-level factor, the choice of using two of the following coding vectors: D01 = (−1, 1, 0),

D02 = (−1, 0, 1), or D12 = (0,−1, 1) yield estimates for interpretable effects, however they

are not mutually orthogonal. The problem more generally with treatment coding or zero

sum coding is that the columns of U j would not be mutually orthogonal. This would violate

the assumptions that led to Proposition 1. Helmert coding, on the other hand, along with

providing for the calculation of effects that may be interesting for the analysis of a qualitative

factor, is quite easy to implement for any number of levels. In Helmert coding, the first effect

is the difference between the second level and the first level. The second effect is the difference

between the third level and the average of the first two, etc. Below is the model matrix that

makes the interpretation of effects more obvious:

1 −1 −1 −1 · · · −1

1 1 −1 −1 · · · −1

1 0 2 −1 · · · −1

1 0 0 3 · · · −1
...

...
...

...
. . .

...

1 0 0 0 · · · (mj − 1)


.

We need to “normalize” each column to have the same squared length, mj. To accomplish

this, the factors to multiply each column by are:(
1,

√
mj

2
,

√
mj

6
,

√
mj

12
, . . . ,

√
1

mj − 1

)
.
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One should not feel restricted to using the above recommended coding scheme. Any set

of mutually orthogonal contrasts will do. So if there is a set of such effects that is more

interesting to the experimenter, they should be used. For a four-level qualitative factor,

Wu and Hamada (2000) offers a convenient coding scheme. Their recommendation provides

effects that can be interpreted as differences between pairs of levels. The model matrix is

below:

Uj =


1 −1 1 −1

1 −1 −1 1

1 1 −1 −1

1 1 1 1

 .

The above coding scheme can be extended to factors with 8, 12, 16, . . . levels using Hadamard

matrices. Such a coding scheme using only {−1, 1} would not be naturally applicable to a

three-level factor or a five-level factor. Whereas model matrices based on Helmert coding

are easy to construct and provide interpretable effects for any number of factor levels.

4. QUANTITATIVE FACTORS

When a factor is continuous or discrete, but ordinal, where there exists some way to quantify

the differences between the factor’s level, we may treat it as a quantitative factor. For a

quantitative factor, we may wish to run the experiment at evenly spaced levels, but this

might not always be possible. Below we make recommendations for each situation.

4.1 Correlation Function

When the levels are equally spaced, the correlation matrix Ψj has the symmetric Toeplitz

form given in (16), with ψj(hj) → 0 as |hj| → ∞. There are many parametric forms

for ψj(hj). For example, generally we could make use of the two parameter exponential

correlation function:

ψj(hj) = exp (−θj|hj|αj) 0 < αj ≤ 2 0 < θj <∞. (7)
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This is the most popular correlation function used in computer experiments, but other

correlation functions such as the Matérn correlation function, cubic correlation function, etc.

could also be used (see Santner et al. 2003). A convenient special case of the exponential

correlation function is when the parameter αj = 2. This case is useful for modeling functions

that are infinitely differentiable. Let ρj = exp(−θj). Then

Ψj =


1 ρj . . . ρ

(mj−1)2

j

ρj 1 . . . ρ
(mj−2)2

j

...
...

. . .
...

ρ
(mj−1)2

j ρ
(mj−2)2

j . . . 1

 , (8)

which will be used in most of the examples presented here.

We suggest that when the levels are not evenly spaced for factor j, that instead of using

the values xj ∈ {1, 2, . . . ,mj} for the arguments of the correlation function, that the end

points: 1 and mj be used for the first and last levels, and that the other levels be represented

by interpolating between these points. For example, if the unevenly spaced levels for a

quantitative three-level factor are: 25, 30, 37, then use the quantities 1, 11/6, 3, instead of

1, 2, 3 in the correlation function. One might anticipate that the factor levels would have to

be grossly unevenly spaced for it to result in any noticeable changes in practice. However,

this is one part of our suggested methodology where some caution should be exercised.

The most common coding scheme for quantitative factors is orthogonal polynomial coding

(see Wu and Hamada 2000). Unfortunately, a general result like Proposition 1 does not exist

for quantitative factors under this coding scheme. Therefore, we examine the most important

cases of three-level and four-level designs in detail.
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4.2 Prior Distribution for Three-Level Experiments

Let us consider an experiment with p quantitative, evenly spaced three-level factors. We

assume a correlation matrix for each factor j = 1, 2, . . . , p of the form:

Ψj =


1 ψj(1) ψj(2)

ψj(1) 1 ψj(1)

ψj(2) ψj(1) 1

 .

The model matrix using orthogonal polynomial coding (with common column lengths of
√

3)

is:

U j =


1 −

√
3
2

√
1
2

1 0 −
√

2

1
√

3
2

√
1
2

 .

So that by matrix multiplication, we have:

U ′
jΨjU j =


3 + 4ψj(1) + 2ψj(2) 0 −

√
2(ψj(1)− ψj(2))

0 3(1− ψj(2)) 0

−
√

2(ψj(1)− ψj(2)) 0 3− 4ψj(1) + ψj(2)

 . (9)

Notice that the “quadratic” and “y-intercept” effects are going to be (negatively) correlated.

This is an important difference from qualitative factors, where this matrix was diagonal. We

can now propose expressions for the model parameters’ marginal prior distributions. For the

following proposition, let:

τ 2
0 =

σ2
0

32p

p∏
j=1

(3 + 4ψj(1) + 2ψj(2)),

rjl =
3− 3ψj(2)

3 + 4ψj(1) + 2ψj(2)
, rjq =

3− 4ψj(1) + ψj(2)

3 + 4ψj(1) + 2ψj(2)
.

Let lij = 1 if βi includes the linear effect of factor j and 0 otherwise. Similarly, qij = 1 if

βi includes the quadratic effect of factor j and 0 otherwise. Then the following expressions

follow directly from (9) and Theorem 1:
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Proposition 2. For p quantitative three-level factors, with a model matrix coded according

to orthogonal polynomial contrasts we have:

βi ∼ N

(
0, τ 2

0

p∏
j=1

r
lij
jl r

qij
jq

)
, i = 0, 1, · · · , 3p − 1.

Note that unlike the result in Proposition 1, the βi’s are not independent. We will

consider some properties of a special case of this result. Suppose for each factor we assume

a 3× 3 correlation matrix in the form of (8), with ρ1 = ρ2 = . . . = ρp = ρ. Let,

τ 2
0 =

σ2
0

32p
(3 + 4ρ+ 2ρ4)p, rl =

3− 3ρ4

3 + 4ρ+ 2ρ4
, rq =

3− 4ρ+ ρ4

3 + 4ρ+ 2ρ4
.

Then the following expressions illustrate a useful special case of Proposition 2:

Corollary 2. . For p quantitative three-level factors, with a model matrix coded according

to orthogonal polynomial contrasts, if we further assume ρ1 = ρ2 = · · · = ρp = ρ in (8),

then:

β0 ∼ N
(
0, τ 2

0

)
βl ∼ N

(
0, τ 2

0 rl
)

βq ∼ N
(
0, τ 2

0 rq
)

βll ∼ N
(
0, τ 2

0 r
2
l

)
βlq ∼ N

(
0, τ 2

0 rlrq
)

...

βq···q ∼ N
(
0, τ 2

0 r
p
q

)
.

To clarify the above notation, the subscript lq, for example, indicates that βlq is the

interaction effect between the linear effect of any one of the p factors and the quadratic

effect of any of the other p− 1 remaining factors.

We have for all ρ ∈ (0, 1)

0 < r3
l < rq < r2

l < rl < 1. (10)

14



It is quite common to say that a quadratic effect is less important than a linear effect

(notationally q ≺ l) . Because rq < rl, we now have a mathematical justification of the

above statement. Similarly, rq < r2
l shows that q ≺ ll, which is an interesting result. The

property (10) can be used to order many higher order effects. For example, qq ≺ llq ≺ lq ≺ ll.

The ordering of effects is important for properly defining a design criterion similar to

minimum aberration. Cheng and Ye (2005) proposes two rules:

(a) : l � q � ll � lq � lll � qq � llq � llll � lqq � lllq � qqq � llqq � lqqq � qqqq,

(b) : l � q � ll � lq � qq � lll � llq � lqq � qqq � llll � lllq � llqq � lqqq � qqqq.

Rule (a) is obtained by ordering effects first by the degree of the polynomial, and then

within that by the number of factors involved in the interaction, whereas rule (b) is by

ordering effects first by the number of terms in the interaction, and then by the degree of

that polynomial. Alternatively, the rule implied by (10) is:

l � ll � q � lll � lq � llll � llq � qq � lllq � lqq � llqq � qqq � lqqq � qqqq.

As the number of factors increases, the ordering rule can get more complicated. For

example, when there are five three-level factors, and α = 2, we would need a result like (10)

to include a comparison of the two terms r5
l and r2

q . Numerically, it can be shown that: for

ρ ∈ (0, 0.357) or (0.847, 1),

0 < r5
l < r2

q < r3
l < rq < r2

l < rl < 1,

whereas for ρ ∈ (0.357, 0.847),

0 < r2
q < r5

l < r3
l < rq < r2

l < rl < 1.

This should be enough to order the orthogonal polynomial factorial effects for five three-

level factors when the value of ρ is known. When α = 1 the ordering of effects additionally

depends on ρ with as few as four factors. The nice thing about the Bayesian approach is that

we do not need to worry about these complicated ordering of effects, it will be automatically

built-in in the design and analysis of experiments.
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4.3 Prior Distribution for Four-Level Experiments

Let us now consider an experiment with p quantitative, evenly spaced four-level factors. We

assume a correlation matrix for each evenly spaced factor j = 1, 2, . . . , p of the form:

Ψj =


1 ψj(1) ψj(2) ψj(3)

ψj(1) 1 ψj(1) ψj(2)

ψj(2) ψj(1) 1 ψj(1)

ψj(3) ψj(2) ψj(1) 1

 . (11)

As we did before we may attempt to use orthogonal polynomial coding, albeit with some

reservations, in anticipation that some of the off diagonal terms in the prior parameter

covariance matrix will be nonzero. The “normalized” model matrix for the jth four-level

factor using orthogonal polynomial coding is:

U j =


1 − 3√

5
1 − 1√

5

1 − 1√
5
−1 3√

5

1 1√
5

−1 − 3√
5

1 3√
5

1 1√
5

 .

Now this model matrix would enable us to calculate “y-intercept”, “linear”, “quadratic”,

and “cubic” effects. However, as suggested by the matrix calculation below, the prior co-

variance matrix is in fact not diagonal. There are some nonzero covariances between the

“y-intercept” and the “quadratic” effect as well as between the “linear” and “cubic” effects.

For the following equation, let us denote: ψj(1) = ψj1, ψj(2) = ψj2, and ψj(3) = ψj3. Then

we obtain:

U ′
jΨjUj =0BBBBB@

4 + 6ψj1 + 4ψj2 + 2ψj3 0 −2(ψj1 − ψj3) 0

0 4 + 2ψj1 − 12
5
ψj2 − 18

5
ψj3 0 −2ψj1 + 16

5
ψj2 − 6

5
ψj3

−2(ψj1 − ψj3) 0 4 − 2ψj1 − 4ψj2 + 2ψj3 0

0 −2ψj1 + 16
5
ψj2 − 6

5
ψj3 0 4 − 6ψj1 + 12

5
ψj2 − 2

5
ψj3

1CCCCCA . (12)

Now using the above result and Theorem 1, we can obtain a result similar to Proposition 2.

For notational simplicity, we will only provide a special case where the correlation matrix is
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as in (8) with ρ1 = ρ2 = . . . = ρp = ρ. Let

τ 2
0 =

σ2
0

42p
(4 + 6ρ+ 4ρ4 + 2ρ9)p, rl =

4 + 2ρ− 12
5
ρ4 − 18

5
ρ9

4 + 6ρ+ 4ρ4 + 2ρ9
,

rq =
4− 2ρ− 4ρ4 + 2ρ9

4 + 6ρ+ 4ρ4 + 2ρ9
, rc =

4− 6ρ+ 12
5
ρ4 − 2

5
ρ9

4 + 6ρ+ 4ρ4 + 2ρ9
.

Proposition 3. For p quantitative four-level factors, with a model matrix coded according

to orthogonal polynomial contrasts, if we further assume ρ1 = ρ2 = · · · = ρp = ρ in (8),

then:

βi ∼ N
(
0, τ 2

0 r
li
l r

qi
q r

ci
c

)
,

where li, qi, and ci are the number of linear, quadratic, and cubic terms in βi.

Thus, using the notations used in Corollary 2, βc ∼ N (0, τ 2
0 rc), βlc ∼ N (0, τ 2

0 rlrc), etc.

Note that as in Corollary 2, these effects are not independent.

At this point, it should be abundantly clear that it is a trivial matter to construct

Proposition 1, Proposition 2, and Proposition 3-like results for designs of any mixture of

factors with possibly different numbers of levels, possibly different types: qualitative or

quantitative, and different parametric forms for the correlation functions. The user need

only construct a model matrix Uj and correlation matrix Ψj appropriate for each factor and

then deduce the full factorial prior covariance results using Theorem 1.

4.4 Coding Schemes

In this section on quantitative factors, we presented results for three-level and four-level

factors assuming that orthogonal polynomial coding was the most desirable coding scheme.

This coding scheme does indeed have some nice properties. The model matrix is easy to

generate for a factor of any number of levels. The effects generated from such a model matrix

are also easy to interpret for a quantitative factor.

One drawback to the orthogonal polynomial coding scheme for a design containing a

quantitative factor is that the resulting prior covariance matrix is not diagonal. In fact

constructing the matrix R = τ−2
0 var(β), which will be used in the estimation, is not a
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trivial matter. If the matrix R is not calculated directly, which in itself could be prohibitively

computationally intensive, it is quite a difficult matter of accounting to calculate and position

these off-diagonal elements correctly in the matrix. In addition, the matrix R represented

in its full form, may be quite large, requiring sparse matrix techniques.

So suppose instead that our motivation was to find an orthogonal coding scheme for a

quantitative factor’s model matrix U j that produces a diagonal U−1
j Ψj(U

−1
j )′. Let Λj =

diag(λj,1, λj,2, . . . , λj,mj
), with each λj,k, k = 1, . . . ,mj being the eigenvalues of Ψj and Ej

is a mj × mj matrix whose columns are orthonormal eigenvectors corresponding to those

eigenvalues. Now by letting U j =
√
mjEj, we obtain

U−1
j Ψj(U

−1
j )′ =

1

mj

Λj, (13)

which is a diagonal matrix. Now by Theorem 1, the variance-covariance matrix is also diag-

onal. Therefore, the matrix R could be easily constructed. A related idea exists in Steinberg

and Bursztyn (2004), which contains a procedure for data analysis that involves relating

regression coefficients to those produced from the eigenvectors of the correlation matrix of

the corresponding random field model. However, using a model matrix whose columns are

proportional to the eigenvectors of Ψj presents its own problems in the context here. The

coding scheme will vary with the correlation matrix. That is, the model matrix U j will

depend on ψj(1), ψj(2), . . . , ψj(mj − 1). Also, that the leading column of this coding scheme

will not precisely be a column of ones, failing to yield a true “y-intercept” effect, complicates

construction of the full design model matrix with Kronecker products less predictable. So

rather than suggesting the use of this“eigen-Coding” scheme here, we merely use the obser-

vation that orthogonal polynomial coding is very nearly the coding scheme obtained from

the eigenvectors of Ψj’s as evidence in support of the belief that dismissing the off-diagonal

elements of the matrix R may be acceptable in practice.

In Figure 1 we see a comparison of the orthogonal polynomial coding scheme and the

eigen-coding scheme. From the figure we see the curvature in the y-intercept and linear

effects demonstrating their dependence on the quadratic and cubic effects respectively. In

addition, the plots demonstrate the relative “closeness” of the orthogonal polynomial effects
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Figure 1: Comparison of Eigen-Coding (solid) and Orthogonal Polynomial Coding (dashed)

for ρ = 0.5.
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and each of their corresponding eigen-coding effect. For a single factor it is also easy to

verify numerically that the correlation between a polynomial effect and its corresponding

eigen-coding effect is very high. For reference, through numerical studies it can be shown

that a single evenly-spaced four-level factor with a correlation matrix like (8), the correlation

between a polynomial effect and its corresponding eigen-coded effect is greater than 0.97 for

all ρ ∈ (0, 1).

5. EXAMPLES

We need the following notation. Let D be the design matrix, which has n rows and p columns

corresponding to the p factors and y = (y1, · · · , yn)′ be the response values obtained from

the experiment. Let UD be the model matrix generated from D and ΨD the corresponding

correlation matrix. Let var(β) = τ 2
0 R, where the construction of the matrix R was discussed

in detail in the previous sections. The examples presented in this section do not have

replicates. Because we do not have any information about σ2, we set σ2 = 0. We obtain

β̂ = E(β|y) =
τ 2
0

σ2
0

RU ′
DΨ−1

D (y − µ01n)

and

var(β|y) = τ 2
0

(
R− τ 2

0

σ2
0

RU ′
DΨ−1

D UDR

)
.

A general expression for τ 2
0 /σ

2
0 is given by

τ 2
0

σ2
0

=

∏p
j=1 sum(Ψj)

q2
, (14)

where q =
∏p

i=1mi and sum(Ψj) denotes the sum of all the elements of the matrix Ψj. We

can calculate the ratios

ti =
|β̂i|
σ̂βi

,

to identify the important effects, where σ̂2
βi

is the diagonal element in var(β|y) corresponding

to βi. The most important effect is the one with the largest ti. The other important effects

can be similarly identified one-by-one using a forward selection strategy as explained in

Joseph (2006).
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The hyper-parameters can be estimated using empirical Bayes methods. Let ρ = (ρ1, · · · , ρp)′.

Then

ρ̂ = arg min
ρ

n log σ̂2
0 + log det(ΨD),

µ̂0 = (1′nΨ
−1
D 1n)

−11′nΨ
−1
D y,

and

σ̂2
0 =

1

n
(y − µ̂01n)

′Ψ−1
D (y − µ̂01n).

For numerical stability, we must put some mild constraints on the feasible region of ρ in the

above optimization, such as ρi ∈ [0, 0.99]. We could have instead implemented the penal-

ized likelihood recommendations from Li and Sudjianto (2005). There are some additional

considerations in the empirical Bayes step for estimating ρ. It is important to obtain the

constrained global optimum. Most software will converge on some local optima. We employ a

naive approach to global optimization and implement a sequence of local optimizations over

randomly generated initial values, choosing the best local optimum as the global optimum.

We caution that it is possible to begin the algorithm with a value for ρ that is not a true

global optimum due to either the precautions taken to prevent inverting an ill-conditioned

Ψ matrix, or by not being able to pragmatically do an exhaustive search of the feasible

region for all of the local optima. The ρ is estimated only at step 0 of the forward selection

procedure. We use this estimate for each subsequent step. From this estimate of ρ, we are

able to calculate the factor τ 2
0 /σ

2
0, as well as the matrices R and ΨD used in the calculations

at all later steps. The first example illustrates a situation where the matrix R has nonzero

off-diagonal elements. This matrix can be constructed through the explicit matrix calcula-

tions suggested by Theorem 1. However, we found that the diagonal approximation to R

in this example is adequate for discovering the first few important effects. In the second

example, R is a diagonal matrix. So for this example constructing R is a simple matter,

where the diagonal elements of R correspond to the appropriate factor calculation preceding

each of the propositions and entered into the matrix R in the order the effects appear as

columns of UD.
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Here we emphasize the ease with which the methodology of Joseph (2006) is extended

beyond two-level experiments. In addition, we stress that very often the procedure is entirely

automatic, yielding no ambiguity in situations where the traditional frequentist approach

would require deeper attention. Finally, we note that there may exist situations where the

iterative procedure is unnecessary. That is, a quick proxy to the forward selection may be

to use a half-normal plot to select effects in Step 0. This technique seems to produce results

equivalent to the forward selection when the significant effects after k steps form a projection

of the factor space onto a lower dimensional, but orthogonal factor space.

5.1 Blood Glucose Experiment

Hamada and Wu (1992) analyzed an experiment designed to study blood glucose reading

levels from a testing device. In this experiment, there was one two-level factor and seven

three-level factors (Table 1). The three-level factors were all considered to be quantitative

factors. These factors did not all have evenly spaced levels, but they were approximately

evenly spaced. The design was a nonregular fraction of a 21 × 37 design, the 18-run design

popularized by Taguchi (1987). The design and the data are given in Table 2.

Table 1: Factors and Levels, the Blood Glucose Experiment

Level
Factor 1 2 3

A. wash no yes
B. microvial volume (ml) 2.0 2.5 3.0
C. caras H2O level (ml) 20 28 35
D. centrifuge RPM 2100 2300 2500
E. centrifuge time (min) 1.75 3 4.5
F. (sensitivity, absorption) (0.10,2.5) (0.25,2) (0.50,1.5)
G. temperature (0C) 25 30 37
H. dilution ratio 1:51 1:101 1:151

In the frequentist analysis, it is computationally cumbersome to entertain all of the

4,374 possible factorial effects. Therefore, we consider only the main effects and two-factor
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Table 2: Design Matrix and Data, the Blood Glucose Experiment

Factor Mean
Run A G B C D E F H Reading

1 1 1 1 1 1 1 1 1 97.94
2 1 1 2 2 2 2 2 2 83.40
3 1 1 3 3 3 3 3 3 95.88
4 1 2 1 1 2 2 3 3 88.86
5 1 2 2 2 3 3 1 1 106.58
6 1 2 3 3 1 1 2 2 89.57
7 1 3 1 2 1 3 2 3 91.98
8 1 3 2 3 2 1 3 1 98.41
9 1 3 3 1 3 2 1 2 87.56
10 2 1 1 3 3 2 2 1 88.11
11 2 1 2 1 1 3 3 2 83.81
12 2 1 3 2 2 1 1 3 98.27
13 2 2 1 2 3 1 3 2 115.52
14 2 2 2 3 1 2 1 3 94.89
15 2 2 3 1 2 3 2 1 94.70
16 2 3 1 3 2 3 1 2 121.62
17 2 3 2 1 3 1 2 3 93.86
18 2 3 3 2 1 2 3 1 96.10
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interactions. This analysis identifies the effects BlHq, BqHq, ElGl, AHq, · · ·, as having high

explanatory power, which is shown in Figure 2(b). Thus, the frequentist approach does not

lead to a model satisfying effect hierarchy or effect heredity.

By contrast, the proposed methodology does respect effect hierarchy and effect heredity,

and is able to entertain all of the factorial effects. In step 0 of the Bayesian forward selection,

the empirical Bayes estimate of the correlation matrix parameters is given by the vector,

ρ̂ = (0.93, 0.00, 0.99, 0.99, 0.98, 0.98, 0.99, 0.00)′.

Figure 3(a) shows the half-normal plot of the ti ratios at this step. We can see that BlHq

is the most significant effect. After selecting this effect and continuing with the forward

selection, we identify the effects BqHq, Bl, Bq, · · · as having high explanatory power. This

is shown in the R2-plot in Figure 3(b).

Of course, the principles of effect hierarchy and effect heredity can be enforced in the

frequentist forward selection through some modifications, such as the strategy presented in

Hamada and Wu (1992). However, we believe that the Bayesian strategy is more elegant

and efficient. For example, if a three-factor interaction effect is significant, the frequentist

analysis will miss it, but the Bayesian analysis will identify it with high probability. Indeed,

the Bayesian analysis seems to be more powerful than the frequentist analysis, as can be

seen by comparing the half-normal plots of both of the analyses at step 0; that is, all of

the significant effects can be identified even at step 0 of the Bayesian analysis. In the next

section, we provide an example where the frequentist analysis fails, but the Bayesian analysis

succeeds.

Implementation of the Bayesian methodology of Chipman et al. (1997) was also illustrated

through this example. One of the most significant differences in the Bayesian methodology

presented here versus that of Chipman et al. (1997) is how the prior belief in effect heredity

is incorporated into the model. In the procedure presented above, specification of effect

heredity is through the parameter space as a consequence of our functional prior assumption.

In Chipman et al. (1997), effect heredity is reflected through prior specification in the model

space. In the methodology presented here, effect heredity was a direct consequence of the

24



1.8 2.0 2.2 2.4 2.6 2.8

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

half−normal quantiles

ab
so

lu
te

 e
ffe

ct

F.QG.L:H.QD.Q:G.Q

E.Q

C.Q:D.Q

C.Q:G.Q

A:H.Q
B.Q:H.Q

E.L:F.L

B.L:H.Q

(a) Frequentist Forward Selection (Step 0)

Step

R
2

B.L:H.Q

B.Q:H.Q

E.L:G.L

A:H.QE.Q:G.QE.Q:F.QF.Q:G.QE.Q:H.LB.Q:E.QF.QC.Q:G.L

1 3 5 7 9 11

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Frequentist Forward Selection

Figure 2: Frequentist Analysis of the Blood Glucose Experiment
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functionally induced prior on β, whereas in Chipman et al. (1997) hierarchical priors on all

subset models had to be specified in order to incorporate prior beliefs about heredity. The

technique of Chipman et al. (1997) does offer the advantage of great flexibility in enabling the

incorporation of other possible a priori beliefs about relationships between effects through

adding on to the hierarchical prior structure. However, the procedure described in this

paper is a fairly automatic methodology that quite naturally imposes effect hierarchy and

effect heredity. Moreover, the extension of the prior specification to include three and higher

order interactions, cubic, fourth order terms, etc. is more difficult to implement with the

hierarchical priors compared with the functionally induced priors.

5.2 Router Bit Experiment

Phadke (1989) reported on an experiment designed to help improve the lifetime of a router bit

used to cut printed circuit boards. This experiment was also analyzed by Wu and Hamada

(2000). The experiment is an unreplicated fraction of a 27 × 42 design. The factors and

levels are shown in Table 3 and the design and data are given in Table 4. There are only 32

runs and 2,048 possible effects to consider. The two four-level factors: (D) “bit type” and

(E) “spindle position” are treated as qualitative factors. So in analyzing this experiment,

we have two types of factors: seven two-level factors and two qualitative four-level factors.

Table 3: Factors and Levels, the Router Bit Experiment

Factor Level
A. suction (in of Hg) 1 2
B. x-y feed (in/min) 60 80
C. in-feed (in/min) 10 50
D. bit type 1 2 3 4
E. spindle position 1 2 3 4
F. suction foot SR BB
G. stacking height (in) 3/16 1/4
H. Slot depth (mils) 60 100
J. speed (rpm) 30000 40000
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Table 4: Design Matrix and Data, the Router Bit Experiment

Factor
Run A B C D E F G H J Lifetime

1 − − − 1 1 − − − − 3.5
2 − − − 2 2 + + − − 0.5
3 − − − 3 4 − + + − 0.5
4 − − − 4 3 + − + − 17.0
5 − + + 3 1 + + − − 0.5
6 − + + 4 2 − − − − 2.5
7 − + + 1 4 + − + − 0.5
8 − + + 2 3 − + + − 0.5
9 + − + 4 1 − + + − 17.0

10 + − + 3 2 + − + − 2.5
11 + − + 2 4 − − − − 0.5
12 + − + 1 3 + + − − 3.5
13 + + − 2 1 + − + − 0.5
14 + + − 1 2 − + + − 2.5
15 + + − 4 4 + + − − 0.5
16 + + − 3 3 − − − − 3.5
17 − − − 1 1 − − − + 17.0
18 − − − 2 2 + + − + 0.5
19 − − − 3 4 − + + + 0.5
20 − − − 4 3 + − + + 17.0
21 − + + 3 1 + + − + 0.5
22 − + + 4 2 − − − + 17.0
23 − + + 1 4 + − + + 14.5
24 − + + 2 3 − + + + 0.5
25 + − + 4 1 − + + + 17.0
26 + − + 3 2 + − + + 3.5
27 + − + 2 4 − − − + 17.0
28 + − + 1 3 + + − + 3.5
29 + + − 2 1 + − + + 0.5
30 + + − 1 2 − + + + 3.5
31 + + − 4 4 + + − + 0.5
32 + + − 3 3 − − − + 17.0
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The coding scheme that we used for the four-level factors is the Wu-Hamada recommen-

dation highlighted in a previous section. Here, those main effects are labeled D1, D2, D3

and E1, E2, E3. Figure 4(a) shows the half-normal plot from a traditional analysis. The

effects D2, G, J , GJ and AF appear to be significant. Note that each of them represents a

set of aliased effects. Assuming three and higher order interactions are negligible, one can

show that

AF = −D2H = −CE2 = BD3 = D1E3 = E1G (15)

and

D2 = AG = BE3 = E1F,

whereas the effects G, J , and GJ are clear (not aliased with any of the main effects or two-

factor interactions). Follow-up experiments can be used to de-alias the above effects (see,

e.g, Meyer, Steinberg, and Box 1996). An alternative to running a follow-up experiment is

the approach in Wu and Hamada (2000) which appeals to the widely accepted principles of

effect hierarchy and effect heredity. In that analysis, effect hierarchy was manually applied

to the aliasing relationships to select the main effect D2 as opposed to one of the two-factor

interactions with which it is aliased. Similarly, effect heredity was used to justify selecting

either the interaction D2H or E1G as opposed to the other four two-factor interaction effects.

However neither of these two principles enable breaking the tie between D2H and E1G. Wu

and Hamada (2000) argued that because the four spindles are synchronized, the effect of G

should not vary substantially with the spindle position; thus ruling out the E1G interaction,

so that D2H was the effect identified as significant.

In Step 0 of the proposed method, we obtain the empirical Bayes estimates of ρ,

ρ̂ = (0.99, 0.99, 0.99, 0.71, 0.99, 0.99, 0.60, 0.09, 0.56)′.

Figure 4(b) shows that the effects J , GJ , D2, HJ , D2H, G, and GHJ seem to be significant,

which are the same as the first seven effects identified by the Bayesian forward selection strat-

egy. Note that in the Bayesian analysis no confusion is created by the aliasing relationships.

For example, at step 0, the ti ratios for the effects in (15) are: tAF = 0.14, tD2H = 42.33,
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tCE2 = 0.10, tBD3 = 0.61, tD1E3 = 0.43, and tE1G = 0.70. Thus D2H stands out very clearly

from the others as the significant effect. This could not be achieved using the frequentist

analysis. Wu and Hamada (2000) were able to choose D2H but only after applying expert

knowledge of the process. Whereas the Bayesian approach was able to identify this effect

through mere data analysis. We also note that a reasonable, potentially significant three-

factor interaction is identified by the Bayesian analysis, which was not even possible in the

frequentist analysis.

By proposing the aforementioned Bayesian analysis, we are not trying to discourage the

use of follow-up experiments. If a decision has to be made based on a one-shot experiment,

the Bayesian analysis will be able to provide a unique answer. On the other hand, if resources

do exist to perform follow-up experiments, then even in this situation, this type of Bayesian

analysis can yield very useful information. For example, based on the ti ratios, we can order

the effects in (15): D2H � E1G � BD3 � D1E3 � AF � CE2. This ordering is immensely

helpful for the optimal choice of follow-up runs. In frequentist analysis all six of these effects

would be viewed as equally important and thus some of these additional resources will be

spent on de-aliasing unimportant effects.

6. CONCLUSIONS

Typically, frequentist methods in the analysis of three and higher level experiments require

significant work to resolve ambiguities. First the analyst, must identify the aliasing relation-

ships. In the case of a regular fraction, this will enable the analyst to make variable selection

decisions based on the well known principles of effect sparsity, effect hierarchy, and effect

heredity. After analyzing the data, there may still be the need to run a follow-up experiment

to resolve issues that arise from aliasing. In nonregular designs, such as the 18-run designs,

the traditional approach would only consider estimating main effects, because of complex

aliasing. Modern techniques such as those presented in Wu and Hamada (2000), while ad-

equate in extracting more information from these designs, do not lend themselves well to

being an automatic procedure. Here we have extended the use of functionally induced priors
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to designs that involve three-level and four-level factors. From this exposition, the proce-

dure for extending the ideas for fractions of factorials not directly addressed here should be

obvious. These tools provide a major step toward a reasonable fully automatic procedure

for analyzing experimental data. Not only are the procedures well grounded in theory that

facilitate the above mentioned principles of analysis of experiments, but the procedures are

easy to implement and yield credible empirical results.

In the general framework, a Gaussian process over the design space induces a joint prior

distribution for the linear model’s parameters. From this, some additional assumptions

about experimental design can be validated. Yet two effect ordering principles for three-

level designs from Cheng and Ye (2005) could be challenged as a consequence of the theory

here. We could be more specific about when the ordering assumptions are valid and explain

why. Moreover new rules can be obtained when the assumptions are not valid.

We make a distinction between qualitative factors and quantitative factors. This becomes

important with three-level and higher designs. We also provide a consistent and logical

way of addressing this distinction through the specification of the correlation function that

partially characterizes the underlying Gaussian Process. This approach fits into the Gaussian

process functional prior framework seamlessly.

In our discussion of the examples, we note that some designs might be more likely than

others to produce ambiguities in variable selection. When these arise, they could either

be resolved manually or resolved through a simple automated procedure that respects the

principles of effect sparsity, effect hierarchy and effect heredity. When different components

of the ρ vector are used for each factor, this issue becomes increasingly less likely to be a

concern.
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Proofs

Proof of Theorem 1

We first need to establish a general result concerning the construction of our correlation

matrices over all p factors. Observe that for the following result to hold, that we can

define the (m1m2 · · ·mp) × (m1m2 · · ·mp) full factorial model matrix over all p factors, U ,

using whatever coding scheme we desire. Suppose we construct our full model matrix via a

Kronecker product of the individual factor model matrices, taken in increasing order of the

frequency the levels change. The run order for the full factorial design corresponds to one

where the first factor’s levels are changing the slowest and the pth factor’s levels are changing

the quickest:

U = U 1 ⊗U 2 ⊗ · · · ⊗U p =

p⊗
j=1

U j.

Now, let Ψ denote the correlation matrix corresponding to the full factorial design over all p

factors. The mj ×mj correlation matrix corresponding to factor j denoted by Ψj will have

the general structure of a symmetric Toeplitz matrix due to the stationarity assumption

imposed on the Gaussian process in each factor:

Ψj =


1 ψj(1) . . . ψj(mj − 1)

ψj(1) 1
. . . ψj(mj − 2)

...
. . . . . .

...

ψj(mj − 1) ψj(mj − 2) . . . 1

 . (16)

Then Ψ has a convenient block symmetric structure. Let the matrix Ψ(i) represent the

correlation matrix for the full factorial design over the last p− i factors. Then, since the first

factor’s levels are changing the slowest, and we have assumed a product correlation function

structure, the correlation matrix has the following block form:

Ψ =


Ψ(1) ψ1(1)Ψ(1) . . . ψp(m1 − 1)Ψ(1)

ψ1(1)Ψ(1) Ψ(1)
. . . ψ1(m1 − 2)Ψ(1)

...
. . . . . .

...

ψ1(m1 − 1)Ψ(1) ψ1(m1 − 2)Ψ(1) . . . Ψ(1)

 , (17)
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where each of the blocks are (m2m3 · · ·mp) × (m2m3 · · ·mp). This matrix follows from the

fact that the first (m2m3 · · ·mp) runs in the full factorial design only differ among the last

p− 1 factors, in the same way the full factorial design with p− 1 factors varies. Each run in

the second block of (m2m3 · · ·mp) runs differs from the first run in the full factorial design

by one level in the first factor, and then in the same way as the full factorial design differs

among the last p − 1 factors, etc. Hence Ψ = Ψ1 ⊗ Ψ(1). Noting that Ψ(p−1) = Ψp, we

obtain

Ψ = Ψ1 ⊗Ψ(1) = Ψ1 ⊗Ψ2 ⊗Ψ(2) = · · · = Ψ1 ⊗ · · · ⊗Ψp =

p⊗
j=1

Ψj.

Now through the properties of the Kronecker product operator, we can prove Theorem 1:

var(β) = σ2
0U

−1Ψ(U−1)′

= σ2
0(

p⊗
j=1

U j)
−1

p⊗
j=1

Ψj

(
(

p⊗
j=1

U j)
−1

)′

= σ2
0

p⊗
j=1

U−1
j

p⊗
j=1

Ψj

(
p⊗
j=1

U−1
j

)′

= σ2
0

p⊗
j=1

U−1
j

p⊗
j=1

Ψj

p⊗
j=1

(U−1
j )′

= σ2
f

p⊗
j=1

U−1
j Ψj(U

−1
j )′.

♦

Proof of Equation (5)

We have Ψj = (1− ρj)Imj
+ ρjJmj

, where Jmj
is a mj ×mj square matrix of 1’s. Then:

U ′
jΨjU j = (1− ρj)U

′
jU j + ρjU

′
jJmj

U j

= mj(1− ρj)Imj
+ ρjU

′
j


mj 0 · · · 0

...
... · · · 0

mj 0 · · · 0


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= mj(1− ρj)Imj
+ ρj


m2
j 0 · · · 0

0 0 · · · 0
...

... · · · 0

0 0 · · · 0



= mj


1− ρj +mjρj 0 · · · 0

0 1− ρj · · · 0
...

. . . . . .
...

0 0 0 1− ρj

 .

♦

Proof of Equation (14)

Let Σ = U−1Ψ(U−1)′. Then var(β0) = τ 2
0 = σ2

0Σ1,1. But since U is the orthogonal full

factorial model matrix with the leading column of U assumed to be 1q, we have that U−1

has as its leading row: 1
q
1q

′. So that:

τ 2
0

σ2
0

=
1′qΨ1q

q2
=
sum(Ψ)

q2
=
sum(

⊗p
j=1 Ψj)

q2
=

∏p
j=1 sum(Ψj)

q2
.

♦
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