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Abstract

Adjustment factors play a crucial role in Taguchi’s approach to robust parameter de-

sign. However, the notion of adjustment factors is not well defined and ambiguities

exist in the selection of those factors. In this article, we propose a criterion for selecting

adjustment factors. This new criterion can be used to explain and extend Taguchi’s

approach. The concept is illustrated using two examples.
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1. Introduction

Taguchi has proposed various performance measures known as Signal-to Noise (SN)

ratios for evaluating the performance of engineering systems (see Taguchi and Wu (1980), and

Taguchi (1991a)). Most of them are criticized in the literature (see Box (1998), Nair (1992),

Bérubé and Wu (2000), and Montgomery (2004), among many others). The recommendation

was to use data-driven performance measures instead of the SN ratios. Although the SN

ratios can be shown to be incorrect under some modeling assumptions, Taguchi’s approach

has a merit which was not easy to appreciate because of the lack of a rigorous framework.

In this article we provide a new perspective to his approach.

A certain type of control factors, namely “adjustment factors”, play a crucial role in

Taguchi’s approach. The SN ratios are supposed to be performance measures independent of

these adjustment factors, so that the optimization of the system can be conveniently split into

two steps, the first being to maximize the SN ratio and the second being some adjustments

using the adjustment factors. Leon, Shoemaker, and Kacker (1987) gave a mathematical

foundation to this approach and proposed the concept of performance measures independent

of adjustment (PerMIA). Using this concept, SN ratios can be justified under some modeling

assumptions, whereas they are inappropriate under other modeling assumptions. However,

the notion of adjustment factors is not well defined and thus deriving PerMIAs can be

ambiguous (see the discussions by various researchers accompanying the paper of Leon,

Shoemaker and Kacker (1987)).

We argue that Taguchi’s motivation for using adjustment factors is mainly to simplify
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the experiment than to simplify the optimization. Based on this we propose a criterion

for selecting adjustment factors from the set of control factors. The new criterion clarifies

several ambiguities about Taguchi’s approach and enables one to develop better approaches

to robust parameter design.

The article is organized as follows. The new criterion about the adjustment factors is

proposed in Section 2. In Section 3, two examples are presented to illustrate the advantages

of the new criterion and some concluding remarks are given in Section 4.

2. Adjustment Factors

Taguchi’s SN ratio for a nominal-the-best characteristic is given by SN = µ2/σ2, where µ

and σ2 are the mean and variance of the response. In order to minimize the expected value

of the quadratic loss function, he proposed to perform the optimization in two steps: first

to find the setting of control factors to maximize the SN and then to use an adjustment

factor to adjust the mean to target. According to his approach an adjustment factor is

a control factor that has a large effect on µ but not on SN . Others, who criticized the

use of SN ratios suggested to replace the SN in the first step by σ2. Therefore, in their

approach an adjustment factor is the one having a large effect on µ but not on σ2. Clearly

the two definitions of an adjustment factor are in contradiction. Then, what is actually an

adjustment factor?

The approach of Leon, Shoemaker, and Kacker (1987) can be explained as follows (see

also the discussion by Easterling (1987)). Let Y be the response and L(Y ) be a quality

loss function. Divide the control factors into two groups (X,M), where M denotes the

3



set of adjustment factors. Then, the minimization of the E{L(Y )} = R(X,M), where the

expectation is taken with respect to the distribution of noise factors, can be done in two

steps:

1. Minimize PM(X) = R(X,M ∗(X)) with respect to X, where M ∗(X) =

arg minM R(X,M ). Denote the solution by X∗.

2. Adjust M to M ∗(X∗).

PM(X) is called a PerMIA. Leon, Shoemaker, and Kacker (1987) further showed that if Y

has a multiplicative error model with error depending only on X, then minimizing PM(X)

is equivalent of maximizing the SN ratio, whereas if Y has an additive error model with error

depending only on X, then minimizing PM(X) is equivalent of minimizing the variance of

Y . According to them the adjustment factors are selected from the set of control factors

to make the product/process design more flexible. Adjustment factors are easy-to-change

factors which can be adjusted to meet with a change in the product’s design requirement.

Because a PerMIA is used for finding the optimal setting of X which are hard-to-change

factors, their settings will not be affected by the design changes. Even with this explanation,

many questions remain unanswered. What is the connection between an easy-to-change

factor with the type of model, such as multiplicative error or additive error model? When

only one adjustment is necessary, what prevents us from using a hard-to-change factor in

the adjustment step? Note that if frequent adjustments are necessary due to the changes

in design or customer requirements, then a different type of control factor known as signal

factor should be used for adjustments (see Taguchi 1991a; Miller and Wu 1996; and Joseph
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and Wu 2002a).

On the other hand, Box (1998) among many others advocated using data-analytic meth-

ods to identify adjustment factors. The approach was to use transformations on the response

to achieve separation between location and dispersion effects. Then, the factors that affect

the location but not the dispersion are termed as adjustment factors, which are used in

the second step of the two-step optimization procedure. The drawback of this approach is

that the adjustment factors are treated as part of the factors used in the experiment. This

either ignores the prior knowledge about such factors or increases the experimental effort by

including such factors as part of the experiment.

In this article, we take a different point of view about adjustment factors. We propose that

these factors should be selected from a set of factors where a fair amount of knowledge exists

about how they affect the mean of the response. Therefore, these factors can be used for

adjusting the mean, even when they are not included in the experiment. This approach, thus

takes advantage of our engineering knowledge about the product/process during optimization

without causing any additional experimental burden. A general strategy for implementing

this approach is given below.

Divide the control factors into two groups denoted by M and X, where the effect of M

on the mean response is known based on the engineering/physical knowledge, whereas the

effect of X is unknown. For example, in an electro plating process, the plating time and

current can be selected as factors in M because their effect on the mean plated thickness is

known from Faraday’s law, whereas factors such as distance between the cathode and anode,

concentration, pH, and temperature of electrolyte can be taken as factors in X. Let µ be the
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mean of the response. The engineering/physical models are mostly deterministic and thus

it makes sense to state the relationship in terms of µ than Y . Thus we have µ = f(M , β),

where the functional form of f is known up to a set of parameters β. Because of the presence

of noise factors, Y is random and has a distribution with mean µ. Let the distribution be

p(y; µ, θ), where θ is a set of unknown parameters. Now X enters in the model through the

unknown parameters β and θ. Thus the complete model can be written as

Y ∼ p(y; f(M ,β(X)),θ(M , X)).

Note that β is a function of X only, because the functional form f is assumed to be correct

with respect to M . A factor from M or all of M can be used for adjustment if the

optimization can be conveniently divided into two steps as described in Leon, Shoemaker,

and Kacker (1987).

Physical experiments can be performed to estimate β and θ as functions of M and X.

Because the engineering knowledge about M is already incorporated into the modeling, the

experiments can focus more on X than M . This strategy helps in reducing the experimental

cost and time, because the investment for obtaining the exact effect of M is smaller. We

will not get into the details of how such experiments can be performed; instead we want

to motivate Taguchi’s approach of using adjustment factors in the light of the foregoing

strategy. It is explained with two examples in the next section.
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3. Examples

3.1 Example 1: Tile Experiment

Consider the famous Ina tile experiment of Taguchi (see Taguchi and Wu, 1980). The

experiment was performed to optimize the manufacturing process with respect to the tile

dimension. As described in the previous section, the set of control factors in the process

can be divided into M and X. What can be the factors in M? In order to answer this

question, we need to know about the manufacturing process. It is easy to understand about

the effect of one control factor, namely the mold dimension (M). Clearly, the mean tile

dimension should be proportional to the mold dimension. Thus, we must have µ = βM .

Assume a normal distribution for the tile dimension. Because the tile dimension should be

proportional to M irrespective of the other control and noise factors in the process, it is

reasonable to assume that var(Y ) ∝ M2. Therefore the following model can be used

Y ∼ N (β(X)M, θ2(X)M2).

Suppose we choose the quadratic loss function: L(Y ) = c(Y − T )2, then

E{L(Y )} = c
({β(X)M − T}2 + θ2(X)M2

)
.

Minimizing this with respect to M , we obtain

M∗ = T
β(X)

β2(X) + θ2(X)
.

The PerMIA can be obtained by substituting this in E{L(Y )}. We obtain,

PM(X) =
cT 2

1 + β2(X)/θ2(X)
.
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Thus, minimizing PM(X) is equivalent of maximizing

β2(X)

θ2(X)
=

E2(Y )

var(Y )
,

which is the same as the SN ratio. It can be estimated from an experiment by keeping the

mold dimension fixed, say at M0. Therefore only X has to be varied in the experiment.

This significantly simplifies the experimentation. In addition, using the above approach we

are able to incorporate the engineering knowledge about the process into the modeling and

optimization. This is clearly superior to those that use only experimental information.

3.2 Example 2: Chemical Experiment

In this section we discuss the robust parameter design of a chemical process. First, we

explain the problems associated with the traditional approach using a hypothetical experi-

ment and then present an intriguing SN ratio proposed by Taguchi. Then we explain how

to derive a PerMIA based on the physical knowledge of the process and demonstrate the

usefulness of adjustment factors.

3.2.1 The Problem

A first order consecutive chemical reaction in two steps is given by

A →k1 B →k2 C,

where the initial chemical A converts to B at a reaction rate k1 and B converts to another

chemical C at a reaction rate k2. Suppose B is the desired chemical, in which case C is an

unwanted byproduct. A typical plot of the concentrations of the three chemicals against time

is given in Figure 1. We can see that as time passes, A depletes to 0; B increases, attains a

maximum, and then decreases to 0; whereas C monotonically increases to 1 (assuming the
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Figure 1: Plot of the concentrations of the chemicals A, B, and C against time.

initial concentration of A to be 1). There are many control factors in the process such as

reaction time, temperature, pressure, cooling rate, and stirring rate in the reaction tank.

They can be set to maximize the concentration of B. For simplicity of presentation, suppose

an experiment is performed by changing only one control factor (say, pressure) keeping all the

other control factors fixed. Let Y1, Y2, and Y3 denote the concentrations of the three chemicals

A, B, and C respectively and let x denote the pressure. The data from the experiment are

given in Table 1 (a similar example is given by Fowlkes and Creveling (1995)).

We would like to find out the best setting for x that maximizes Y2. At first sight all of

them look equally good, as they give the same concentration of 0.6 for the chemical B. Looks

can be deceiving! We will show that by treating the reaction time as an adjustment factor,

x = 10 is the best setting in terms of maximizing the concentration.

3.2.2 Taguchi’s Approach

Taguchi (1991b) proposed an SN ratio for optimizing consecutive chemical reactions
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Table 1: Chemical Experiment and Data

Run x Y1 Y2 Y3

1 10 0.3 0.6 0.1

2 15 0.2 0.6 0.2

3 20 0.1 0.6 0.3

(see also Fowlkes and Creveling (1995), Section 5.5.2, for details). To derive the SN ratio,

Taguchi first made some transformations. Define u1 = Y1, u2 = Y1+Y2, and u3 = Y1+Y2+Y3.

Because u3 = 1 for all t, the process can be optimized by simultaneously minimizing u1 and

maximizing u2. Therefore, u1 is considered as a smaller-the-better (STB) characteristic and

u2 a larger-the-better (LTB) characteristic. For a fraction defective variable (p), Taguchi

defined the SN ratio as

SN = −10 log
p

1− p
.

See Phadke (1989, page 113) for some intuitive arguments for using the above SN ratio. Be-

cause the concentrations are also variables in [0, 1], the SN ratios for the two characteristics

are given by

SN1 = −10 log
u1

1− u1

and SN2 = 10 log
u2

1− u2

.

Note that maximizing the SN ratios will minimize u1 and maximize u2. Now the SN ratio

for the process is defined as the sum of the SN ratios for the STB and LTB characteristics

(similar to the case of operating window SN ratio, see Joseph and Wu (2002b)). Thus

SN = SN1 + SN2
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= 10 log

{
u2(1− u1)

u1(1− u2)

}

= 10 log

{
(Y1 + Y2)(1− Y1)

Y1(1− Y1 − Y2)

}
.

For the experiment given in the previous section, the three SN ratios are 13.2, 12, and 13.2

respectively. Thus, according to the SN ratio the setting x = 15 is bad, whereas x = 10 and

x = 20 are equally good. This can be explained as follows. Since Y1 = Y3 at x = 15, there

is not much scope for improvement. Whereas at x = 10, the process can be run for some

more time, so that more of A can be converted to B thereby increasing its concentration.

In the same way the reaction time can be reduced at x = 20 to increase the concentration

of B. Thus SN ratio is a measure that assesses the performance of the process independent

of the adjustment. As shown in the next section that a better performance measure can be

derived using chemical kinetics. However, Taguchi’s motivation for using reaction time as

an adjustment factor is clear and correct.

3.2.3 Performance Measure

We can treat the reaction time (M) as an adjustment factor, because its relationship with

the concentrations can be easily obtained using the well established laws of chemical kinetics

(see for example Steinfeld, Francisco, and Hase (1999), Section 2.1.3). For this example, we

denote the adjustment factor reaction time by t instead of M . Let E{Yi} = µi(t). Then,

assuming the initial concentration of A to be 1, we obtain

µ1(t) = e−k1t, (1)

µ2(t) =
k1

k1 − k2

(e−k1t − e−k2t), (2)

and µ3(t) = 1 − µ1(t) − µ2(t), where k1 and k2 are the reaction rates. Note that, in terms
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of the notation used in Section 2, β = (k1, k2). For the case k1 = k2 = k, (2) becomes

µ2(t) = kt exp(−kt).

The responses are random due to the presence of noise factors in the process (such as

impurities in the chemical, variations in pressure and temperature). Because Yi ≥ 0 and

∑3
i=1 Yi = 1, we may use the Dirichlet distribution to model these random variables ( Kotz,

Balakrishnan, and Johnson (2000)), whose probability density function is given by

p(Y ) =
Γ(α1 + α2 + α3)

Γ(α1)Γ(α2)Γ(α3)
Y α1

1 Y α2
2 Y α3

3 .

We have

µi(t) =
αi∑3

j=1 αj

, (3)

for i = 1, 2, 3. Note that the µi’s are functions of both t and X, but for simplicity, we have

suppressed the notation on X.

The next step is to specify a loss function. Suppose we terminate the process after time t.

Then the loss may be taken as proportional to the amounts of the chemicals A and C left in

the reaction tank after the termination of the process. Thus, let L(Y ) = c1Y1 + c3Y3, where

c1 and c3 are some cost coefficients. Similar type of quality loss functions are discussed in

Joseph (2004). Our objective is to find a control factor setting that minimizes the expected

value of the loss function. We have

E{L(Y )} = c1µ1(t) + c3µ3(t).

Assume c1 = c3 = c. Then, E{L(Y )} = c{1 − µ2(t)}. Thus the expected loss can be

minimized by maximizing µ2(t).
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The foregoing optimization can be simplified using the concept of PerMIA. To obtain the

PerMIA, first we should maximize µ2(t) with respect to t. Consider the case with k1 6= k2.

Solving for t from

d

dt
µ2(t) =

k1

k1 − k2

(−k1e
−k1t + k2e

−k2t) = 0,

we obtain

t∗ =
1

k2 − k1

ln
k2

k1

. (4)

Substituting t∗ back in µ2(t) we get the PerMIA. Let η = k2/k1. Then for η 6= 1, we obtain

µ2(t
∗) = ηη/(1−η). Similarly for η = 1, we obtain t∗ = 1/k and µ2(t

∗) = e−1. It is easy to

show that µ2(t
∗) is a decreasing function of η. Therefore, for simplicity η can be taken as the

performance measure. It can be minimized to obtain the best control factor setting (note

that η is a function of X).

Suppose the experiments are performed by fixing the reaction time at t0. Let (Y1j, Y2j, Y3j),

j = 1, · · · , n be the data at some experimental run, where
∑3

i=1 Yij = 1 for all j. To do the

performance measure modeling, we need to estimate the performance measure for each run.

The parameters in the Dirichlet distribution can be estimated using maximum likelihood

method. Unfortunately there are no explicit expressions for the estimates. They have to

be solved numerically. The estimates of Dirichlet parameters can then be substituted into

(3) to get the maximum likelihood estimate of µi(t0). A much easier approach is to use the

sample moment estimation. Then, the estimate of µi(t0) is µ̂i =
∑n

j=1 Yij/n. Eliminating t

from (1) and (2) we obtain

µ̂η
1 − µ̂1 = (1− η)µ̂2.
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Thus η is a solution of the function f(η) = µ̂η
1 − µ̂1 + (η− 1)µ̂2. This equation can be solved

numerically to obtain the value of η. For this function, η = 1 is always a solution. It is easy

to show that the function has one more solution different from 1 provided µ̂1 ln µ̂1 + µ̂2 6= 0.

Once we obtain η for each experimental run, it can be modeled as a function of the control

factors. Let η̂(X) be the estimated relationship from the experiment. We need one more

relationship to implement the adjustment step. We have, from (4) t∗ = ln η/(k1(η− 1)) and

from (1) k1t0 = − ln µ1(t0). Therefore, define

λ =
ln η

(1− η) ln µ̂1

,

so that t∗ = λt0. We can compute λ for each experimental run and model it with respect to

X. Denote the estimated relationship by λ̂(X). Now we can perform the following two-step

optimization:

1. Find X∗ by minimizing η̂(X).

2. Adjust the time to t1 = λ̂(X∗)t0.

Now consider the experiment given earlier. We obtain µ̂i = Yi for i = 1, 2, 3. The

performance measures η and λ are evaluated for the three experiments and are given in

Table 2. Because there is only one control factor (x) and three data points, it is unnecessary

to fit linear regression models for η and λ. We can simply look at Table 2 and pick the best.

We see that x = 10 is the best setting (because it gives the smallest η). The adjustment

step is to increase the time by 61.8% from the existing level (because λ = 1.618). The

mean concentration of B after the optimal time adjustment is also given in the table. The
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concentration at x = 10 is 0.654 whereas that of x = 20 is 0.617. Thus the setting x = 20 is

not as good as the setting x = 10, which could not be realized using Taguchi’s SN ratio.

Table 2: Performance Measures

Run x µ̂1 µ̂2 µ̂3 η λ µ2(t
∗)

1 10 0.3 0.6 0.1 0.218 1.618 0.654

2 15 0.2 0.6 0.2 0.293 1.079 0.602

3 20 0.1 0.6 0.3 0.269 0.780 0.617

Note that t is chosen as an adjustment factor not because it is a factor that affects

the location without affecting the dispersion. In fact, it affects both the location and the

dispersion. Also t is not selected neither to make the process design flexible nor because

it is an easy-to-change factor. Instead, t is selected because we knew its relation with

the responses based on the engineering/physical knowledge of the process. Thus, the new

perspective given to the adjustment factors was critical behind this application.

If we had not used the reaction time as an adjustment factor, then all the three settings

would have deemed identical because all of them have equal values for the concentration

of B. We knew the relationship of concentration with t before the experiment itself. We

incorporated this knowledge into the modeling and optimization and thus able to find a

better process setting. Note that we could have achieved the same results by using t also as

an experimental factor. For such an experiment, at least three levels of t should be chosen

because of the nonlinearity. Then the number of experiments will be increased to 9, three
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times more than used here.

4. Conclusions

In the literature, there are ambiguities regarding the role of an adjustment factor. We

tried to clarify that an adjustment factor is a control factor that can be used for adjusting

the mean response. The definition of an adjustment factor should not be accompanied by

statements such as “a factor that do not affect the dispersion”, because given the model and

loss function, a performance measure independent of adjustment can be derived using the

procedure described in Leon, Shoemaker, and Kacker (1987). We also recommended that

whenever possible, an adjustment factor should be selected from those factors which can

be related to the response based on the engineering/physical knowledge of the system. Of

course, this does not rule out the possibility of identifying an adjustment factor through data

analysis, but we stress the importance and advantages of identifying an adjustment factor

before the experiment.

The use of engineering knowledge of the system in modeling not only helps in simplifying

the experiments but also helps in improving the estimation. For example, the data may

suggest a quadratic relationship between the mold dimension and the tile dimension, but by

imposing a linear relationship between them, this can be detected as due to the noise in the

data. Clearly, such conclusions are valid only if our knowledge of the process is correct.

In the examples presented here and in many of Taguchi’s work, the parameters in the

model could be efficiently estimated by keeping the adjustment factor at a fixed value. This

cannot be done always. In such cases, the adjustment factor also needs to be varied in the
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experiment. For examples, see the application of adjustment factors in operating window

experiments (Joseph and Wu 2002b) and failure amplification method (Joseph and Wu,

2004). Here, although adjustment factors do not help in simplifying the experiment, they

help in improving the estimation of model parameters.

There are cases where one cannot use a factor selected based on engineering knowledge for

adjustments. Consider for example a consecutive process in three steps, in which the PerMIA

cannot be derived explicitly and thus the two-step procedure cannot be easily implemented.

However, it is possible to use the chemical kinetics equations and directly minimize the

expected loss. Therefore, although reaction time cannot be used to simplify the optimization,

it can be used to simplify the experiment. Thus the idea of using engineering knowledge

in experimentation is valuable and much broader than the concept of using adjustment

factors. A general strategy for integrating engineering knowledge with experiments needs to

be developed which we leave as a topic for future research.
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