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Abstract: The Robbins-Monro procedure (1951) for stochastic root-finding is a nonpara-

metric approach. Wu (1985, 1986) has shown that the convergence of the sequential

procedure can be greatly improved if we know the distribution of the response. Wu’s

approach assumes a parametric model and therefore its convergence rate slows down

when the assumed model is different from the true model. This article proposes a

new approach that is robust to the model assumptions. The approach gives more im-

portance to observations closer to the root, which improves the fit to the true model

around the root and makes the convergence faster. Simulation study shows that the

new approach gives a superior performance over the existing methods.
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1. Introduction

Finding the root of a function is arguably the oldest and the most important

problem in numerical mathematics. An interesting situation occurs when we do not

know this function and can only observe the values of it with some error. This prob-

lem has numerous applications in science and engineering. For example, a control

engineer will be interested to find the value of a control variable for maintaining some

system response at a target value. The exact relationship between the control variable

and the response may be unknown, but the response can be observed with some mea-

surement noise. The problem becomes very complicated when the true relationship is

highly nonlinear and the measurements are extremely noisy. Some other applications
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of stochastic root-finding include the quantile estimation problem in bio-assay exper-

iments (Finney (1978)), quality and reliability improvement (Joseph and Wu (2002)),

sensitivity experiments (Neyer (1994)), and adaptive control and signal processing

(Chen (2002), Kushner and Yin (1997), Benveniste, Métivier, and Priouret (1990)).

A recent account of this subject is given by Spall (2003).

The problem can be formally stated as follows. Suppose we want to find the

root (θ) of an unknown function M(x). The experimenter can observe a random

variable (Y ) whose mean is M(x). Thus, one can try to find the root numerically by

observing Y ’s at some values of x. There are two ways to conduct the experiment, a

sequential design (adaptive design) or a fixed design (non-adaptive design). In a fixed

design the design points are chosen prior to the experiment, whereas in a sequential

design they are chosen sequentially, i.e., xn+1 will be chosen based on x1, x2, · · · , xn

and Y1, Y2, · · · , Yn. Most often (particularly in nonlinear systems) the “optimal” x

values depend on the distribution of Y , but very little is known about it before the

experiment. Therefore a nonadaptive design can exhibit poor optimality properties,

whereas a sequential design approach enables one to optimally select the design points.

Therefore a sequential design is expected to outperform a fixed design.

One sequential design strategy known as stochastic approximation is to choose

x1, x2, · · · such that xn → θ in probability. In a seminal paper, Robbins and Monro

(1951) proposed the following method, which closely resembles the Newton-Raphson

method for nonlinear root-finding. Start at some x1 that is believed to be close to the

root θ. Then generate the other design points sequentially using the following scheme:

xn+1 = xn − anyn, (1.1)

where {an} is a sequence of pre-specified constants. Assume that M(x) is nonde-

creasing and the slope Ṁ(θ) > 0. Robbins & Monro proved that if the {an} satisfies

the conditions: an > 0,
∑∞

n=1 an = ∞, and
∑∞

n=1 a2
n < ∞, then xn → θ,
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in probability, as n → ∞. For example an = c/n, where c is a positive constant,

satisfies the above conditions. Based on the results of Chung (1954), Hodges and

Lehmann (1956), and Sacks (1958), the procedure is fully asymptotically efficient with

an = 1/{nṀ(θ)}. This clearly shows the difference between deterministic root-finding

and stochastic root-finding problems. In the former, a constant sequence an = 1/Ṁ(θ)

would work, but in the latter, a decreasing sequence of constants at some particular

rate is necessary to ensure the desired convergence. For practical implementation of

the Robbins-Monro procedure some prior value of the slope is required. If a good prior

value is not available, then the slope is estimated by using the least squares estimate
∑

(xi − x̄n)yi/
∑

(xi − x̄n)2. This is known as adaptive Robbins-Monro procedure,

which under some truncation rule has the same asymptotic optimality properties as

that of the Robbins-Monro procedure (see Anbar (1978), Lai and Robbins (1979) for

details). Lai (2003) gives a recent review of this subject.

The Robbins-Monro procedure is a nonparametric procedure in the sense that

the xn converges to θ irrespective of the distribution of Y . Wu (1985, 1986) observed

that the experimenters often know the distribution (such as normal or binomial) and

therefore more efficient sequential procedures can be developed. The basic idea in

Wu’s approach is to approximate M(x) by a parametric function F (x|γ). Then, after

observing the data (x1, y1), · · · , (xn, yn), the sequential procedure is to select xn+1

such that F (xn+1|γ̂n) = 0, where γ̂n is the maximum likelihood estimate (MLE) of γ.

Ying and Wu (1997) showed that xn → θ almost surely irrespective of the functional

form of M(x). Wu (1985) has demonstrated in the case of binary data that the MLE-

based sequential procedure performs much better than the Robbins-Monro procedure

because of its efficient use of the complete set of data. This was also confirmed by

Young and Easterling (1994) through extensive simulations. However, the MLE-based

approach may loose its efficiency if F is not a good approximation to M . In this work

we propose an adaptive design procedure based on a flexible Bayesian modeling, whose
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performance is more robust to the deviations of F from M .

The article is organized as follows. In Section 2, assuming normal distribution

for Y , we propose a modeling approach that takes into account of the uncertainties

in the parametric part of the model. In Section 3 the issues related to estimation are

considered. Due to some estimation problems, a fully Bayesian approach is proposed

in Section 4. Extensions of the proposed approach to nonnormal distributions are

considered in Section 5. The performance of the proposed approach is compared with

the existing methods through simulations in Section 6 and the convergence is studied

in Section 7. Some concluding remarks and future research directions are given in

Section 8.

2. Modeling

Assume that Y follows a normal distribution. Extensions to other distributions

will be considered in a later section. Let Y = M(x) + e, where e ∼ N(0, σ2) and the

function M(x) is unknown but is assumed to be increasing in x. In Wu’s MLE-based

approach M(x) is approximated by β(x − θ). With the above choice for the mean,

Wu’s approach reduces to the well-known iterated least squares procedure (Lai and

Robbins, 1982). The true M(x) can be nonlinear, in which case, the MLE-based

approach may loose its efficiency. This is because the MLE approach assumes all the

observations to be from the model Y = β(x− θ) + e and therefore gives equal weights

to all observations. This can slow down the convergence of the MLE based approach.

We propose a more flexible modeling that takes this uncertainty into account.

We assume M(x) to be a random function with mean β(x − θ). This can be

formulated using a Bayesian approach by putting a prior on M(x). One approach to

introduce randomness in the function is to let M(x) = (β + ε(x))(x− θ), where ε(x) is

a realization from a Gaussian process (GP). Such stochastic processes are widely used

for modeling deterministic functions in computer experiments (Santner, Williams, and
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Notz (2003)). Thus we have the model,

Y = (β + ε(x))(x− θ) + e, e ∼ N(0, σ2), ε(x) ∼ GP (0, τ2R), (2.1)

where the covariance function is defined as cov(ε(xi), ε(xj)) = τ2R(xi, xj). There

are several choices for the correlation function R. The most popular one in com-

puter experiments is the exponential correlation function given by Rij = R(xi, xj) =

exp(−λ|xi − xj |p), where λ > 0 and 0 < p ≤ 2.

Note that var{M(x)} = τ2(x − θ)2. Hence as x → θ, var{M(x)} → 0. This

is an important feature in our modeling. As the points get closer to θ, the variance

approaches 0, and therefore in the estimation more importance is given to the recent

observations. We also consider a special case of the Gaussian process, where the

correlation between any two points is equal to 0. This leads to an independent process,

which is easier to handle than a dependent process. Thus the model is given by

Y = (β + ε(x))(x− θ) + e, e ∼ N(0, σ2), ε(x) ∼ N(0, τ2), (2.2)

and cov(ε(xi), ε(xj)) = 0 for xi 6= xj . To distinguish from (2.1), we will call (2.2) as

independent error model and (2.1) as dependent error model.

3. Estimation

Suppose we have observed the data (x1, y1), · · · , (xn, yn). Let

y = (y1, · · · , yn)′, ε = (ε(x1), · · · , ε(xn))′, X =


 1 · · · 1

x1 · · · xn



′

, η = β
(
−θ
1

)
,

T (θ) = diag{x1 − θ, · · · , xn − θ}, and R = (Rij)n×n.

The x’s are generated sequentially, but fortunately the likelihood is not affected by

the sequential design. Therefore we can obtain the likelihood as though the data are

generated from a fixed design. Thus, the joint (or hierarchical) likelihood is given by

Ljoint =
1

(2πσ2)n/2
exp{ −1

2σ2
(y−Xη−T (θ)ε)′(y−Xη−T (θ)ε)}exp{ −1

2τ2 ε′R−1ε}
(2πτ2)n/2|R|1/2

. (3.1)
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For the moment assume that β, τ2 and the parameters in the correlation function (λ

and p) are known. Then, we can estimate θ, and ε = (ε1, · · · , εn)′ by maximizing (3.1)

and our sequential procedure will be to set xn+1 at the current estimate of θ.

Note that we do not require the values of ε1, · · · , εn for the sequential proce-

dure. Their presence makes the inference difficult and therefore we can treat them

as nuisance parameters. It is well known that when the dimension of the nuisance

parameters increases with n, the MLE’s can become inconsistent. Hence it is desirable

to eliminate the nuisance parameters in our problem. There are several approaches to

tackle nuisance parameters (Severini (2000)), of which the integrated likelihood seems

to be the most suitable for the present problem.

Integrating out ε from (3.1) we get (the proportionality constant is omitted)

L =
1

|σ2I + τ2R(θ)|1/2
exp[−1

2
(y −Xη)′{σ2I + τ2R(θ)}−1(y −Xη)],

where R(θ) = T (θ)RT (θ). Thus the MLE of θ can be obtained by minimizing

−2 log L = log |σ2I + τ2R(θ)|+ (y −Xη)′{σ2I + τ2R(θ)}−1(y −Xη), (3.2)

and our sequential procedure becomes

xn+1 = θ̂n = arg min
θ
−2 log L. (3.3)

For the independent error model in (2.2), the objective function in the above mini-

mization simplifies to

n∑

i=1

log{σ2 + τ2(xi − θ)2}+
n∑

i=1

{yi − β(xi − θ)}2

σ2 + τ2(xi − θ)2
.

This can be compared with Wu’s MLE-based approach. In his approach the MLE is

obtained by minimizing
∑n

i=1{yi−β(xi−θ)}2. Different from this, our approach uses

weights equal to {σ2 + τ2(xi − θ)2}−1 in the objective function. The weights increase
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as xi gets closer to θ giving more importance to observations closer to θ. This property

makes the estimation in our approach more robust to the model misspecifications.

The minimization of (3.2) is complicated because of multiple local minima. It can

be seen in the following extreme case. All the proofs are given in the Appendix.

Proposition 1 When σ2 = 0, the function in (3.2) has at least n + 1 local minima

with respect to θ.

For example, when n = 100 we are faced with the minimization of a function with at

least 101 local minima. Thus we have converted the simple problem of finding the root

of a function to a very complex optimization problem! This method is therefore useful

only when the cost of actually obtaining a new y is much higher than the computational

cost, which is the case in most practical situations involving physical experiments. The

optimization can be simplified as follows. Order the x’s as x(1) < x(2) < · · · < x(n).

As shown in the proof of Proposition 1 that for the case of σ2 = 0, L = 0 at all

the design points and it has at least one local maximum in each of the intervals

(−∞, x(1)), (x(1), x(2)), · · · , (x(n),∞). Finding the maximum in each of these intervals

is easier and then one could get the global maximum. Because −2 log L is continuous

in σ2 a similar algorithm will work well even for the case of σ2 > 0. The optimization

can be further simplified by searching for the global minimum of −2 log L only in the

intervals around xn.

4. A Fully Bayesian Approach

So far we have assumed that β, τ2, and the parameters in the correlation function

to be known. In practice these values are not known. We may try to estimate these

parameters also from the data. Suppose we use the Gaussian correlation function

given by R(xi, xj) = exp(−λ|xi − xj |2), which gives sample paths that are infinitely

differentiable. This is a good choice when M(x) is very smooth. Thus we can minimize

(3.2) with respect to the parameters θ, β, τ , and λ. It is reasonable to assume that σ is
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known. If unknown, it can be easily estimated by collecting a sample of observations

at any fixed x. The sequential procedure remains the same as xn+1 = θ̂n.

It is well known that the data generated by stochastic approximation methods

do not give much information about the slope parameter β. See, for example, Lai

and Robbins (1979). Estimation of the correlation parameters is even more difficult.

When the data do not give much information about the parameters it is important

to use the prior information that we have about the parameters. Thus, using a fully

Bayesian approach, many of the finite sample estimation problems can be mitigated.

Assume θ ∼ N(x1, σ
2
θ), β ∼ N(β0, σ

2
β), τ ∼ Unif(τl, τu), and λ ∼ Unif(λl, λu).

Other prior distributions may also be used. The posterior distribution (after integrat-

ing out ε’s) is

f(θ, β, τ, λ|y) ∝ e−
1
2
(y−Xη)′{σ2I+τ2R(θ)}−1(y−Xη)

|σ2I + τ2R(θ)|1/2
e
−(θ−x1)2

2σ2
θ e

−(β−β0)2

2σ2
β 1[τl,τu](τ)1[λl,λu](λ).

Finding the posterior mean of the parameters is difficult, whereas the maximum-

a-posteriori (MAP) estimators can be easily computed. We can obtain the MAP

estimators by minimizing

log |σ2I+τ2R(θ)|+(y−Xη)′{σ2I+τ2R(θ)}−1(y−Xη)+
(θ − x1)2

σ2
θ

+
(β − β0)2

σ2
β

, (4.1)

with respect to θ, β, τ, and λ subject to the conditions τl ≤ τ ≤ τu and λl ≤ λ ≤ λu.

Note that in the case of an independent error model, there is no λ in the objective

function.

Consider the following special cases:

1. τ = 0, σβ = 0: The sequential procedure based on (4.1) becomes

xn+1 = xn − 1
(n + σ2

β2
0σ2

θ
)β0

yn, (4.2)

which is the same as the Robbins-Monro procedure in (1.1).
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2. τ = 0: The MAP estimates of θ and β can be obtained by minimizing

1
σ2

n∑

i=1

{yi − β(xi − θ)}2 +
(θ − x1)2

σ2
θ

+
(β − β0)2

σ2
β

. (4.3)

We will call the resulting sequential procedure as Wu’s MAP procedure because

it reduces to Wu’s (1986) MLE approach when σθ = ∞ and σβ = ∞.

Thus, the Robbins-Monro procedure and Wu’s procedure are special cases of the

proposed sequential procedure. Moreover, these special cases are obtained by putting

some extreme values for the parameters, such as τ = 0 and/or σβ = 0, which may not

be realistic. Therefore, by choosing more realistic values for these parameters in the

proposed procedure, we can expect to see some improvement over these two existing

procedures.

5. Non-Normal Distributions

The underlying distribution of the observations can be different from normal.

For example, an explosive designer may be interested in finding the level of shock

necessary to make 99.99% of the explosives fire (Neyer (1994)), in which case the

data are binary and a Bernoulli distribution should be used. The Robbins-Monro

procedure does not assume any distributions for Y and therefore it can be applied

irrespective of the underlying distributions. Although the Robbins-Monro procedure,

in this sense, is a nonparametric method, its efficiency can be greatly improved if

we know the true distribution (see Joseph (2004) for the case of binary data). Wu

(1985, 1986) has extended the MLE approach to generalized linear models, which

is a very general and versatile approach. As described in Section 1, Wu assumes

a parametric model for M(x), say F (x|γ), and uses F (x|γ̂n) in place of M(x) to

determine the root. Ying and Wu (1997) showed that Wu’s MLE-based sequential

design generates points that converge to θ irrespective of the parametric function F .

Although this is asymptotically valid, in finite samples the results can be seriously
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affected by an improper choice of F . We can extend the approach in Section 2 to

model the uncertainties in F and thereby developing a sequential design that is more

robust to model uncertainties.

Suppose Y has some distribution with mean M(x). We want to find θ such that

M(θ) = α. Choose a monotonic function g such that the range of g{M(x)} is in

(−∞,∞). Let g{M(x)} = g(α) + (β + ε(x))(x − θ), where ε(x) ∼ GP (0, τ2R). Now

we can write down the posterior distribution, obtain the MAP estimate of θ, and get

the sequential design. For example, consider the binary data. Here g could be logit or

probit. Make the assumptions as in Section 4, then the posterior distribution becomes

n∏

i=1

{M(xi)}yi{1−M(xi)}1−yi
exp{ −1

2τ2 ε′R−1ε}
τn|R|1/2

e
−(θ−x1)2

2σ2
θ e

−(β−β0)2

2σ2
β 1[τl,τu](τ)1[λl,λu](λ),

where M(xi) = g−1{g(α) + (β + ε(xi))(xi − θ)}. If θ̂n is the MAP estimate of θ, then

the sequential design is xn+1 = θ̂n. In general it is difficult to eliminate the nuisance

parameters ε’s as done in the case of normal distributions. Overall, the estimation

problem in non-normal distributions is much more complex and we will leave the

details as a topic for future research.

6. Simulations

In this section we will investigate the performance of the proposed procedure in

(4.1) using simulations. It will be compared with the existing procedures such as the

Robbins-Monro (RM) procedure in (4.2) and Wu’s MAP procedure in (4.3).

Consider a nonlinear function M(x) = ex +2x− 5, whose root is 1.0587. Suppose

σ = 0.5 and we start at x1 = 3. To use the procedures in (4.1), (4.2), and (4.3), we

need to select the necessary prior parameters. Let σθ = 1, β0 = 6, σβ = 0.25β0, τl =

0, τu = 10σ, λl = 0, and λu = 100. Let n = 10, which means the best estimate of the

root is x11. Then 100 simulations were performed on the four procedures: proposed

procedure based on the dependent error model, proposed procedure based on the

independent error model, Wu’s MAP, and the RM procedure. The recursions for a
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Figure 6.1: Simulation study. Recursions from x2 to x11 for M(x) = ex +2x−5.
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Table 6.1: Test functions, Prior specifications, and MSE of x11

Prior MSE

M(x) σ x1 β0 Dep. Indep. Wu RM

ex + 2x− 5 0.5 3 6 .0026 .0029 .0271 .1527

x2 − 2 0.05 2 2 .00004 .00004 .00031 .00030

−0.4 + x + 0.2 sin(5x) 0.05 −1 0.5 .0002 .0002 .0012 .0002

e2x/(1 + e2x)− 0.9 0.04 0 0.2 .0008 .0011 .0258 .0756

few of those simulations are shown in Figure 6.1. We see that both the proposed

procedures outperform Wu’s MAP procedure and the RM procedure. Note that the

starting point x1 = 3 is far away from the root θ = 1.0587. Because Wu’s MAP

procedure gives equal weights to all observations, the convergence is very slow. The

x2 and x3 of the dependent and independent error models are very similar to that

of Wu’s MAP. But because less weights are given to observations far from θ, the

new procedures quickly “forget” about the starting point and converge to θ at a much

faster rate. Three more functions were selected for simulations. The functions and the

prior parameter values x1 and β0 are shown in Table 6.1. The other prior parameters

are kept the same as before. The mean squared error (MSE) of x11 with respect

to θ is computed from the simulations and are given in Table 6.1. We see that the

two proposed procedures have smaller MSE values and thus perform better than the

existing methods.

It is surprising that the performance of the independent error model is compara-

ble to the more complicated dependent error model. Naturally one would expect the

dependent error model to perform better, which is not seen here. Thus we conclude

that using a dependent process for the error does not significantly improve the per-

formance of the procedure. This phenomenon can be explained as follows. First, the
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most important property underlying the performance of the new procedure is that

the variance decrease as x converges to θ, which is shared by both the procedures.

Second, stochastic approximation procedures produce very little information for es-

timating slope and correlation parameters, and therefore little is gained by using a

dependent process. Thus, based on the simulation study, we recommend using the

independent error model because of its simplicity.

We also need to check the sensitivity of the proposed procedure with respect to

the prior specification. Each of the prior parameters is varied one at a time and the

simulations are repeated. The MSE values for the function M(x) = ex + 2x − 5 are

plotted in Figure 6.2. We can see that the two proposed procedures are robust to the

prior specification. One of the critical parameters is the starting point. We can see

that the proposed procedures perform very well when x1 is far away from the root

(θ = 1.0587). When x1 is close to θ, the MSE values are very small, and therefore

practically these procedures are not different. They become significantly different

when x1 is away from θ and in those cases the proposed procedures clearly produce

superior performance. The slope parameter β0 has a significant effect on both Wu’s

MAP and the RM procedures, whereas it does not affect the proposed procedures.

The same conclusion can be drawn with respect to σθ and σβ/β0.

The prior specification is always the most difficult thing to do in any Bayesian

procedures. We provide the following guidelines based on our experience. The starting

point and the slope parameter β0 should be chosen based on the prior knowledge. The

specification of the other parameters seems to be less critical. The choice σβ = 0.25β0

seems to be reasonable. The parameter τu should be selected based on the knowledge

of the function. If the function is expected to be highly nonlinear, then a large value

should be chosen. Because the weights used in the procedure are inversely proportional

to σ2/τ2 + (xi − θ)2, it is the ratio τ/σ that matters. The choice τu = 10σ worked

well in the simulation study. One nice feature of the proposed procedures is that the
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Figure 6.2: Simulation study. Mean squared error of the estimator of θ against

the prior parameters, for the function M(x) = ex + 2x− 5.
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performance is not very sensitive to the prior specification. A reasonable prior should

result in a good performance.

7. Convergence

In this section we study the convergence of the proposed sequential procedure.

To make the mathematics tractable, we only study the independent error model.

This will get rid of the covariance terms in the R(θ) matrix, thus simplifying the

calculations. Moreover, the simulations in the previous section have indicated that

the performance of the proposed procedure with independent process is as good as

that of the dependent process. Therefore, consider the independent error model (2.2)

with Rij = 0 for i 6=j and Rii = R(xi, θ, λ) (here we consider a more general form for

the correlation function by allowing Rii to depend on θ and λ).

The conditional density of Yn given y1, . . . , yn−1 is

fYn(yn|y1 . . . , yn−1)

=
1√
2π
|σ2 + τ2Rnn(xn − θ)2|−1/2exp{− [yn − β(xn − θ)]2

2[σ2 + τ2Rnn(xn − θ)2]
}. (7.1)

Let the parameter be θ = (θ1, θ2, θ3, θ4) = (β, γ, τ, λ), where γ = βθ. Let the MLE

based on y1, . . . , yn be θ̂ = (θ̂n,1, θ̂n,2, θ̂n,3, θ̂n,4) = (β̂n, γ̂n, τ̂n, λ̂n). To prove the con-

sistency of (β̂n, γ̂n), we extend the result of Datta (1997) in the following lemma. In

order to state the lemma, define the following notations. Let Θ ⊂ Rm be a bounded

parameter space. Assume that the ith experiment Ei is determined by the former i−1

observations Y1, . . . , Yi−1 and that for θ ∈ Θ, the ith observation Yi, given Y1, . . . , Yi−1,

has a density f(y, ei, θ) with respect to some σ finite measure µ. Further, let the true

value of the parameter be θ0 and Pθ0 denote the probability distribution governing

Y1, Y2, . . . when θ = θ0.

Lemma 1. Suppose the following three conditions hold:
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(i) Given ε > 0, there exist η(ε) > 0 such that

Pθ0{ inf
θ∈Nc

l,ε

n−1
n∑

i=1

(k(Ei, θ0)− k(Ei, θ)) > η(ε)} → 1, as n →∞, (7.2)

where k(Ei,θ) =
∫

(logf(y,Ei, θ))f(y, Ei,θ0)dµ and N c
l,ε(θ0) = {θ = (θ1, . . . , θm) :

(θ1 − θ0,1)2 + . . . + (θl − θ0,l)2 > ε}.

(ii) lim sup
n→∞

sup
e1,...,en

n−1
n∑

i=1

∫
(‖f(y, ei, ·)‖ −M)+f(y, ei, θ0)dµ → 0, as M →∞, (7.3)

where ‖f(y, ei, ·)‖ is the sup norm about θ for given y and ei, and x+=max(x,0) for

x ∈ R.

(iii) lim sup
n→∞

sup
e1,...,en,θ∈Θ

n−1
n∑

i=1

∫
sup

θ̃∈Nρ(θ)

(| logf(y, ei, θ̃)−logf(y, ei, θ) |)f(y, ei,θ0)dµ

→ 0, as ρ → 0, (7.4)

where Nρ(θ) = {θ̃ = (θ̃1, . . . , θ̃m) : (θ̃1 − θ1)2 + . . . + (θ̃m − θm)2 ≤ ρ}.
Then the component (θ̂n,1, . . . , θ̂n,l) of (θ̂n,1, . . . , θ̂n,m) which maximizes

∑n
i=1 logf(yi, ei, θ),

i.e., the MLE (θ̂n,1, . . . , θ̂n,l) is consistent for (θ0,1, . . . , θ0,l) under Pθ0 , as n →∞.

In our problem, Ei = xi, i ≥ 1. Let B1 = {(u, v) : u = 1, |v| < δ1 < 1},
B2 = {(u, v) : u 6= 1, u > δ2 > 0, v = 0}, and B3 = {(u, v) : u 6= 1, v 6= 0, u > δ31 >

0, h(u, v) > δ32 > 0}, where

h(u, v) =
4v2

4v2 + (|1− u| ±
√

(1− u)2 + 4v2)2
{u− 2v2

1− u
+

2v2 + 1− u

1− u
·(|1− u| ±

√
(1− u)2 + 4v2)2

4v2
}

(7.5)

We now show that under some conditions the MLE (β̂n, γ̂n) is consistent.

Theorem 1. Assume that x take values in a bounded subset E of R1 and the param-

eter space Θ is a bounded subset of R4, for which 0 < d < β. Assume also that for all

x ∈ E and θ ∈ Θ, R(x, θ, λ)(x − θ)2, d
dθ [R(x, θ, λ)(x − θ)2] and d

dλ [R(x, θ, λ)(x − θ)2]

have upper bounds. Then we have:
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(1) If the experiments x1, . . . , xi, . . . satisfy

Pθ0{(n−1
n∑

i=1

x2
i , n

−1
n∑

i=1

xi) ∈ B1 ∪B2 ∪B3} → 1 as n →∞,

condition (i) of Lemma 1 holds with l = 2 and m = 4.

(2) Conditions (ii) and (iii) of Lemma 1 hold.

By applying Lemma 1, we prove the consistency of the MLE (β̂n, γ̂n) under the

assumptions of Theorem 1. Therefore, θ̂n = γ̂n/β̂n is also consistent. For the MAP

estimator of (β, γ), we add a term f0(y, θ) = π(θ)g(y) for i = 0 in Lemma 1 and

Theorem 1, where π(θ) is the prior density for θ and g(y) is a positive and integral

function about the σ finite measure µ. Since π(θ) in Section 4 is bounded for θ ∈ Θ,

conditions (i) ∼ (iii) of Lemma 1 are all valid under the assumptions of Theorem 1.

Then the MAP estimator for (β, γ), i.e., the component (θ̂n,1, θ̂n,2) of (θ̂n,1, . . . , θ̂n,4)

which maximizes
∑n

i=0 logf(yi, ei, θ), is consistent.

The assumptions of the theorem are mild. We can make some truncation on

xj , j ≥ 1, so that (n−1
∑n

i=1 x2
i , n

−1
∑n

i=1 xi) ∈ B1 ∪B2 ∪B3 always hold. Then for a

proper function R(x, θ, λ) the assumptions of Theorem 1 are satisfied.

8. Conclusions

Wu’s MLE approach to stochastic root-finding has a drawback that, if the assumed

parametric model is different from the true model, then the convergence of the proce-

dure becomes slow. In this article we propose a new adaptive design to overcome this

problem. This adaptive design automatically gives more weight to the observations

closer to the root and therefore gives a better local fit to the true model around the

root which makes the procedure converge faster irrespective of the model assumption.

Two versions of the proposed approach namely, dependent error model and indepen-

dent error model are discussed. Their superior performance over the Robbins-Monro

procedure and Wu’s MAP procedure is demonstrated through simulations.

The convergence for the sequential procedure is proved under some regularity
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conditions. Simulations clearly show that the procedure is promising and can be

considered for adoption in practice. Extensions of the approach to non-normal dis-

tributions are also discussed, although more work is needed for their practical imple-

mentation. This paper deals with only univariate functions. The Gaussian process

modeling is known to perform well in higher dimensions and therefore the extension of

this methodology to multivariate case will be a worthwhile topic for future research.

Applications to stochastic optimization is also an interesting topic for research.
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Appendix

Proof of Proposition 1:

Let

a(t) = (y −Xη)′R−1(t)(y −Xη) =
n∑

i=1

n∑

j=1

r̄ij
{yi − β(xi − t)}

(xi − t)
{yj − β(xj − t)}

(xj − t)
,

where r̄ij = (R−1)ij . We have that

L =
1

τn|R|1/2

1∏n
i=1 |xi − t| exp{−a(t)

2τ2
}.

We have that xk 6= θ, otherwise the optimization is not necessary, and hence yk 6= 0

for all k = 1, · · · , n. Also since R is positive definite, a(t) > 0 for all t. Taking

appropriate limits, we obtain L = 0 for t ∈ {x1, · · · , xn,−∞,∞}. Also L > 0 for

t /∈ {x1, · · · , xn,−∞,∞} and L is a continuous function in t. Thus the result follows

from Rolle’s theorem. ♦



ADAPTIVE DESIGNS FOR STOCHASTIC ROOT-FINDING 19

Proof of Lemma 1:

Let

Zi(θ) = logf(Yi, Ei, θ), i ≥ 1, Dn(θ) = n−1
n∑

i=1

Zi(θ),

and

D̃n(θ) = n−1
n∑

i=1

∫
[logf(y,Ei, θ)]f(y, Ei, θ0)dµ = n−1

n∑

i=1

k(Ei, θ).

It is easy to see that the conditions of the L1 law of large numbers (Datta 1997,

Theorem 2.1) follow from (2) and (3) of Lemma 1. Therefore, by the same theorem,

sup
θ
|Dn(θ)− D̃n(θ)| → 0

in Pθ0 probability.

For ε > 0, we have

n−1
∑n

i=1 k(Ei, θ0)− k(Ei, θ̂n)

= D̃n(θ0)−Dn(θ0) + Dn(θ0)−Dn(θ̂n) + Dn(θ̂n)− D̃n(θ̂n)

≤ D̃n(θ0)−Dn(θ0) + Dn(θ̂n)− D̃n(θ̂n) ≤ 2 supθ |Dn(θ)− D̃n(θ)| < η(ε)

with Pθ0 probability tending to one, as n →∞. Then, by condition (1) of Lemma 1,

with probability Pθ0 tending to one, θ̂n is not in N c
l,ε(θ0), i.e., (θ̂n,1 − θ0,1)2 + . . . +

(θ̂n,l − θ0,l)2 ≤ ε}.
Since ε > 0 is arbitrary, we obtain that (θ̂n,1, . . . , θ̂n,l) is consistent. ♦

Proof of Theorem 1:

Let a be an upper bound for R(x, θ, λ)(x − θ)2. Let xi be the design point

determined by the former i − 1 observations y1, . . . , yi−1. Let µ = βxi − γ and µ0 =

β0xi − γ0. From the conditional density fYi(yi|y1 . . . , yi−1), we have

k(xi, θ) =
∫

(logf(y, xi,θ))f(y, xi,θ0)dy

= −1
2
[log(σ2 + τ2Rii(θ, λ)(xi − θ)2]− 1

2
log(2π)
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−σ2 + τ2
0 Rii(θ0, λ0)(xi − θ0)2

2[σ2 + τ2Rii(θ, λ)(xi − θ)2]
− (µ0 − µ)2

2[σ2 + τ2Rii(θ, λ)(xi − θ)2]
, (A.1)

and

k(xi, θ0) = −1
2
[log(σ2 + τ2

0 Rii(θ0, λ0)(xi − θ0)2]− 1
2
log(2π)− 1

2
. (A.2)

Then for l = 2, θ ∈ N c
2,ε(θ0) and by the fact that log(x)+ 1

x has a minimum at x = 1,

we have from (A.1) and (A.2) that

n−1
n∑

i=1

k(xi, θ0)− k(xi, θ)

= n−1
n∑

i=1

{1
2
[log

σ2 + τ2Rii(θ, λ)(xi − θ)2

σ2 + τ2
0 Rii(θ0, λ0)(xi − θ0)2

+
σ2 + τ2

0 Rii(θ0, λ0)(xi − θ0)2

σ2 + τ2Rii(θ, λ)(xi − θ)2
]

−1
2

+
(µ0 − µ)2

2[σ2 + τ2Rii(θ, λ)(xi − θ)2]
}

≥ n−1
n∑

i=1

[(β − β0)xi − (γ − γ0)]2

2(σ2 + τ2a)
≥ [2(σ2 + τ2a)]−1ε2n−1

n∑

i=1

(xi cosα− sinα)2.

(A.3)

Now, consider n−1
∑n

i=1(xi cosα − sinα)2. When n−1
∑n

i=1 x2
i = 1, its global

minimum is 1 − |n−1
∑n

i=1 xi|; when n−1
∑n

i=1 x2
i 6= 1, n−1

∑n
i=1 xi = 0, the mini-

mum is n−1
∑n

i=1 x2
i or 1; when n−1

∑n
i=1 x2

i 6= 1, n−1
∑n

i=1 xi 6= 0, the minimum is

h(n−1
∑n

i=1 x2
i , n

−1
∑n

i=1 xi) or n−1
∑n

i=1 x2
i , where the function h(u, v) is defined in

(7.5). Then, under the conditions of this theorem, we have from (A.3) that there exist

a positive constant δ such that

Pθ0( inf
θ∈Nc

2,ε(θ0)
n−1

n∑

i=1

k(xi, θ0)− k(xi, θ) > δ[2(σ2 + τ2a)]−1ε2) → 1, as n →∞.

From the conditional density we also have
∫

(‖f(y, xi, ·)‖)−M)+f(y, xi,θ0)dy

=
1
2

∫
(‖log(2π)+log(σ2+τ2Rii(θ, λ)(xi−θ)2)+

(u− (β − β0)xi + (γ − γ0))2

σ2 + τ2Rii(θ, λ)(xi − θ)2
‖−2M)+
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·exp{−1
2u2 · (σ2 + τ2

0 Rii(θ0, λ0)(xi − θ0)2)−1

√
2π(σ2 + τ2

0 Rii(θ0, λ0)(xi − θ0)2)
du

≤ 1
2

∫
(‖log(2π) + log(σ2 + c1a) +

(|u|+ c2)2

σ2
‖)− 2M)+ ·

exp{−1
2u2 · (σ2 + τ2

0 a)−1

√
2πσ2

du,

(A.4)

where c1 and c2 are positive constants. Then condition (ii) of Lemma holds from

(A.4).

Additionally, for

g(θ) = g(θ1, θ2, θ3, θ4) = g(β, γ, τ, λ)

= log(σ2 + τ2Rii(θ, λ)(xi − θ)2) +
(u− βxi + γ + β0xi − γ0)2

σ2 + τ2Rii(θ, λ)(xi − θ)2
,

it is easy to see that there exist positive constants aij , i = 1, 2, 3, and j = 1, 2, 3, 4,

such that ∀xi ∈ E and ∀θ ∈ Θ,

| ∂

∂θi
g(θ)| ≤ ai1|u|2 + ai2|u|+ ai3, i = 1, . . . , 4. (A.5)

Then we have

∫
sup

θ̃∈Nρ(θ)

(| logf(y, xi, θ̃)− logf(y, xi,θ) |)f(y, xi, θ0)dy

=
∫

sup
θ̃∈Nρ(θ)

|
4∑

i=1

[
∂

∂θi
g(θ+ξ(θ̃−θ)](θ̃i−θi)|·

exp{−1
2u2 · (σ2 + τ2

0 Rii(θ0, λ0)(xi − θ0)2)−1}√
2π(σ2 + τ2

0 Rii(θ0, λ0)(xi − θ0)2
du

≤ ρ
4∑

i=1

∫
(ai1|u|2+ai2|u|+ai3)·

exp{−1
2u2 · (σ2 + τ2

0 a)−1

√
2πσ2

du,

(A.6)

where θ̃ = (θ̃1, θ̃2, θ̃3, θ̃4) and |ξ| ≤ 1. From (A.6), we get condition (iii) of Lemma 1.

♦
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